Commissioning Requirements from Hadronic Signatures

Florian Bernlocher (Bonn), Hugo Beauchemin (Tufts), David Miller (Chicago), <u>Ricardo Gonçalo</u> (LIP) On behalf of the Jet and E_T^{miss} Signature Groups TDAQ Week - 3 December 2014

Missing E_T Commissioning Plans

Overview

Support Triggers

Pre-scaled triggers with low xe thresholds

Rerun chains for orthogonally triggered events, e.g. Muons

Commissioning strategy of chains with KF-MET improved coefficients

- Plan to use the 50 ns run to derive a set of data-driven calibration coefficients and test the MC based coefficients.
 - Most physics analyses don't have dedicated plans for the 1/fb of the 50 ns run
 - Plan to make a full comparison of L1_XE met & L1_KF-XE MET to formulate a recommendation for combined chains.
 - Update coefficients then prior to the 25 ns data taking
- Repeat exercise with early 25 ns data; if no large problem isolated plan to use 50 ns coefficients for entire data taking period.

- Plan to use the 50 ns run for quick performance studies on all HLT algorithms.
 - Goal is to reduce the number of HLT algorithm candidates down to maximal two.
 - For these duplicate the combined chains for the first 25 ns run.

- With the current implementation, FEBs can be calculated only by unpacking the full calorimeter information (as far as we understand)
 - Benefit of only unpacking partial information gone; but actual MET calculation still incredibly fast (factor of 10 faster than cell based)
- No use intended at the moment
 - But in a scenario of a lower L1 threshold (departing from the ~ 6 kHz upper limit), they could be used to protect the HLT whilst gaining overall turn-on.

- At this point no use for L1.5 jets
- Calibration at HLT:
 - For MHT plan to use same prescription as jet signature group (i.e. uncalibrated clusters to build jets that are then calibrated)
 - For clusters: setup to use either uncalibrated or calibrated clusters. Current studies indicate that calibration has no big impact (contrary of what was seen in 2012)

Jet Trigger plans

- Unusual trigger...
 - Jets *defined* by jet algorithm
 - Jets have non-negligible size in detector
 - Nearby jets influence reconstruction
 - Signal is same as background
 - Just selecting phase space (i.e. physics!)
 - Very steeply falling spectrum
 - Jet p_T resolution determines "background" rate
- Region of Interest (RoI) approach not really suitable
- Reproduce offline reconstruction as much as possible

Architecture & SW changes for Run II

- Merged High Level Trigger instead of separate L2 & Event Filter
- L1Topo topological processor at Level 1
- Migration to xAOD led to major software changes

- Re-writing of jet trigger software and config, updated monitoring, etc
- Opportunities!
 - Improve on Rol-based jet reconstruction in Level 2
 - Greater re-use of offline jet reconstruction and calibration
 - Good collaboration with HLTCalo and offline jet groups (thanks!)
- Main obstacle: CPU time, mainly clustering

Partial solution: Partial Scan

- HLT jet finding on **Super Rol** built from union of all L1 Rols
 - Or better alternative: start from Trigger Tower full scan (L1.5)
 - Tuneable parameters: L1_Jx (or L1.5 seed), size of Rols making sRol
 - Good jet reconstruction performance and costs
 - Efficiency: (L1_J20) ≈ 99.5% wrt Full Scan (j110)
- Major downside: no jet area subtraction of pileup

Cost...

Full Scan : $<n> \approx 190k$ cells Partial Scan: L1 J20 1x1 : <n> \approx 16k cells Partial Scan: L1_J20 1.5x1.5 : <n> \approx 32k cells

Full Scan : $<t> \approx 10$ ms Partial Scan: L1 J20 1x1: <t> \approx 6ms Partial Scan: L1 J20 1.5x1.5 : <t> ≈ 10ms

Full Scan : $<t> \approx 260$ ms (actually... this was a glitch) Partial Scan: L1 J20 1x1: <t> \approx 30ms Partial Scan: L1 J20 1.5x1.5 : <t> ≈ 45ms

Improvements in clustering time

Updates to TopoCluster lead to much **improved CPU time** TopoCluster:

- Clustering
- Splitting
- Moment calculation
- Calibration
- Full calorimeter scan in HLT
- Cluster making:
 - 80ms/evt
- Cluster+Calibration (LCW):
 - 140ms/evt

New baseline plan:

- Full calorimeter scan
- Keep Partial Scan: plan B
- Plan to use L1.5 to reduce rate for TopoCluster scan (in progress)

* (NOTE) They are simple sums of timing cost in the above 4 processes

Jet Trigger Commissioning Plans

Primary Jet Menu Items at low & high lumi

- Menu for MC15 under final discussion right now
 - 5x10³³ menu: j360, fatjet360, 4j85, 5j60, 6j50.0ETA24, ht800
 - 2x10³⁴ menu: j400, fatjet450, 4j100, 5j85, 6j50.0ETA24, ht1000
- Default calibration: emsubjes
 - Calibrated (jes) + pileup subtract jets (sub) EM-scale clusters (em)
- "Cross-check" chains with **alternative calibrations** for a few strategic thresholds
 - E.g.: j360_a4tcemjes/j380_a4tcemsubjes/j380_a4tcemjes/j380_a4tclcwsubjes
- Support triggers:
 - Low-E_T, prescaled, single and multijet chains; random-seeded low-ET chains

Chain Type	L1 Seed at 0.5x10 ³⁴	HLT Item at 0.5x10 ³⁴	L1 Seed at 2x10 ³⁴	HLT Item at 2x10 ³⁴
Single jet	J75	j360	j100	j400
Single fat jet	HT150	j360_a10	HT190	j450_a10
4 jets	3J40	4j85	3J50	4j100
5 jets	4J15	5j60	4J20	5j85
6 jets	5J15.0ETA24	6j50.0ETA24	5J15.0ETA24	6j50.0ETA24
HT trigger	HT190	ht800	HT190	ht1000

Jet trigger commissioning strategy

- Run new features online as early as possible for functional validation
- Compare with offline jets
 - Large overlap in performance is essential to avoid wasting bandwidth
- Tight coupling with commissioning of HLTCalo
 - Studies of clustering performance and timing are key
 - Will need both EM and LCW clusters early on
- Comparison with offline jets is critical
 - First few runs will already establish the baseline performance
- Would benefit from special early runs with relaxed prescales for low threshold supporting triggers
 - Forward jets typically very difficult to study early
 - Need J+FJ for calibration sample for jet eta intercalibration

Questions & Answers

- Changes required from 50ns to 25ns run?
 - No particular changes required no large differences expected
 - Plan to use early runs (run in May and 50 ns run) to compare different calibration options and make final decision on baseline calibration to be used
 - Repeat exercise with early 25 ns data to find any potential problems
 - Accumulate data as early as possible (50ns run) for jet and calorimeter calibration
- Need for L1.5 and calibration?
 - We plan to runL1.5 before cell-based full scan
 - Idea is to have a handle to reduce HLT input rate
 - Would benefit from being able to calibrate TriggerTower readout, to go beyond L1 resolution
- TopoClusters? Yes, definitely!
 - Would like to be able to choose best calibration for physics (CPU time allowing)

Jet Calibration in HLT

- Apply as much as possible of offline jet calibration
- Concentrate on steps leading to larger improvements
- Essential:
 - Pileup (jet area) subtraction and Jet Energy Scale: working
- In progress/plans:
 - Global Sequential Calibration: some factorizable steps possible
 - Tracking-based steps may be possible but not yet addressed

- Jet Algorithm:
 - **a4** = anti-kt jet finding algorithm with R parameter of 0.4
 - a10 = anti-kt jet finding algorithm with R parameter of 1.0
- Input objects used for jet finding:
 - tc = TopoClusters reconstructed from calorimeter cells
 - **TT** = Level 1 TriggerTowers read out in HLT to allow fast but coarse full calo scan (a.k.a. Level 1.5)
- Calorimeter scan:
 - **PS** = partial calorimeter scan seeded by L1 RoI or L1.5
 - FS = full calorimeter scan (default)
- Pseudorapidity range:
 - **xxETAyy** = jets in interval $xx < |\eta| < yy$ default is **0eta32** (old central jets)
- Cluster Energy Scale correction:
 - em = no weights applied
 - **Icw** = local cluster weighting
- Jet Energy Scale correction:
 - jes = JES calibration factors without pileup subtraction
 - sub = pileup subtraction applied but no JES factors
 - subjes = both pileup subtraction and JES factors
- Some possible combinations:
 - a4tcem = jets built from EM-scale clusters with no jet level calibration
 - a10tcemsubjes = jets built from EM-scale clusters with pile-up subtraction and jet-level calibration
 - a10TTem = jets built from TriggerTowers with no jet level calibration
 - **a4tclcwsub** = jets built from LC-scale clusters with only a pile-up subtraction applied at the jet level
 - a10tclcw_PS = jets built from LC-scale clusters found in a SuperRoI seeded by all L1_Jx items

Commissioning so far...

- Running jet chains since M5
 - j0 seeded from MU10, J10, RD0; ht from J10; no hypo
- Online monitoring working
 - Improvements following experience from M weeks
- Offline monitoring now working as well
- Also allowing us to train team of experts

Ð Ð S awyer, Sebastien Prince Aparajita Dattagupta

Conclusions

- Big changes in Jet Trigger for Run II
- Baseline plan:
 - Trigger Tower full scan to reduce input rate
 - Full calorimeter scan Partial Scan as plan B
 - Jet area subtraction and as much as possible of offline calibration
- Long road to get here but main features working
 - Much room for improvement! Volunteers (very) gladly accepted!

Bonus slides

Specific issues – Jet calibration data

- Very important to collect enough data early on for offline jet calibration
- Forward region and intercalibration
- Even more important due to added material from IBL
 - Need ≈x16 increase in forward region

L1 Proposal

Item	0.5 x 10 ³⁴	1.0 x 10 ³⁴	1.5 x 10 ³⁴	2.0 x 10 ³⁴
L1_XE35	32 kHz	64 kHz	96.6 kHz	128.8 kHz
L1_XE40	19 kHz	38.3 kHz	57.5 kHz	76.7 kHz
L1_XE50	5.7 kHz	11.3 kHz	17 kHz	22.6 kHz
L1_XE60	2.1 kHz	4.3 kHz	6.4 kHz	8.6 kHz
L1_XE70	1.6 kHz	3.2 kHz	4.8 kHz	6.3 kHz
			Rates	from menuFastTopo.p
	50 ns run 1/fb	25 ns run 5/fb	25 ns run 9/fb	

Cannot add L1_KF-XE at this point to the menu, since simulation not ready; propose duplicate menu with similar thresholds Proposed Evolution Pattern for unprescaled chains

L1 Proposal

Item	0.5 x 10 ³⁴	1.0 x 10 ³⁴	1.5 x 10 ³⁴	2.0 x 10 ³⁴
L1_XE35	35.3 kHz	70.7 kHz	106.0 kHz	141.3 kHz
L1_XE40	21.2 kHz 🗸	42.3 kHz	63.5 kHz	84.6 kHz
L1_XE50	6.1 kHz	12.2 kHz	18.3 kHz	24.4 kHz
L1_XE60	2.2 kHz	4.3 kHz	6.5 kHz	8.6 kHz
L1_XE70	1.4 kHz	2.8 kHz	4.1 kHz	5.5 kHz
			Rates	rom menuFastL1Calo.
	50 ns run 1/fb	25 ns run 5/fb	25 ns run 9/fb	

HLT Proposal

XE rates from menuFastTopo.py & menuFast.py differ a lot (factor of 10 not uncommon)

Item	0.5 x 10 ³⁴	1.0 x 10 ³⁴	1.5 x 10 ³⁴	1.5 x 10 ³⁴
	L1_XE50	L1_XE60	L1_XE60	L1_XE70
HLT_xe70	Х	Х		
HLT_xe80	X	Х	Х	
HLT_xe90		Х	Х	Х
HLT_xe100			Х	Х
EM scale cuts;				
should bentilghercy & learning from early	50 ns run 1/fb	25 ns run 5/fb	25 ns run 9/fb	25 ns run 9/fb

Bonus: rates with pileup correction

Erich Varnes

- Conditions:
 - L=2x10³⁴
 - 4j45 rate
 - No event weighting
- Only fixed **ρ=6** here
- ρ calculation works in private code so far
- **Top**: no areas subtraction
- Bottom: with ρ=6 area subtraction

Sample	Cross section	Filter eff	nevents	npass	rate
JZOW	7.90E+07				
JZ1W	7.93E+07	3.11E-04	2800	18	3.17E+03
J20W	6.41E+04	5.39E-03	2900	18	4.29E+01
JZ3W	1.66E+03	1.90E-03	1700	7	2.60E-01
JZ4W	2.76E+01	1.49E-03	2100	26	1.02E-02
JZ5W	3.03E-01	5.51E-03	2400	52	7.23E-04
JZ6W	7.51E-03	1.52E-02	2600	83	7.29E-05
total rate (Hz)				3214.03

Sample	Cross section	Filter eff	nevents	npass	rate
JZOW	7.90E+07				
JZ1W	7.93E+07	3.11E-04	1610	5	1.53E+03
J20W	6.41E+04	5.39E-03	1400	8	3.95E+01
JZ3W	1.66E+03	1.90E-03	1500	4	1.68E-01
JZ4W	2.76E+01	1.49E-03	1500	22	1.21E-02
JZ5W	3.03E-01	5.51E-03	1400	27	6.44E-04
JZ6W	7.51E-03	1.52E-02	300	9	6.85E-05
total rate (Hz)				1571.49

Pile-up subtraction: rho

Cluster Calibration

- Resolution and linearity improvement for charged pions after each correction:
 - EM
 - LCW
 - Out of cluster
 - Dead material
- Conditions:
 - <μ>=0
 - IBL geometry
 - 2<|η|<2.2
 - 4 samplings

9/24/14

L1Topo, Fat Jets, et al.

- L1Topo allows to cut on complex quantities using L1 objects
- Example here:
 - Optimization of fat-jet L1 seed
 - HTC: E_T sum of all jets with E_T >20GeV within $|\eta|$ <2.5
- Several other studies, like:
 - HT trigger for stop searches
 - Fat-jet trigger for VV->jj
 - Razor triggers for resonances decaying to jets+invisible particles

Trigger	Data (14 TeV)	Unique (wrt J100)	Unique (wrt J100+4J20)
J100 (default)	5.8±0.7	-	-
$HTC190 \text{ w/}E_{\pm} > 15 n < 2.0$	43+08	29+18	14+10
HTC200 w/ $E_{T} > 20 \dot{\eta} < 2.5$	3.8±0.6	1.0±0.4	0.9 ± 0.7
	0.0 ± 0.0	0.0_0.2	0.4_0.2
$\sum E_T > 110 \Delta R < 1.0$	4.3 ± 0.7	$0.3{\pm}0.2$	$0.2{\pm}0.2$
$\sum E_T > 120 \Delta R < 1.5$	3.1±0.5	$0.1 {\pm} 0.0$	$0.0{\pm}0.0$
$\sum E_T > 110 \Delta R < 1.5$	4.7±0.7	$0.6{\pm}0.3$	$0.2{\pm}0.2$
HTSW>190 $\Delta \eta$ =4	5.3±0.8	1.9±0.6	1.1±0.5
HTSW>200 $\Delta n=4$	4.3 ± 0.7	1.2 ± 0.5	0.8+0.4