next up previous contents
Next: A experiência DELPHI Up: Geradores de Monte Carlo Previous: KoralZ - o Método   Contents

Comparação

As previsões de cada um dos três geradores para as secções eficazes, totais e dife-renciais, dependem de diversos factores que devem ser escolhidos cuidadosamente. A escolha dos parâmetros electrofracos, assim como do método de cálculo para a sua evolução com a energia, são tão ou mais importantes do que os valores de corte que podem ser necessários. No KoralZ quase não há ambiguidade na escolha de parâmetros, o parâmetro livre mais relevante é um valor de corte para a energia mínima de colisão, que não pode ser exactamente zero, mesmo se se consideram nulas as massas dos dois quarks mais leves; no CompHEP, por outro lado, os dois tipos de informação são necessários: a utilização de uma função de estrutura implica uma definição da escala de factorização, enquanto que a geração explícita de fotões no estado final implica a definição de dois valores de corte, para evitar as divergências infra-vermelha e colinear. O gerador Pythia, sendo mais geral, permite uma maior liberdade. Neste caso, além dos valores de corte a utilizar é necessário escolher também quais os parâmetros electrofracos em que se baseiam os cálculos e quais as relações destes com as outras variáveis. Assim, a escolha de todos os parâmetros a utilizar é uma tarefa delicada. Os parâmetros mais adequados para a geração de um determinado processo podem não o ser para uma outra interacção e é necessário ter presente que um outro conjunto de parâmtros pode alterar significativamente os resultados.

As diferentes escolhas de parâmetros a utilizar no Pythia, para uma descrição correcta da radiação de estado inicial, foram objecto de um estudo detalhado feito pela colaboração DELPHI [10]. Concluiu-se, nesse estudo, que as secções eficazes para os processos $e^+e^- \rightarrow f\bar{f}$ dependem do procedimento utilizado no cálculo da evolução da constante de acoplamento electromagnético com a energia, mas dependem, principalmente, da definição da escala de energia a que se calculam as secções eficazes nos processos de geração da cascata de fotões. Neste capítulo, e no resto da tese, apenas um conjunto de parâmetros será utilizado. Estes parâmetros são os que foram utilizados na geração da única amostra de Pythia totalmente simulada, e correspondem portanto à única previsão que pode ser directamente testada por comparação com os dados reais. É, no entanto, importante referir que podem existir outras escolhas que melhor descrevam os dados, e, nomeadamente, que é possível reproduzir exactamente as previsões do KoralZ usando o método da cascata partónica no Pythia.

Figure 3.3: Distribuições da energia de centro de massa efectiva previstas pelos três geradores. São considerados todos os acontecimentos gerados. Os números indicam as secções eficazes obtidas excluindo acontecimentos com energias efectivas menores do que 4 GeV. No segundo e terceiro gráficos comparam-se as previsões do CompHEP e do Pythia com as obtidas do KoralZ. \begin{figure}
\begin{center}
\mbox{\epsfig {file=comp1.eps,width=1.\linewidth}}
\end{center}\end{figure}

Na figura 3.3 estão representadas as distribuições das energias de centro de massa efectivas ($\sqrt{s'}$) obtidas com os três geradores, e o rácio entre as secções eficazes previstas em função de $\sqrt{s'}$. As secções eficazes previstas para energias de colisão efectivas inferiores a 4 GeV não podem ser comparadas directamente, uma vez que os vários geradores utilizam diferentes valores de corte nesta variável. Excluindo estes acontecimentos, as secções eficazes obtidas são: 108.8 pb no CompHEP, 108.1 pb no KoralZ e 100.1 pb no Pythia. A descrição geral é semelhante nos três geradores; as maiores diferenças aparecem em regiões de menor secção eficaz e, nomeadamente, na região de baixa energia. Parece, no entanto, existir um pequeno desvio na posição do pico do Z$^0$ prevista pelo KoralZ em relação à que é prevista pelos outros geradores.

As secções eficazes previstas para cada tipo de quark, pelo CompHEP e pelo KoralZ, estão indicadas na tabela 3.1.


Table 3.1: Secções eficazes previstas por KoralZ (KZ) e CompHEP (CP) em pb. CP$_{tot}$ representa a secção eficaz total calculada sem nenhum corte; X$_{>4 GeV}$ representa a secção eficaz prevista para acontecimentos com energias de colisão efectivas superiores a 4 GeV, X$_0$ representa a secção eficaz para acontecimentos em que não existem fotões com energias superiores a 5 GeV e CP$_{noSF}$ representa a secção eficaz obtida quando se geram acontecimentos $q\bar{q}$ com o CompHEP, sem utilizar a função de estrutura. Os erros estatísticos são inferiores a 0.1 pb para todas as secções eficazes.
  CP$_{tot}$ KZ$_{>4 GeV}$ CP$_{>4 GeV}$ KZ$_{0}$ CP$_{0}$ CP$_{noSF}$
$d\bar{d}$ 23.22 21.64 21.83 3.28 3.30 4.25
$u\bar{u}$ 27.51 21.82 21.91 5.34 5.10 6.58
$s\bar{s}$ 22.15 21.64 21.82 3.28 3.30 4.25
$c\bar{c}$ 22.07 21.82 21.75 5.19 5.09 6.58
$b\bar{b}$ 21.55 21.17 21.55 3.24 3.30 4.24
TOT 116.5 108.1 108.8 20.1 20.1 25.9


As maiores diferenças aparecem nas secções eficazes de produção de quarks pesados e estão relacionadas com a definição dos valores de massa; essas diferenças explicam as discrepâncias visíveis na figura 3.3, na região de baixa energia - mais sensível às massas das partículas.

As secções eficazes obtidas com o CompHEP, sem utilizar a função de estrutura, são sempre superiores às obtidas com o KoralZ para os casos correspondentes. Esta diferença reflecte o facto de que o expoente de YFS, que é necessário para descrever os efeitos da emissão de fotões de muito baixa energia, é menor do que a unidade. As razões entre as secções eficazes obtidas com e sem o expoente de YFS são de 0.77 para acontecimentos $q\bar{q}$ e 0.76 para acontecimentos $q\bar{q}\gamma$ (com 28.0 pb calculados a partir dos diagramas em 3.1b) e 21.1 gerados no KoralZ). Ambos estes valores são compatíveis com o expoente de YFS calculado para K$_{min}$ = 5 GeV (fig. 3.3).

A comparação entre o CompHEP e os outros geradores não pode ser feita directamente no que respeita ao número de fotões emitidos. De facto, a maior parte dos fotões são emitidos colinearmente e não podem ser gerados explicitamente no CompHEP - só são "detectáveis" ao causar um desiquilibrio da energia e momento total quando são incluídos através da função de estrutura. Na figura 3.4, comparam-se as previsões de KoralZ e Pythia referentes ao número de fotões com energia superior a 5 GeV. Os fotões são separados em duas categorias conforme são emitidos abaixo de 2$^\circ$ (acima de 178$^\circ$) ou nas regiões de ângulo polar em que é possível a detecção. A contagem do número de fotões colineares nos dados só pode originar valores de 0, 1 ou 2: a emissão de dois ou mais fotões colineares por um mesmo feixe não é distinguível da emissão de um único fotão; a emissão de fotões pelos dois feixes é no entanto sentida como uma diferença entre a energia e o momento visíveis. Este efeito é também sentido na amostra gerada com CompHEP.

Figure 3.4: Número de fotões por acontecimento. No primeiro histograma são contabilizados todos os fotões gerados; no segundo apenas os fotões detectáveis e no terceiro o número de fotões que podem ser identificados como perdidos no tubo do feixe (BP). Só se consideram fotões com energias superiores a 5 GeV. A linha representa a previsão do KoralZ e os pontos correspondem à previsão do Pythia. \begin{figure}
\mbox{\epsfig {file=gnfot.eps,width=1.\linewidth}}
\end{figure}

Na maior parte dos acontecimentos nenhum fotão é detectado e existe um fotão de alta energia emitido ao longo da linha de feixe. Os acontecimentos com apenas um fotão gerado são os que mais significativamente contribuem para a secção eficaz total: o número médio de fotões por acontecimento é de 1.019 no KoralZ e 1.010 no Pythia. A diferença é dominada pelos acontecimentos com dois fotões gerados. Existe, por outro lado, uma grande diferença na descrição da emissão. No KoralZ o número médio de fotões visíveis é de 0.32 e no Pythia o valor é de 0.34, enquanto que o número médio de fotões emitidos ao longo da linha de feixe é de 0.655 no KoralZ e 0.627 no Pythia.

Esta diferença na descrição do ângulo de emissão pode ser vista mais claramente na figura 3.5, onde se comparam as previsões dos três geradores para a energia e ângulo polar do fotão. Nos acontecimentos considerados existe apenas um fotão energético (E$>5$ GeV) e na região de 2$^\circ$$<\theta<$178$^\circ$. Os acontecimentos foram gerados no CompHEP sem utilizar a função de estrutura, sendo assim visível a diferença na secção eficaz total. A discrepância entre a distribuição de energia prevista pelo CompHEP e pelo KoralZ pode dever-se à mesma causa, já que no KoralZ podem existir fotões pouco energéticos a acompanhar o estado final $q\bar{q}\gamma$. A previsão do Pythia mostra um efeito semelhante, que pode estar, por seu lado, relacionado com o menor número total de fotões gerados. A distribuição do ângulo de emissão, por outro lado, é muito semelhante nas amostras geradas com KoralZ e CompHEP (embora existindo o factor de escala devido ao expoente de YFS) mas muito diferente no Pythia; como foi referido, o Pythia tende a criar mais fotões visíveis mas menos fotões colineares, o que se trata de uma clara distorção da distribuição de ângulo polar do Bremsstrahlung. Este efeito explica, pelo menos em parte, o valor reduzido da secção eficaz obtida com este gerador.

A comparação entre geradores mostra que existem variáveis muito sensíveis às limitações necessárias para a descrição de todos os efeitos da radiação de tra-vagem. As previsões do gerador Pythia (utilizado com este conjunto específico de parâmetros) não são compatíveis com as dos outros geradores: nem no que respeita à secção eficaz total nem se nos limitarmos à descrição da emissão de fotões energéticos. Esta diferença não se pode ser atribuída a uma falha no método da cascata de partões mas apenas a um problema da descrição dos parâmetros electrofracos. Os outros dois geradores concordam nas previsões para a generalidade do espaço de fases mas o acordo não é perfeito em regiões cinemáticas de menor secção eficaz, nomeadamente na região de $\sqrt{s'}$ entre 120 GeV e 140 GeV ou na região de $\sqrt{s'}$ menor que a massa do Z$^0$.

Figure 3.5: Energia e ângulo polar do fotão em acontecimentos com apenas um fotão detectável. Nas distribuições na parte superior da figura, a linha corresponde à previsão do KoralZ e as estrelas e os pontos correspondem às do CompHEP e do Pythia, respectivamente. Na parte inferior estão representadas as razões entre as várias distribuições e as previsões do KoralZ. \begin{figure}
\begin{center}
\mbox{\epsfig {file=comp2.eps,width=1.\linewidth}}
\end{center}\end{figure}

1000


next up previous contents
Next: A experiência DELPHI Up: Geradores de Monte Carlo Previous: KoralZ - o Método   Contents
Sofia Andringa
2001-09-07