Constraining CP of Higgs-top coupling

Ricardo Gonçalo UC/LIP HTop Workshop 2020

Outlook:

- Why constrain the CP quantum numbers of the ttH vertex?
- Recent results from ATLAS and CMS
- What's our next step?
 - The ttH($H \rightarrow$ bb) analysis
- HL-LHC extrapolations
- Conclusions

Why constrain CP of Higgs-top coupling?

- The violation of CP symmetry is our best explanation for a matter-dominated universe
 - Sakharov's conditions for baryogenesis
- But not enough known sources of CP violation
- Does the Higgs sector play a role here?
 - "Higgs-genesis"!! ☺
 - Needs CP-odd admixture
 - Higgs not necessarily a CP eigenstate (e.g. C2HDM)

3

Why constrain CP of Higgs-top coupling?

- 8 years after Higgs discovery
 - Higgs mass known to $^{\circ}/_{\circ\circ}$ level
 - Bosonic couplings known to $\approx 10\%$
 - Fermionic couplings known to ≈20%
 - Not pure CP-odd $(J^{CP} = J^{+-})$
- Looks a lot like SM Higgs!
 - But CP-odd admixture is possible
 - How would we know?
 - CP-odd mixture in bosonic couplings are suppressed
 - Need to look at Yukawa couplings in detail
 - Space for surprises...

Why constrain CP of Higgs-top coupling?

- 8 years after Higgs discovery
 - Higgs mass known to $^{\circ}/_{\circ\circ}$ level
 - Bosonic couplings known to ≈10%
 - Fermionic couplings known to ≈20%
 - Not pure CP-odd (J^{CP} = J⁺⁻)
- Looking ahead...
 - Expect ≈2-3% uncertainties in couplings with full HL-LHC lumi
 - Fighting systematic uncertainties all the way
 - Progress will be essential but not fast
 - But more detailed observables can now be reached – CP of ttH!

What do we want to measure?

- Generalized Lagrangian gets a new CP-odd term and a mixing angle to allow non-pure CP Yukawa interactions
- Two parametrizations:
 κ'_t and α mixing angle,
 or real and imaginary
 coefficients κ_t and κ_t[~]
- Next we need observables sensitive to these parameters

Recent measurements

• ATLAS:

- CP-mixing angle > 43° excluded @95%
- Pure CP odd excluded with $3.9(2.7)\sigma$
 - Phys. Rev. Lett. 125 (2020) 061802
 - See Lisa Mijovic's talk on

• CMS:

- CP-odd model of Htt coupling excluded at 3.2σ
 - PRL 125 (2020) 061801
- CP of τ Yukawa coupling in H $\rightarrow \tau\tau$ decays
 - CP-odd excluded with 3.2σ (2.3 exp.)
 - CMS_PAS_HIG_20_006

Also more indirect constraints

- Electron and neutron EDM able to constrain mixing angle
- Personal bias: nothing beats a direct measurement...

JHEP04(2014)004

ATLAS ttH \rightarrow bb Analysis

Showing work by: Emanuel Gouveia, Nicolas Schamberg, Luís Coelho, Brian Le, Zak Lawrence, Ana Luísa Carvalho Ricardo Gonçalo, António Onofre, Yvonne Peters, Ian Conelly, Daniel Mori, Yang Qin 10.10.20 R.Goncalo - CP measurements 9

ATLAS ttH \rightarrow bb Analysis

- Follows the inclusive ttH(bb) analysis closely
 - See talk by Jelena Jovicevic
- Single-lepton and dilepton channels
- Full Run-2 dataset: 139 fb⁻¹
- Sensitive to **ttH** and **tH** production
- tH cross section is low and ttH drives analysis selection, but
 - tH cross section varies strongly with $\boldsymbol{\alpha}$

Signal modeling for intermediate α and κ'_t

- Monte Carlo available for a few κ'_t and α points
- ttH: weighted sum of CP-even and CP-odd samples per bin, according to:

$$y(\kappa_t, \tilde{\kappa_t}) = \kappa_t^2 y_{\text{even}} + \tilde{\kappa_t}^2 y_{\text{odd}}$$

- Validated at truth-level in both channels (single lepton and dilepton) using many different variables
- Means that interference between CP-even and CPodd components is neglegible
- tH: destructive interference means large dependence of cross-section on κ'_t and α
 - Parameterized separately for tHjb and tWH:

$$\frac{y(\kappa_t, \tilde{\kappa}_t)}{y_{\text{even}}} = A\kappa_t^2 + B\tilde{\kappa_t}^2 + C\kappa_t + D\tilde{\kappa_t} + E\kappa_t\tilde{\kappa_t} + F$$

- Coefficients from fitting the MC samples to samples generated for different κ'_t and α

Single lepton channel: event selection

Single lepton channel: analysis strategy

- 6-jet, 4-b region separated into control and signal regions based on the classification BDT output
- Fit a CP discriminant in resulting region
- Replaced with highestranked variable (b₂) with very small loss
- Boosted region adds sensitivity because Higgs p_T distribution depends on GP10.20

Single lepton channel: analysis strategy

- 6-jet, 4-b region separated into control and signal regions based on the classification BDT output
- Fit a CP discriminant in resulting region
- Replaced with highestranked variable (b₂) with very small loss
- Boosted region adds sensitivity because Higgs p_T distribution depends on CP

Single lepton channel: analysis strategy

- 6-jet, 4-b region separated into control and signal regions based on the classification BDT output
- Fit a CP discriminant in resulting region
- Replaced with highestranked variable (b₂) with very small loss
- Boosted region adds sensitivity because Higgs p_T distribution depends on CP

Input distributions

16

Dilepton channel: event selection

Region	Selection	Fitted Variable
CR ^{3j,3b} hi	=3j, =3b@60	
CR ^{≥4j,3b} lo	≥4j, =3b@60	Yield
CR ^{≥4j,3b} hi	≥4j, =3b@70 (<3b@60)	
CR ^{≥4j,≥4b}	-1.0 <bdt<-0.0862 Events Reconstructed</bdt<-0.0862 	
SR ^{≥4j,≥4b} lo	-0.0862 <bdt<0.1862 Events Reconstructed</bdt<0.1862 	CP-BDT
SR ^{≥4j,≥4b} hi	0.1862 <bdt<1.0 Events Reconstructed</bdt<1.0 	
Δη _{ιι}	BDT > -1.0 Events Unreconstructed	Δη _{II}

Dilepton channel: analysis strategy

- Again, reconstructed events are separated into regions defined by classification BDT output
- In each regions, fit CP-BDT large sensitivity loss when using highest ranked discriminants
- Inputs to CP-BDT include angles between reconstructed particles in various rest frames
 - From PRD 96 (2017) 1, 013004
- Event reconstruction fails in a few events
 - Fit Δη(l⁺,l⁻) highest-ranked variable in original CP-BDT

Input distributions

tt+b systematic uncertainties

- Based on cross-section measurement, with a couple of differences:
- No p_T(bb) dependent systematics
- Additional uncertainty comparing tt (5F) vs ttbb (4F) predictions for tt+b
- Significant impact on dilepton CP-BDT (PP8 and aMC)
- Difference between 5FS prediction is small
- The difference between 4FS and 5FS prediction cannot be covered by comparing different 5FS generators

Asimov fits

- Sensitivity to mixing angle α
- Fit CP-even Asimov dataset in l+jets, dilepton and combined
- Log-likelihood scan of α
- All other parameters profiled, including coupling modifier
- 1σ intervals and CP-odd exclusion significance: -49°, +52°
- Some exclusion of α=π (inverted coupling) scenario

Asimov fits

- Combined fit to CP-even Asimov dataset
- Log-likelihood scan of κ̃ and κ
- All other parameters profiled
- CP-odd scenario outside 1σ contours
- But inside 2σ contour
- Inverted coupling scenario inside 1σ contour

Impact of systematic uncertainties

- Usual ranking method is sensitive to ۲ the sign of α flipping
- Several NPs assigned artificially large impacts
- Width of the 1σ interval is robust against changes in the value of the minima \Rightarrow use it to rank systematics:
 - 3.5 ATLAS_JER_EffectiveNP_2 ttb FSR 3.0 ttlight Gen ttb PS ATLAS FTAG BO 2.5 kappa torime ttb Rad ttc horm unc 2.0 -∇lu(L) ttb norm ttb Gen 1.5 Nominal 1.0 0.5 0.0 -0.75 -0.50 -0.250.25 0.50 0.75 1.00 -1.000.00 10.10.20

- **Ranking:**
 - Do LH scan for each NP
 - Calculate 1σ interval
 - Calculate impact as the square root of the quadratic difference between the 1σ intervals
- Highest ranked NPs are dominated by ttb theory uncertainties

Background modeling

Validate background model by fitting it to data in signalpoor bins

- tt+b normalisation corrected by factor 1.23
- Good agreement in pulls between channels
- Largest tt modelling pull is ttb ISR (just above 1σ)
- Known from SM analysis that it corrects the mismodelling in the Njet distribution

Post-fit modelling (background-only)

Fit corrects modeling of discriminant variables (ΔR_{bb}^{avg} and b_2^{ttH})

Post-fit modelling (background-only)

... and improves modelling of the CP BDT input features

10.10.20

Status of ttH, $H \rightarrow bb$ CP analysis

- Analysis is basically mature
- It was carefully kept up-to-date with cross-section analysis
- INT note basically up to date in Git: <u>ANA-HIGG-2020-03-INT1</u>
- But needs urgently an Editorial Board, to proceed work after unblinding the SM analysis

2

3

4

ATLAS Note

ANA-HIGG-2020-03-INT1

29th May 2020

Search for CP-odd $t\bar{t}H$ production in the $H \rightarrow b\bar{b}$ decay channel using 139 fb⁻¹ of *pp* collision data at $\sqrt{s} = 13$ TeV

The far future...

- What can we expect from the HL-LHC? What is relevant?
- Phenomenological projection (ttH→bb only) indicate CP-odd exclusion in near future (~250/fb)
 - Actual mixing angle sensitivity depends logarithmically on luminosity
- More realistic projection using current analysis
 - Factor ≈2 worse in integrated luminosity
 - Theory uncertainty (i.e. Background modeling!) is the limiting factor

Conclusions

- These are important analyses and the LHC experiments are now becoming sensitive to them
 - Great results released recently!
 - Using CP-odd exclusion as benchmark we're clearly at the 3σ exclusion level in several analyses
- Next in line is $ttH(H \rightarrow bb)$
 - Analysis mature and waiting for deeper review
- The future has lots of great measurements in store for us
- But good ideas are essential!

Backup

ttH(bb) CP analysis documentation

- Presented at HTop Workshop 2019 in DESY:
- <u>https://indico.cern.ch/event/773548/timetable/#b-330794-tthbb-session-cp-odd</u>
- Glance: <u>https://atlas-glance.cern.ch/atlas/analysis/analyses/details.php?</u> <u>id=3727</u>
- Supporting note (ATL_COM_PHYS_2020_230) : <u>https://cds.cern.ch/record/2713731</u>
- Draft in GIT: <u>https://gitlab.cern.ch/atlas-physics-office/HIGG/ANA-HIGG-2020-03/ANA-HIGG-2020-03-INT1</u>

What do we want to measure?

• Intuitive impression of origin of sensitivity

CP even: coupling to opposite helicity top & antitop

CP odd: coupling to same helicity top & antitop

There are two kinds of people.

 Those who can extrapolate from incomplete data.

