Jet & MET Trigger Session

(the <u>first</u> – but not last – dedicated trigger session at HCW!)

Hadronic Calibration Workshop 2014 Munich, Germany Hugo Beauchemin, Florian Bernlochner, Ricardo Goncalo, David Miller

INTRODUCTION & BACKGROUND

2

Jet/MET Trigger Session - HCW 2014, Munich

Run I jet trigger scheme

*E*_T^{miss} Trigger in 2011 & 2012

How to judge performance at the trigger?

Figure of merit: cost (= rate) versus phase space accessible by signal

Interplay of performance of algorithms in presence of fake and real MET crucial.

RUN II CONCEPTS AND CHANGES

Changes for Run II

E_T^{miss} Trigger for 2015

Several scenarios considered:

* L1 MET calibration: Jets & LUT

- * MHT versus MET (with LUT to calibrate Jets)
- SET based calibration

Several scenarios on the table:

- MHT + Clusters (eventually FTK)
- Clusters
- * Cells

Preliminary Jet/MET Menu for Run II

	Run1 L1	HLT	Run2 L1	HLT
Single jet	J75	360 GeV	J100	400 GeV
Multi-jets	4J15	5×55 GeV	4J20	5×85 GeV
				5×75 GeV, η <2.5
		6×45 GeV	5J15_ETA25	6×50 GeV, η <2.5
Jet + MET	J30_XE50	80 GeV (j), 100 GeV (MET)	J75_XE40	150 GeV (j), 90 GeV (MET)
	Run1 L1	HLT	Run2 L1	HLT
MET				
		80 GeV	XE70	100 GeV
b-jets	4J15	80 GeV 45 GeV (b), 3×45 GeV(j)	XE70 4J20	100 GeV 75 GeV (b), 3×75 GeV (j)
b-jets	4J15	80 GeV 45 GeV (b), 3×45 GeV(j) 2×35 GeV (b), 145 GeV (j)	XE70 4J20	100 GeV 75 GeV (b), 3×75 GeV (j) 2×60 GeV (b), 200 GeV (j)
b-jets b-jet + (jets) + MET	4J15 J75	80 GeV 45 GeV (b), 3×45 GeV(j) 2×35 GeV (b), 145 GeV (j) 45 GeV (b), 145 GeV (j), 60 GeV (MET)	XE70 4J20 J100	100 GeV 75 GeV (b), 3×75 GeV (j) 2×60 GeV (b), 200 GeV (j) 70 GeV (b), 175 GeV (j), 70 GeV (MET)

RUN I TRIGGER PERFORMANCE AND USE CASES

11

Single jet triggers in the hadronic diboson resonance search (VV->JJ)

- Use events triggered by EF_j240_a10tcem (prescaled)
 - Study EF_j360_a10tcem
 trigger turn-on as a
 function of
 - Dijet mass
 - Leading jet-pt
 - Tagged dijet mass
 - Leading tagged jet pT

VV->JJ team (Enrique Must)

* Tagged jets

Single jet triggers in the hadronic diboson resonance search (VV->JJ)

- Use events triggered by a muon trigger
 - Study EF_j360_a10tcem
 trigger turn-on as a
 function of
 - Leading jet-pt
 - Leading tagged jet pT

Jet- H_T Triggers Turn-On Curves: EF_j145_a4tchad_ht500_L2FS_delayed

- ► An offline cut of $H_T^{\Sigma} > 650 \text{ GeV}$ makes the EF_j145_ht500 trigger fully efficient around $p_{T1} > 175 \text{ GeV}$
 - This is a critical observation since a p_{T1} ≥ 300 GeV, as seems necessary in figure (a), would have made us much less sensitive to low stop masses down to 100 GeV

Jet+HT turn-on curves for SUSY

Joakim Olsson

L1TOPO FOR **RUN II**

L1 Calo Calib and Simul for Run 2 (I)

- Many new features added to calibration at L1
 - New hardware: nMCM, L1Topo
 - New firmware: Cluster Processor
 - More realistic pulse shape and finer granularity
 - New strategies : Autocorrelation FIR filter coefficients, noise cuts, BCID dependent pedestal corrections, isolation, Met calibration (other slide)
 - Adapted to luminosity conditions to cope with pile-up dynamically
 - Dual LUT option allowing for different calib for Tau/EM and Jet/Met
 - ➔ Improve Jet and Met performance in 2015 conditions compare to 2012 configuration in same conditions
 - Some optimization and calorimeter status dependence still needed
- Studies done:
 - Compare MC12 (matched coefficient + 2012 noise cuts) to MC15 (Autocorrelation coefficients + pedestal correction + 0.5% occupancy) using
 09/0«4) = 60 minbias and ZH4 signel samples 2014, Munich

L1 Calo Calib and Simul for Run 2 (II)

• Noise cut optimization:

Huge rate reduction with no loss of efficiency

- overall best working point at 0.5% occupancy
- Reduction of: MET 98.5%, JET 42%, 4J 99.3%

- Non-exponential tail removed
- Shifts at start of bunch train
 reduced and corrected

reduced and corrected Jet/MET Trigger Session - HCW 2014, Munich 10⁻⁵

10⁻⁶

50

150

E^{miss}[81 [GeV]

100

200

L1 Calo Calib and Simul for Run 2 (III)

 Jet position resolution sharper in central region

 Jet linearity sharper with reduced tail • Jet ET correlation shows reduced overestimate at low ET due to start of bunch train correction

• Efficiency: sharper turn-on with similar plateau

Improvement of L1Met with L1Topo I

 Objective: Use L1Topo to calibrate Met using offline information on L1 within look-up tables → maximize correlation to real Met

 $(E_T^{miss})^2 = (\Sigma_i E_{T,i} * C_i)^2$ | for all i with $w_i > cut$ value

• Method: Find C_i that minimize $\Delta p_{x,y} = (p_{x,y reco} - p_{x,y true})$, using Kalman filter

 \mathbf{K}_{n} := Kalman Gain (product of measured $\mathbf{E}_{x,yT}$, error and covar. matrix)

current estimation $\vec{C}_n = \vec{C}_{n-1} + K_n (\vec{y}_n - \vec{f}_n (\vec{C}_{n-1}))$

- Two approaches:
 - Met = Σ jets
 - Correction to L1Met

Improvement of L1Met with L1Topo II

Turn-on curves for bckg reduction rate 10⁻⁴

- Implementation:
 - LUT with 16 bins in η and 10 bins in ${\rm E_T}$ (1-1023 GeV)
 - Test on FPGA: less than 18% of resources
- Results:
 - Correlation significantly improved
 - Better efficiency and plateau gain (~30 GeV)
 - Doesn't depend much on signal
- Meed to redo with new 11 in poise Cuts 2014, Munich of

L1 HT triggers for fat jets: signal

Explored a large number of trigger configurations, varying parameters in blue.

Studied di-jet, and three signal samples ($t\bar{t}, Z' \rightarrow t\bar{t}, W' \rightarrow tb$):

- mc12.8TeV.117050.PowhegPythia_P2011C_ttbar.merge.NTUP_COMMON.e1728_s1581_s1586_r3658_r3549 p1625
- mc12_8TeV.110903.Pythia8_AU2MSTW2008LO_zprime1000_tt.merge.NTUP_COMMON.e1345_s1499_s1504 r3658_r3549_p1562
- mc12_8TeV.110722.MadGraphPythia8_AU2CTEQ6L1_Wprime_right_tb_hadronic_M1250.merge.NTUP_TOP.e1817_s1499_s1504_r3658_r3549_p1400
- mc12.8TeV.159111.Herwigpp_EE3CTEQ6L1.jetjet_JZ*W.merge.NTUP_COMMON.e1373 s1499_s1504_r3658_r3549_p1562
- Note: These are 8TeV samples. Haven't adressed the impact of 14 TeV samples.

L1 HT triggers for fat jets: rates

Trigger	Data (14 TeV)	Unique (wrt J100)	Unique (wrt J100+4J20)
J100 (default)	5.8±0.7	-	-
$HTC190 w/E_{-} > 15 m < 2.0$	13-08	20-18	1 1 + 1 0
HTC200 w/ E_T >20 $ \eta $ <2.5	3.8±0.6	(1.0 ± 0.4)	0.9±0.7
HICZIU w/ $E_T > 15 \eta < 3.0$	3.0±0.0	0.0 ± 0.2	0.4 ± 0.2
$\sum E_T > 110 \Delta R < 1.0$	4.3±0.7	0.3±0.2	0.2±0.2
$\sum E_T > 120 \Delta R < 1.5$	3.1±0.5	0.1 ± 0.0	$0.0{\pm}0.0$
$\sum E_T > 110 \Delta R < 1.5$	$4.7{\pm}0.7$	$0.6 {\pm} 0.3$	0.2±0.2
HTSW>190 $\Delta \eta$ =4	5.3±0.8	1.9±0.6	1.1±0.5
HTSW>200 $\Delta \dot{\eta}$ =4	4.3±0.7	1.2±0.5	0.8±0.4

UBA (Devesa, Reisin, Otero, Piegaia)

- New proposed HT triggers have 25% unique rate despite having a lower total rate than the "default" J100 single jet trigger
- Higher efficiency at L1 for boosted objects

PARTIAL AND FULL SCAN

24

Jet/MET Trigger Session - HCW 2014, Munich

Partial versus Full Scan

- No Level 2 trigger anymore!
 - I.e. take full L1 rate as HLT input
 - Run full-scan on TriggerTowers (aka Level
 - **1.5**) to identify jet positions
 - Avoids L1 bias from close-by jets
 - Runs Anti-kt instead of cone
 - <t> ≈ 12ms (from Run-I typical run)
 - L1-like E_T resolution
 - Not yet tested for new data
 - HLT jet finding on **Super Rol**
 - Union of all regions identified by L1.5
 - Assuming full-scan is too expensive
 - Only <t> ≈ 40-50ms available*
- Evaluating performance and costs of new scheme
 - Tuneable parameters: L1_Jx seed, size of Rols making sRol
 - Data: 14TeV <μ>=80
- Efficiency:
 - PS (L1_J20) ≈ 99.5% wrt Full Scan (j110)

Jet/MET Trigger Session - HCW 2014, Munich

() depends on money spent on trigger CPU

Performance

Delta_R offline/online

Jet/MET Trigger Session - HCW 2014, Munich

TOPOCLUSTERS IN THE **HLT**

Clustering 'Saga' and the 'Disaster' Plot

History:

- Requested samples to study 2015 performance 1 year ago.
- The samples arrived in February, and we in essence saw the same thing (and on top problems with L1)
- After talking to HLT calo & L1 and both gave their heads up we requested a second production.

Sven Menke tracked down the problem at light speed; noise levels in Tile & FCal underestimated, hadronic calibration also not doing what it's supposed to be doing.

Sven's toy

Noise plays a big role on the performance of the trigger

We should use one-sided noise cuts for clustering

Rerunning clustering with faulty samples

Ok, so what now?

- We will show this to the Trigger General Meeting.
- Samples are in physics validation, but a fixed version will arrive too late for the decision making process if additional CPU should be purchased.

PERFORMANCE **EXPECTATIONS** FOR RUN II

33

Jet/MET Trigger Session - HCW 2014, Munich

• Suppress background with hyperbolic cut: $\bar{\Pi} \equiv (\sqrt{\hat{s}_R} + 85 \text{ GeV})(1/\gamma_{R+1} + 0.048)$

Jet/MET Trigger Session - HCW 2014, Munich

Unique efficiencies of the razor triggers

Read the Y-axis for a given trigger and then look at the value for any trigger on the X-axis to see the benefit

Razor trigger implementation

- Trigger/TrigAlgorithms/ TrigHLTJetHemisphereRec
 - HLT::FexAlgo, Modeled on TrigHLTJetRec. Takes in an xAOD jet collection and attaches a new jet collection of exactly 2 jets which represent the hemispheres to the TE
- Brute force all combinations of N jets into two hemispheres
 - Running time grows as ~2^N logN so needs some passthrough at N_{Max} jets where a multijet trigger should take the event anyway (then offline OR)
- jobOptions configurable jet pT, eta, N_{Max}

- Timing results on Ixplus node
- Must keep algorithm under 200ms → ~14 Jets
 - N_{Max} ~ 10-13 should be safe

Trigger for ZH (vvbb) in Run 2 (I)

- One of the biggest costumer for Met trigger
 - Use Met-Jet cuts to improve performance
- New L1 triggers:
 - Offline Met > 120 GeV
 - Offline $\Delta \phi$ (met-jet), $\Delta \phi$ (Met_{calo}, Met_{track}), $\Delta R(j_1, j_2)$

Trigger	Trigger	Signal Efficiency w.r.t. offline(%)		
	Rate(kHz)	8TeV	14TeV	
XE50_J40_dPhi1	5.3	91.9 ± 0.3	91.5 ± 3.3	
XE60_J30	4.1	89.9 ± 0.4	93.9 ± 2.6	
XE50_J40_dPhi1 L1_XE60_J30	7.6	96.3±0.2	95.1±2.4	
XE70	5.6	78.8 ± 0.5	79.3±4.5	
XE40,0,75,14 Jet/M	1ET Trigger Session 5HCW 202	14, Muni 511.7 ±0.6	48.8 ±5.5 ₃₇	

Trigger for ZH (vvbb) in Run 2 (II)

- Strategy:
 - Assume L1 trigger passed (take L1_XE50_J40_dPhi1)
 - Remove 12 first bunches on 14 TeV samples
 - Apply EF_xe90 (high efficiency, trigger rate of 1khz) as starting point
 - Consider combination of cuts on: jet P_T, min $\Delta\phi$ (Met,J), $\Delta\phi$ (Met,J₁₂), $\Delta\phi(j_1,j_2)$

- Efficiency w.r.t. L1: 89.5% (14 TeV); EF Trigger Rate: 53 ± 37 Hz
- Still not low trigger rate, but based on low statistic samples... ^{09/09/14} Jet/MET Trigger Session - HCW 2014, Munich

Preliminary look at FTK based p_T^{miss} use in MET trigger

- Pure track-based p_T^{miss} very useful in offline event selection. Can it be used online to reject events with badly measured or fake MET?
- Use FTK tracks to estimate p_T^{miss} online and compare to online MET

Difference was tracked down to online MET More MC samples are needed

A simple study on ZHvvbb for trigger efficiency at EF

PILEUP STUDIES

Pileup Studies

- Ongoing studies of pileup impact on trigger rate, turn-on and resolution
- Rates studied with:
 - (hacked) standard MenuFast tool
 - Uses enhanced bias 8TeV data, 8/14TeV MC
 - Jet trigger analysis package LIPJetTrigPerfAnalysis/JetTrigEff
 - Based on RootCore will migrate to xAOD
 - Study turn-on, resolution, rate, etc
- Several pileup scenarios: <μ> = 20, 40, 60, 80

```
8 TeV Data
                                                                            Data Scaled
        Trigger [Hz]:
                                    8 TeV MC
                                                 Scaling MC total 14 TeV
        EItight33 LoneEMH28 73.5+- 9.9 58.0+-10.8 (2.8+- 0.8) 117.4+-22.8
                                                                            161.1+-22.7
                          73.5+- 9.9 57.9+-10.8 (2.8+- 0.8) 117.3+-22.8 161.1+-22.7
         Unique
       MUI24 LoneMU20
                          208.5+-16.7 0.0+-0.0 (2.0+-0.2) 0.0+-0.0 403.3+-25.7
                                       0.0+-0.0 (2.0+-0.2) 0.0+-0.0 403.3+-25.8
         Unique
                          208.5+-16.7
        Total
                          282.0+-19.4
                                       179.6+-14.3 (1.5+- 0.4) 263.6+-22.9 465.0+-70.0
  Unique rate for given trigger line
                                             MenuFast example output
                                             Pileup: \mu = 60
Total rates (pile-up included)
09/09/14
                             Jet/MET Trigger Session - HCW 2014, Munich
                                                                                      41
```

Effect on jet $E_T - very$ preliminary

- Used JZ4W sample: truth jet 500 GeV < E_T < 1 TeV
- Antikt4_topo_calib_EMJES no trigger cut, but $E_T > 500GeV$ (truth)

Effect on jet $E_T - very$ preliminary

- Used JZ4W sample: truth jet 500 GeV < E_T < 1 TeV
- Antikt4_topo_calib_EMJES no trigger cut, but $E_T > 500GeV$ (truth)

Pileup subtraction in the HLT

- Want to remain as close to the offline schema for jet calibration and pileup subtraction as possible
 - Rho calculation may become difficult in the HLT
 - Need to determine resource requirements (data volume and CPU time) for area calculation
 - Can we use Voronoi area for jets (both in rho calculation and application)
 - Could look at using trigger towers as well

MONITORING AND VALIDATION

45

Monitoring and Validation

Several levels of scrutiny:

- 1. Software development validation
 - **Functional** validation (ATN/NICOS):
 - TriggerTest, TrigAnalysisTest, TrigP1Test
 - Regression tests on fixed reference: EDM, event counts, new menus, etc
 - Performance validation and infrequent errors (RTT)
 - Also runs same tests as ATN
 - Expanding tests as new developments are produced
 - Detailed validation: resolutions, cost monitoring, etc
 - Jet trigger diagnostics
 - Run in trigger chains for detailed studies
 - Allows greater access to input data as seen by trigger chains

Monitoring and Validation

1. Software validation

Previous slide

2. Online monitoring:

- P1 operations
- Fast detection of problems and fast response; not detailed analysis
- Look for error situations affecting jet trigger performance
 - Hot towers, trigger rate, etc

3. Offline monitoring:

- Examine data quality after Tier0 reconstruction
- Comparison to offline jets
- Harmonizing with offline monitoring
- Trigger menu awareness essential to efficient operation
- Migrated TrigJetMonitoring to xAOD
- Current priority/testing ground: M5

47

ISSUES AND CONCERNS FOR RUN II

Issues to watch out for and planning for coping with trigger issues in Run II

- Calibration of jets for the MET/MHT trigger
 - How important is the L1 jet calibration? Does the upgraded nMCM calibration proposal have a large impact?
 - How do we incorporate (technically) the jet area and rho calculations into the HLT?
 - How does calibration impact the Trigger Level Analysis (TLA)
- Fall back scenarios for jet/MET calibrations
 - What to do with errors/issues with calibrations in the trigger
 - How to handle missing calibration data or inputs (e.g. rho)?
- Impact of IBL material and services on MET trigger

Impact of IBL service on Met

Hyungsuk Son

- Quick study:
 - Remove any object in high material region
 - Recalculate Met
 - Compare to Met without additional material

Rate increases at trigger level due to soft jets falling in this region
 ^{09/09/14} Increases threshold by ~10% to keep trigger rate fixed

LOOKING TOWARDS RUN

Fat jet trigger at L1 for Run III

Level 1 trigger: gFEX Jet Giordon Stark Pile-up Energy Density Correlation

tt

Fat jet trigger at L1 for Run III

Level 1 trigger: gFEX Jet Giordon Stark correlation with offline jet PT

tt

SUMMARY & **C**ONCLUSIONS

Summary

- No conclusions, just lots of fun ahead \bigcirc
 - Lots going on in the trigger
 - Great opportunities to make significant contributions!
- Many thanks to everyone contributing to Jet/MET triggers!