List of all members | Public Member Functions | Static Public Member Functions | Private Member Functions | Static Private Member Functions | Static Private Attributes
utl::LambertWDetail::Branch< branch > Class Template Reference

Public Member Functions

template<>
double Approximation (const double x)
 
template<>
double Approximation (const double x)
 
template<>
double RationalApproximation (const double x)
 
template<>
double RationalApproximation (const double x)
 
template<>
double RationalApproximation (const double x)
 
template<>
double RationalApproximation (const double x)
 
template<>
double RationalApproximation (const double x)
 

Static Public Member Functions

static double Approximation (const double x)
 
template<int order>
static double AsymptoticExpansion (const double x)
 
template<int order>
static double BranchPointExpansion (const double x)
 
template<int order>
static double LogRecursion (const double x)
 
template<int n>
static double RationalApproximation (const double x)
 

Private Member Functions

template<>
double LogRecursionStep (const double logsx)
 
template<>
double LogRecursionStep (const double logsx)
 

Static Private Member Functions

template<int n>
static double LogRecursionStep (const double logsx)
 

Static Private Attributes

static const int eSign = 2*branch + 1
 

Detailed Description

template<int branch>
class utl::LambertWDetail::Branch< branch >

Definition at line 201 of file LambertW.cc.

Member Function Documentation

template<int branch>
static double utl::LambertWDetail::Branch< branch >::Approximation ( const double  x)
inlinestatic
template<>
double utl::LambertWDetail::Branch< 0 >::Approximation ( const double  x)
inline
template<>
double utl::LambertWDetail::Branch<-1 >::Approximation ( const double  x)
inline

Definition at line 408 of file LambertW.cc.

References utl::LambertWDetail::kInvE.

template<int branch>
template<int order>
static double utl::LambertWDetail::Branch< branch >::AsymptoticExpansion ( const double  x)
inlinestatic

Definition at line 213 of file LambertW.cc.

template<int branch>
template<int order>
static double utl::LambertWDetail::Branch< branch >::BranchPointExpansion ( const double  x)
inlinestatic

Definition at line 205 of file LambertW.cc.

References sqrt().

template<int branch>
template<int order>
static double utl::LambertWDetail::Branch< branch >::LogRecursion ( const double  x)
inlinestatic

Definition at line 225 of file LambertW.cc.

template<int branch>
template<int n>
static double utl::LambertWDetail::Branch< branch >::LogRecursionStep ( const double  logsx)
inlinestaticprivate

Definition at line 236 of file LambertW.cc.

template<>
double utl::LambertWDetail::Branch< 0 >::LogRecursionStep< 0 > ( const double  logsx)
inlineprivate

Definition at line 355 of file LambertW.cc.

template<>
double utl::LambertWDetail::Branch<-1 >::LogRecursionStep< 0 > ( const double  logsx)
inlineprivate

Definition at line 365 of file LambertW.cc.

template<int branch>
template<int n>
static double utl::LambertWDetail::Branch< branch >::RationalApproximation ( const double  x)
inlinestatic
template<>
double utl::LambertWDetail::Branch< 0 >::RationalApproximation< 0 > ( const double  x)
inline

Definition at line 247 of file LambertW.cc.

template<>
double utl::LambertWDetail::Branch< 0 >::RationalApproximation< 1 > ( const double  x)
inline

Definition at line 257 of file LambertW.cc.

template<>
double utl::LambertWDetail::Branch< 0 >::RationalApproximation< 2 > ( const double  x)
inline

Definition at line 282 of file LambertW.cc.

template<>
double utl::LambertWDetail::Branch< 0 >::RationalApproximation< 3 > ( const double  x)
inline

Definition at line 305 of file LambertW.cc.

template<>
double utl::LambertWDetail::Branch<-1 >::RationalApproximation< 4 > ( const double  x)
inline

Definition at line 330 of file LambertW.cc.

Member Data Documentation

template<int branch>
const int utl::LambertWDetail::Branch< branch >::eSign = 2*branch + 1
staticprivate

Definition at line 233 of file LambertW.cc.


The documentation for this class was generated from the following file:

, generated on Tue Sep 26 2023.