Jet Trigger and changes for Run II

Ricardo Gonçalo (LIP), David Miller (Chicago) On behalf of the Jet Signature Group people who did the hard work ATLAS Weekly Meeting - 2 December 2014

Outline

- Unusual trigger...
 - Jets *defined* by jet algorithm
 - Jets have non-negligible size in detector
 - Nearby jets influence reconstruction
 - Signal is same as background
 - Just selecting phase space (i.e. physics!)
 - Very steeply falling spectrum
 - Jet p_T resolution determines "background" rate
- Region of Interest (RoI) approach not really suitable
- Reproduce offline reconstruction as much as possible

Jet Trigger in Run-I

Level 1 Jet Trigger

- Jet Elements built from 2x2 Trigger Towers
- Sliding Window jet algorithm
- Identifies L1 jet RoI if local E_T maximum found and above threshold
- Trigger Tower ET resolution around 1GeV (digital)
- Very slow turn-on due to poor resolution (J15 reaches 100% efficiency at ≈50GeV)
- NOTE: expect significant improvements for Run II from nMCM calibration

Jet trigger in Run 1

- Cone algorithm in Rol's
- Anti-kt jets from Trigger Towers (Level 1.5)
 - ≈L1 granularity and resolution but full calo scan
 - Partially recover close-by jet/jet splitting bias from L1 sliding window
- Much faster turn-on than L1

Event Filter:

Offline-like jet reconstruction

vs=7TeV |n |<2.8

- Anti-kt jets starting from TopoClusters
- Offline-like performance (on surviving events)

100

ATLAS Preliminary

300

- Data 2011 - EF i30, i40, i55, i75, i100

√s=7TeV |η_{...}|<2.8

Jet Trigger plans and difficulties

Architecture & SW changes for Run II

- Merged High Level Trigger instead of separate L2 & Event Filter
- L1Topo topological processor at Level 1 (see later slides)
- Migration to xAOD led to major software changes

- Re-writing of jet trigger software and config, updated monitoring, etc
- Opportunities!
 - Improve on Rol-based jet reconstruction in Level 2
 - Greater re-use of offline jet reconstruction and calibration
 - Good collaboration with HLTCalo and offline jet groups (thanks!)
- Main obstacle: CPU time, mainly clustering

Partial solution: Partial Scan

- HLT jet finding on **Super Rol** built from union of all L1 Rols
 - Or better alternative: start from Trigger Tower full scan (L1.5)
 - Tuneable parameters: L1_Jx (or L1.5 seed), size of Rols making sRol
 - Good jet reconstruction performance and costs
 - Efficiency: (L1_J20) ≈ 99.5% wrt Full Scan (j110)
- Major downside: no jet area subtraction of pileup

Cost...

Full Scan : $<n> \approx 190k$ cells Partial Scan: L1 J20 1x1 : <n> \approx 16k cells Partial Scan: L1_J20 1.5x1.5 : <n> \approx 32k cells

Full Scan : $<t> \approx 10$ ms Partial Scan: L1 J20 1x1: <t> \approx 6ms Partial Scan: L1 J20 1.5x1.5 : <t> ≈ 10ms

Full Scan : $<t> \approx 260$ ms (actually... this was a glitch) Partial Scan: L1 J20 1x1: <t> \approx 30ms Partial Scan: L1 J20 1.5x1.5 : <t> ≈ 45ms

Improvements in clustering time

Updates to TopoCluster lead to much **improved CPU time** TopoCluster:

- Clustering
- Splitting
- Moment calculation
- Calibration
- Full calorimeter scan in HLT
- Cluster making:
 - 80ms/evt
- Cluster+Calibration (LCW):
 - 140ms/evt

New baseline plan:

- Full calorimeter scan
- Keep Partial Scan: plan B
- Plan to use L1.5 to reduce rate for TopoCluster scan (in progress)

* (NOTE) They are simple sums of timing cost in the above 4 processes ATLAS Weekly - Jet Trigger

The road ahead

Jet Calibration in HLT

- Apply as much as possible of offline jet calibration
- Concentrate on steps leading to larger improvements
- Essential:
 - Pileup (jet area) subtraction and Jet Energy Scale: working
- In progress/plans:
 - Global Sequential Calibration: some factorizable steps possible
 - Tracking-based steps may be possible but not yet addressed

- Jet Algorithm:
 - a4 = anti-kt jet finding algorithm with R parameter of 0.4
 - a10 = anti-kt jet finding algorithm with R parameter of 1.0
- Input objects used for jet finding:
 - tc = TopoClusters reconstructed from calorimeter cells
 - **TT** = Level 1 TriggerTowers read out in HLT to allow fast but coarse full calo scan (a.k.a. Level 1.5)
- Calorimeter scan:
 - **PS** = partial calorimeter scan seeded by L1 RoI or L1.5
 - FS = full calorimeter scan (default)
- Pseudorapidity range:
 - **xxETAyy** = jets in interval $xx < |\eta| < yy$ default is **0eta32** (old central jets)
- Cluster Energy Scale correction:
 - em = no weights applied
 - **Icw** = local cluster weighting
- Jet Energy Scale correction:
 - jes = JES calibration factors without pileup subtraction
 - sub = pileup subtraction applied but no JES factors
 - subjes = both pileup subtraction and JES factors
- Some possible combinations:
 - a4tcem = jets built from EM-scale clusters with no jet level calibration
 - a10tcemsubjes = jets built from EM-scale clusters with pile-up subtraction and jet-level calibration
 - a10TTem = jets built from TriggerTowers with no jet level calibration
 - **a4tclcwsub** = jets built from LC-scale clusters with only a pile-up subtraction applied at the jet level
 - a10tclcw_PS = jets built from LC-scale clusters found in a SuperRoI seeded by all L1_Jx items

Primary Jet Menu Items at low & high lumi

- Menu for MC15 under final discussion right now
 - 5x10³³ menu: j360, fatjet360, 4j85, 5j60, 6j50.0ETA24, ht800
 - 2x10³⁴ menu: j400, fatjet450, 4j100, 5j85, 6j50.0ETA24, ht1000
- Default calibration: emsubjes
 - Calibrated + pileup subtract jets EM-scale clusters
- "Cross-check" chains with alternative calibrations for a few strategic thresholds
 - E.g.: j360_a4tcemjes/j380_a4tcemsubjes/j380_a4tcemjes/j380_a4tclcwsubjes

Chain Type	L1 Seed at 0.5x10 ³⁴	HLT Item at 0.5x10 ³⁴	L1 Seed at 2x10 ³⁴	HLT Item at 2x10 ³⁴
Single jet	J75	j360	j100	j400
Single fat jet	HT150	j360_a10	HT190	j450_a10
4 jets	3J40	4j85	3J50	4j100
5 jets	4J15	5j60	4J20	5j85
6 jets	5J15.0ETA24	6j50.0ETA24	5J15.0ETA24	6j50.0ETA24
HT trigger	HT190	ht800	HT190	ht1000

L1Topo, Fat Jets, et al.

- L1Topo allows to cut on complex quantities using L1 objects
- Example here:
 - Optimization of fat-jet L1 seed
 - HTC: E_T sum of all jets with E_T >20GeV within $|\eta|$ <2.5
- Several other studies, like:
 - HT trigger for stop searches
 - Fat-jet trigger for VV->jj
 - Razor triggers for resonances decaying to jets+invisible particles

Trigger	Data (14 TeV)	Unique (wrt J100)	Unique (wrt J100+4J20)
J100 (default)	5.8±0.7	-	-
$HTC190 \text{ w/}E_{\pm} > 15 n < 2.0$	43+08	29+18	14+10
HTC200 w/ $E_{T} > 20 \dot{\eta} < 2.5$	3.8±0.6	1.0±0.4	0.9 ± 0.7
	0.0 ± 0.0	0.0_0.2	0.4_0.2
$\sum E_T > 110 \Delta R < 1.0$	4.3 ± 0.7	$0.3{\pm}0.2$	0.2 ± 0.2
$\sum E_T > 120 \Delta R < 1.5$	3.1±0.5	$0.1 {\pm} 0.0$	$0.0{\pm}0.0$
$\sum E_T > 110 \Delta R < 1.5$	4.7±0.7	$0.6{\pm}0.3$	$0.2{\pm}0.2$
HTSW>190 $\Delta \eta$ =4	5.3±0.8	1.9±0.6	1.1±0.5
HTSW>200 $\Delta n=4$	4.3 ± 0.7	1.2 ± 0.5	0.8+0.4

Other loose ends...

Several other studies/improvements not mentioned here time:

- Impact of pileup subtraction (Erich Varnes)
- Impact of pileup in resolution and bias (Annabelle Chuinard)
- Jet offline analysis framework (Rob Cantrill, Lourenço Lopes)
- Lots of work in Monitoring and validation (Lee Sawyer, Sebastien Prince, Aparajita Dattagupta, et al)
- Jet menu studies in SUSY, SM, Higgs, Exotics, etc
- Jet cleaning (Nuno Anjos, liaising with Caterina Doglioni)
- Etc...

Conclusions

- Big changes in Jet Trigger for Run II
- Baseline plan:
 - Trigger Tower full scan to reduce input rate
 - Full calorimeter scan Partial Scan as plan B
 - Jet area subtraction and as much as possible of offline calibration
- Long road to get here but main features working
 - Much room for improvement! Volunteers (very) gladly accepted!

We're (almost) ready for new run!

Bonus slides

Inclusive single jet chains

Level 1 seed	Rate @ 0.5 & 2x10 ³⁴	HLT chain	Rate @ 0.5 & 2x10 ³⁴	Prescale@2x10 ³⁴	Clients
L1_RD0		j55_a4tcemsubjes	O(Hz)	?	bootstrap
		j60_a4tcemsubjes	O(Hz)	?	bootstrap
J12	0.95 / 3.8 MHz	j55_a4tcemsubjes	150 / 600 kHz	600,000 – 1 Hz	taus
J15	0.53 / 2.1 MHz	j60_a4tcemsubjes	100 / 400 kHz	400,000 – 1 Hz	taus, btag
J20	240 / 970 kHz	j85_a4tcemsubjes	21 / 85 kHz	85,000 – 1 Hz	taus, multi-j
		j85_a4tcemjes			
		j85_a4tclcwsubjes			
		j85_a4tclcwjes			
J25	130 / 510 kHz	j100_a4tcemsubjes	10 / 41 kHz	41,000 – 1 Hz	taus
J30	75 / 300 kHz	j110_a4tcemsubjes	6.5 / 26 kHz	26,000 – 1 Hz	LAr calib
J40	32 / 130 kHz	j150_a4tcemsubjes	1.6 / 6.5 kHz	6500 – 1 Hz	J+MET
J50	15 / 60 kHz	j175_a4tcemsubjes	0.75 / 3 kHz	3000 – 1 Hz	multijet
		j175_a4tcemjes			
		j175_a4tclcwsubjes			
		j175_a4tclcwjes			

Inclusive single jet chains

Level 1 seed	Rate @ 0.5 & 2x10 ³⁴	HLT chain	Rate @ 0.5 & 2x10 ³⁴	Prescale@2x10 ³⁴	Clients
J60	7.5 / 30 kHz	j200_a4tcemsubjes	0.4 / 1.6 kHz	1600 – 1 Hz	btag
J75	4 / 17 kHz	j260_a4tcemsubjes	140 / 400 Hz	400 – 1 Hz	btag, low Lumi
J85	2.5 / 10 kHz	j300_a4tcemsubjes	67 / 270Hz	200 – ≈1 Hz	multijet, medium Lumi
		j320_a4tcemsubjes	43 / 170 Hz	150 – ≈1 Hz	multijet, medium Lumi
J100	1.3 / 5 kHz	j360_a4tcemjes	22 / 90 Hz	100 – ≈1 Hz	unprescaled at
		j380_a4tcemsubjes	16 / 65 Hz	50 – ≈1 Hz	1x10 ³² or lower: aim for 1-2 points during year to change lowest unprescaled chain
		j380_a4tcemjes			
		j380_a4tclcwsubjes			
		j380_a4tclcwjes			
		j400_a4tcemsubjes	9 / 35 Hz	unprescaled	Also re-think set
		j400_a4tcemjes			of cross-check chains with
		j400_a4tclcwsubjes			different
		j400_a4tclcwjes			needed
J120	1.3 / 2.7 kHz	j460_a4tcemjes + cross-check chains	<1 / 2.8 Hz	unprescaled	High Lumi
R.Gonçal	⁰ 0 / 0 Hz	noAlg	5.5 Hz	unprescaled	Passthrough 21

Multi-jet and fat jet chains

Level 1 seed	@ 0.5 & 2x10 ³⁴	HLT chain	@ 0.5 & 2x10 ³⁴	Prescale@2x10 ³⁴	Clients
3J40	0.4 / 1.6 kHz	4j85_a4tcemsubjes	45 / 180 Hz	180 – 1 Hz	
3J50	0.3 / 1.0 kHz	4j100_a4tcemsubjes	12 / 50 Hz	unprescaled	SUSY, SM, top, jets
4J15	2.4 / 9.5 kHz	5j55_a4tcemsubjes	65 / 260 Hz	260 – 1 Hz	
4J20	0.5 / 1.9 kHz	5j60_a4tcemsubjes	40 / 170 Hz	170 – 1 Hz	
4J20	0.5 / 1.9 kHz	5j85_a4tcemsubjes	4 / 15 Hz	unprescaled	SUSY, SM, top, jets
		5j85_a4tcemjes			
		5j85_a4tclcwsubjes			
		5j85_a4tclcwjes			
5J15.0ETA24	0.1 / 0.3 kHz	6j45.0eta24_a4tcemsubjes	25 / 100 Hz	100 – 1 Hz	SUSY, SM (*)
5J15.0ETA24	0.1 / 0.3 kHz	6j50.0eta24_a4tcemsubjes	10 / 40 Hz	unprescaled	SUSY, SM (*)
5J15.0ETA24	0.1 / 0.3 kHz	6j55.0eta24_a4tcemsubjes	8 / 30 Hz	30 – 1 Hz	SUSY, SM (*)
HT150	3 / 12 kHz	j360_a10tcemsubjes	14 / 60 Hz	60 – 1 Hz	exotics, jets
HT190	1.2 / 5 kHz	j450_a10tcemsubjes	2 / 8 Hz	unprescaled	exotics, jets

(*) A new study from SUSY indicates that 6j chains can/should start from 4J20 to save bandwidth – need to understand if this is also ok for SM

Forward jet and HT chains

Level 1 seed	Rate @ 0.5 & 2x10 ³⁴	HLT chain	Rate @ 0.5 & 2x10 ³⁴	Prescale@2x10 ³⁴	Clients
J15.24ETA49	?	j60.24eta49	?	? – 1 Hz	egamma
J15.28ETA32	?	j60.28eta32	?	? – 1 Hz	SUSY, SM, top, jets
J20.28ETA32	?	j85.28eta32	?	? – 1 Hz	jets
J15.32ETA49	?	j60.32eta49	?	? – 1 Hz	jets
J20.32ETA49	?	j85.32eta49	?	? – 1 Hz	jets
J30.32ETA49	?	j110.32eta49	?	? – 1 Hz	jets
J50.32ETA49	?	j175.32eta49	0	unprescaled	Jets, SM
J75.32ETA49	?	j260.32eta49	0	unprescaled	SM
J100.32ETA49	?	j360.32eta49	0	unprescaled	SM

- Default R parameter and calibration is a4tcemsubjes
- Add cross-check chains (a4tcemjes, a4tclcwsubjes, a4tclcwjes) for:
 - j85.28eta32, j85.32eta49, j175.32eta49, j260.32eta49, j360.32eta49

Level 1 seed	Rate @ 0.5 & 2x10 ³⁴	HLT chain	Rate @ 0.5 & 2x10 ³⁴	Prescale@2x10 ³⁴	Clients
HT190	1.2 / 5 kHz	ht1000	3.5/14 Hz (0 unique)	unprescaled	
HT150		Ht500(?)		prescaled	
R.Gonçalo		ATLAS W	/eekly - Jet Trigger		23

Bonus: rates with pileup correction

Erich Varnes

- Conditions:
 - L=2x10³⁴
 - 4j45 rate
 - No event weighting
- Only fixed **ρ=6** here
- ρ calculation works in private code so far
- **Top**: no areas subtraction
- Bottom: with ρ=6 area subtraction

Sample	Cross section	Filter eff	nevents	npass	rate
JZOW	7.90E+07				
JZ1W	7.93E+07	3.11E-04	2800	18	3.17E+03
J20W	6.41E+04	5.39E-03	2900	18	4.29E+01
JZ3W	1.66E+03	1.90E-03	1700	7	2.60E-01
JZ4W	2.76E+01	1.49E-03	2100	26	1.02E-02
JZ5W	3.03E-01	5.51E-03	2400	52	7.23E-04
JZ6W	7.51E-03	1.52E-02	2600	83	7.29E-05
total rate (H	Hz)				3214.03

Sample	Cross section	Filter eff	nevents	npass	rate
JZOW	7.90E+07				
JZ1W	7.93E+07	3.11E-04	1610	5	1.53E+03
J20W	6.41E+04	5.39E-03	1400	8	3.95E+01
JZ3W	1.66E+03	1.90E-03	1500	4	1.68E-01
JZ4W	2.76E+01	1.49E-03	1500	22	1.21E-02
JZ5W	3.03E-01	5.51E-03	1400	27	6.44E-04
JZ6W	7.51E-03	1.52E-02	300	9	6.85E-05
total rate (Hz)				1571.49

Architecture Changes in Run-II

• Main change is merged HLT instead of separate L2 & EF

New L1 LUT calibration

Alessandra Baas, Stanislav Suchek Efficiency Improved jet calibration in Level 1 Look Up Table 0.8 Applied in new nMCM 0.6 L1Calo boards —• L1 J15 default L1 J39 optimized Add small non-linear term to 0.4 Eff @ 58GeV 'Event Rate': 5.893*10-3 optimize resolution Eff @ 58GeV 'Event Rate': 4.425*10-3 0.2 Energie [GeV] Non linear 40 60 80 100 E^{jet}_T [GeV] IUT $L1_J15$ L1 J39 $y = a + b^{*}x + c^{*}exp(d^{*}x)$ N events > L1 thres 1955314685-25% $N^{\text{all jets}}$ 9941475 71038x140 LUT at EM $N^{\text{all jets}}$ 1543183 scale 52942x30matched $y = a + b^*x$ Njets > L1 thres 2348818049-30% $N^{\text{jets}} > L1 \text{ thres}$ 1712312770-25%matched $_{\rm M} {
m jets} > 99\%$ 154215500 matched LUT input

ATLAS Weekly - Jet Trigger

L1 HT triggers for fat jets: signal

Explored a large number of trigger configurations, varying parameters in blue.

Trigger	Data (14 TeV)	Unique (wrt J100)	Unique (wrt J100+4J20)
J100 (default)	5.8±0.7	-	-
HTC190 w/ $E_T > 15 \eta < 2.0$	4.3±0.8	2.9±1.8	1.4±1.0
HTC200 w/ $E_T > 20 \eta < 2.5$	3.8 ± 0.6	1.0 ± 0.4	0.9 ± 0.7
HTC210 w/ $E_T > 15 \eta < 3.0$	3.8 ± 0.6	0.6 ± 0.2	0.4 ± 0.2
$\sum E_T > 110 \Delta R < 1.0$	4.3±0.7	0.3±0.2	0.2±0.2
$\sum E_T > 120 \Delta R < 1.5$	3.1 ± 0.5	0.1 ± 0.0	$0.0 {\pm} 0.0$
$\sum E_T > 110 \Delta R < 1.5$	4.7±0.7	$0.6{\pm}0.3$	0.2 ± 0.2
$HTSW > 190 \Delta \eta = 4$	5.3±0.8	1.9±0.6	1.1±0.5
HTSW>200 $\Delta \eta = 4$	4.3±0.7	1.2±0.5	0.8 ± 0.4

Jet/MET Trigger Session - HCW 2014, Munich

Razor trigger implementation

- Trigger/TrigAlgorithms/ TrigHLTJetHemisphereRec
 - HLT::FexAlgo, Modeled on TrigHLTJetRec. Takes in an xAOD jet collection and attaches a new jet collection of exactly 2 jets which represent the hemispheres to the TE
- Brute force all combinations of N jets into two hemispheres
 - Running time grows as ~2^N logN so needs some passthrough at N_{Max} jets where a multijet trigger should take the event anyway (then offline OR)
- jobOptions configurable jet pT, eta, N_{Max}

- Timing results on Ixplus node
- Must keep algorithm under 200ms → ~14 Jets
 - N_{Max} ~ 10-13 should be safe

Pile-up subtraction: rho

Cluster Calibration

- Resolution and linearity improvement for charged pions after each correction:
 - EM
 - LCW
 - Out of cluster
 - Dead material
- Conditions:
 - <μ>=0
 - IBL geometry
 - 2<|η|<2.2
 - 4 samplings

Unique efficiencies of the razor triggers

Read the Y-axis for a given trigger and then look at the value for any trigger on the X-axis to see the benefit

02/12/14