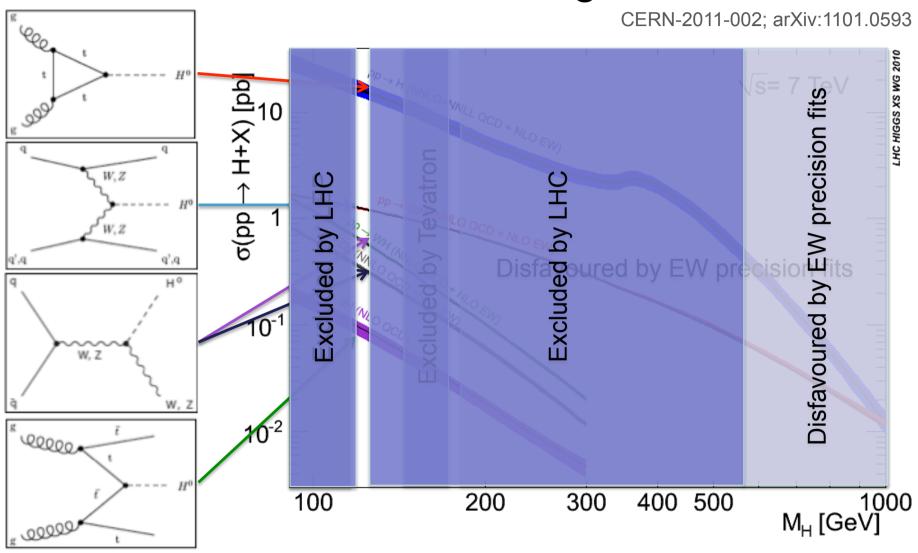
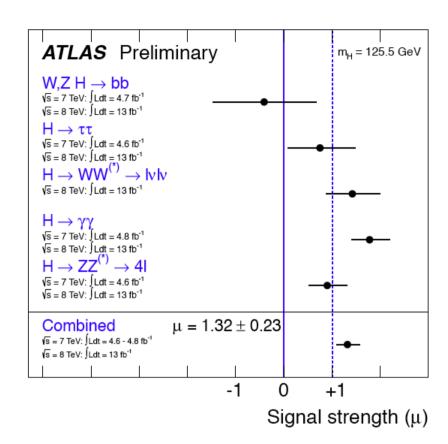


Higgs Boson Searches in the H→bb channels in ATLAS

Ricardo Gonçalo Royal Holloway, University of London On behalf of the ATLAS Collaboration


> Royal Holloway University of London

New Worlds in Particle and Astroparticle Physics Pavilhão do Conhecimento, Lisboa, December 2012

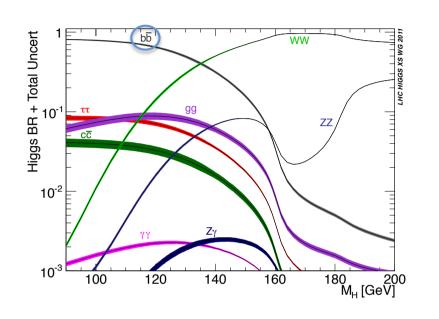


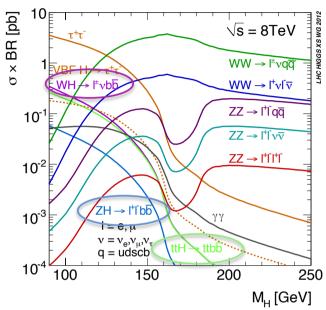
6 months ago: ICHEP 2012

- 5σ discovery! Announced on 4th of July independently by ATLAS and CMS!!
 - Now up to ≈7σ ... no doubts left!!
- Clear excess only in bosonic decay channels: esp. H→ZZ, H→γγ, but also H→WW
- Hints of H→TT from LHC; 3σ evidence from Tevatron for H→bb and hints from CMS
- Data analysed:
 4.8 fb⁻¹ @7TeV & 13 fb⁻¹ @8TeV

Another ≈10 fb⁻¹ waiting to be analysed! ©

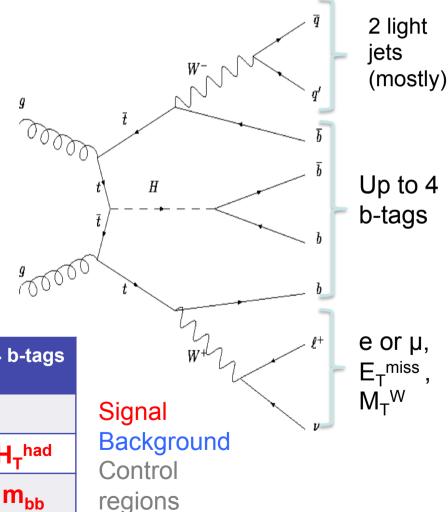
The 6 billion Swiss Franc question (Plus M&O...):


Is this THE Standard Model Higgs?...
Or something **even more interesting**?


SM Higgs search is a great way to search for new physics!

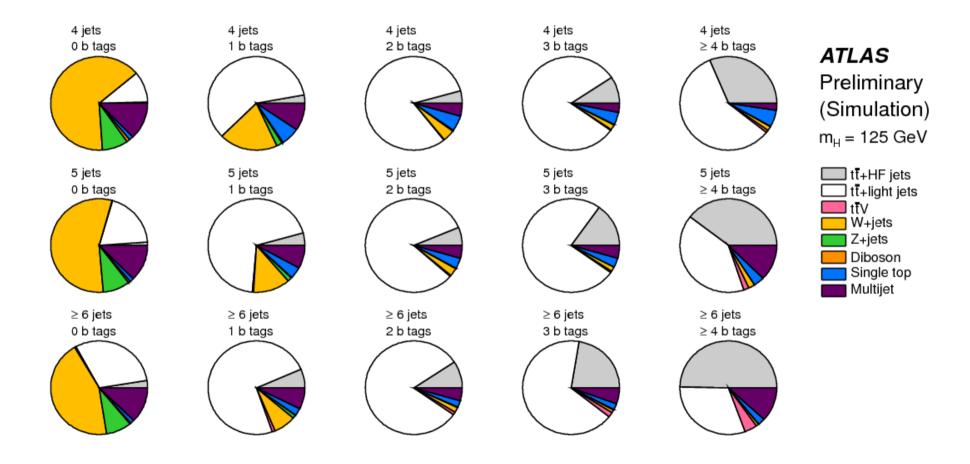
See e.g. talks by Andre David and Patricia Conde-Muiño yesterday

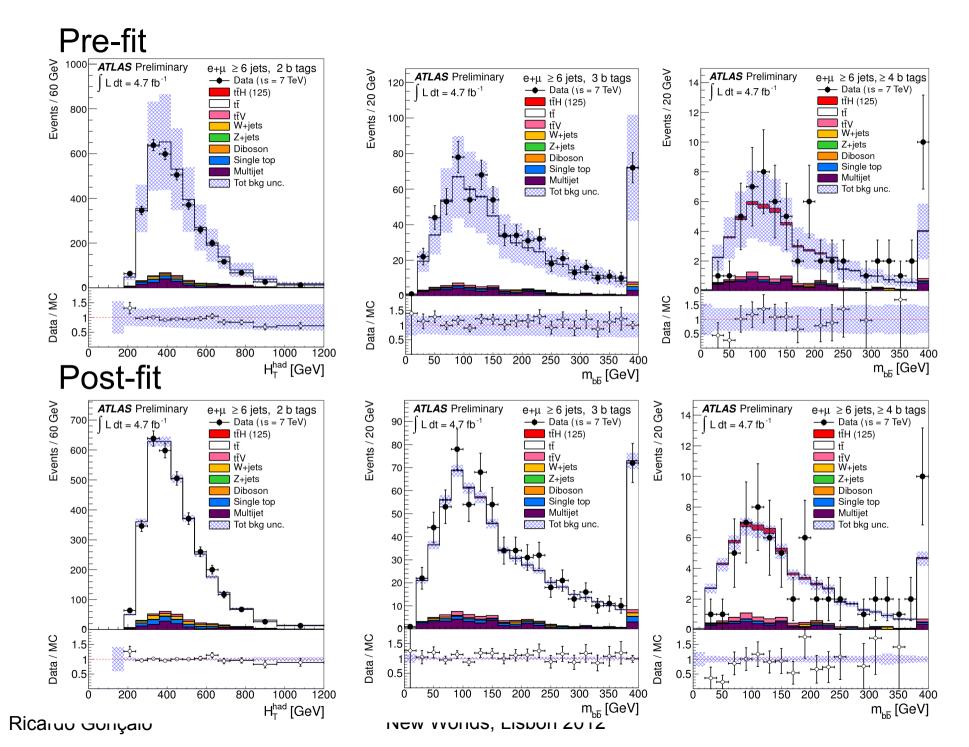
Why H→bb?


- H → bb is essential to answer this new big question!
 - Direct sensitivity to Higgs couplings to fermions
 - ➤ Largest SM Higgs BR (58% at ≈125GeV) help constrain total width
 - Measure top Yukawa coupling directly largest in SM
 - Challenging backgrounds: use associated production with W, Z, tt
- This talk: VH results from 7 and 8 TeV and ttH for 7TeV

ttH analysis of 7 TeV data

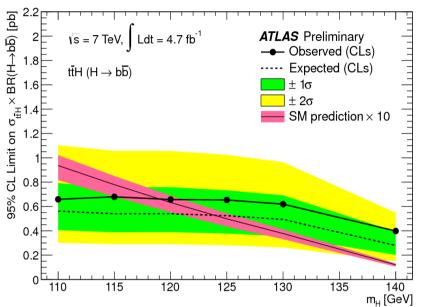
ttH, H→bb Analysis

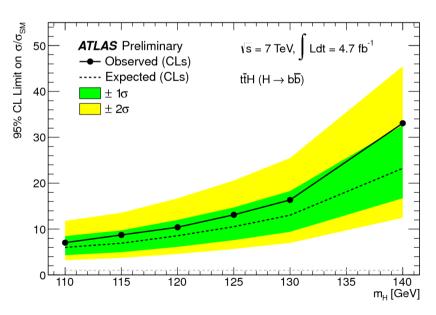

- Challenging analysis!
 - > High combinatorial background
 - > Small signal cross section
- Data: 4.7fb^{-1} at $\sqrt{s} = 7 \text{ TeV}$ (2011)
 - ATLAS-CONF-2012-135: https://cdsweb.cern.ch/record/1478423
- 9 categories based on jet & b-tag multiplicity
 - Signal enriched: (5 jets, ≥6 jets) x (3,≥4 b-tag)
 - Other categories are background enriched to constrain those backgrounds
- Final discriminants
 - m_{bb} for ≥6 jets and (≥3 b-tag) categories
 - Do kinematic fit to reconstruct tt+H→bb
 - $ightharpoonup H_T^{had}$ ($\sum p_{T,iet}$) for other categories


- Backgrounds constrained in limits fit by profiling nuisance parameters
- To check fit control regions are used

	0 b-tags	1 b-tag	2 b-tags	3 b- tags	≥4 b-tags
4 jets	\mathbf{H}_{T}^{had}	\mathbf{H}_T^had		\mathbf{H}_T^had	
5 jets	H_T^had	H_T^had	\mathbf{H}_{T}^{had}	\mathbf{H}_T^had	H_T^had
≥6 jets	H_T^had	H_T^had	\mathbf{H}_T^had	m _{bb}	\mathbf{m}_{bb}

ttH, H→bb Analysis




ttH Systematic Uncertainties

- **tt+heavy-flavour** fractions: vary by 50% theory studies suggest cross section uncertainty is 50-75%; should be weighted down by the fraction of this background. Fit puts it at 30%.
- **tt modeling** (Alpgen):
 - \triangleright **Qfac**: (±2.3%) The factorization scale for the hard scatter is varied by a factor of two up and down relative to the original scale, Q² = Σ_{partons}m²+ p²_T
 - \blacktriangleright **kTfac**: (±9.2%) The renormalisation scale associated with the evaluation of α_s at each local vertex in the matrix element calculation is varied by a factor of two up and down relative to the original scale, k_T , between two partons.
 - Functional form of the factorization scale (**iqopt2**): (± 13%) Default choice (=1) for dynamic factorization scale, $Q^2 = \Sigma_{partons} m^2 + p_T^2$, changed to $Q^2 = x_1x_2$ s. This has an order of magnitude larger effect than Qfac.

- tt cross section: +9.9 -10.7% using NNLO Hathor.
- Jet Energy scale: 16 eigenvectors recommended by the jet/ ETmiss group are varied.
- b, c and light tagging: 9 (btag),5(ctag) eigenvectors recommended by b-tagging group are varied for heavy flavours and the one value for light flavours.
- **QCD Multijets**: Mostly in the electron channel. Correlated 50% uncertainty plus uncorrelated statistical estimate in each channel (66% in 6 jet 4 b-tag)
- ttH parton shower modelling: 1-5% effect at mH = 120 GeV

ttH, H->bb Analysis

- Poor theory constraints on ttbb/ttjj ratio – ongoing interaction with theory community (important!)
- Large impact of systematic uncertainties
- ...but we can do it! ⁽²⁾

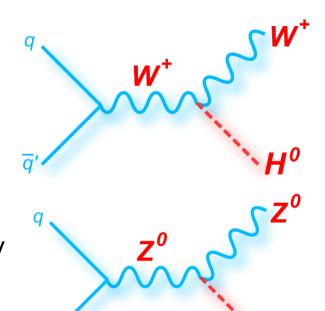
m _H (GeV)	Obs. limit	Exp. limit	Stat only
110	7.0	6.0	3.5
115	8.7	6.9	4.0
120	10.4	8.5	4.9
125	13.1	10.5	6.1
130	16.4	13.0	7.8
140	33.0	23.2	14.2

WH/ZH analysis of 7 and 8 TeV data

Search Strategy

- Search for Higgs decaying to pair of b-quarks
 - > Associated production to reduce backgrounds
- The analysis is divided into three channels
 - $ightharpoonup Two (llbb), one (lvbb) or zero (vvbb) leptons, (l=e,<math>\mu$)
- Cuts common to all channels:
 - > Two or three jets: 1st jet p_T > 45 & other jets > 20 GeV
 - > Two b-tags: 70% efficiency per tag
 - c-jet rejection factor ≈5
 - Light-jet rejection factor ≈150

Two lepton


ZH → IIbb

- No additional leptons
- E_T^{miss} < 60 GeV
- $83 < m_7 < 99 \text{ GeV}$
- Single & di-lepton trigger

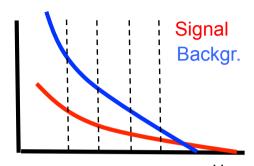
One lepton

WH \rightarrow lvbb

- No additional leptons
- E_T^{miss} > 25 GeV
- 40 < M_TW < 120 GeV
- Single lepton trigger

Zero lepton

$ZH \rightarrow vvbb$


- No leptons
- E_T^{miss} > 120 GeV
- E_T^{miss} trigger

Analysis Overview

- Previous publication: 4.7 fb⁻¹ √s=7 TeV http://arxiv.org/abs/1207.0210
- This analysis: $4.7 \text{fb}^{-1} \sqrt{s} = 7 \text{ TeV } \& 13 \text{fb}^{-1} \sqrt{s} = 8 \text{ TeV}$
 - > S/B is not large, but increases as p_Tbb increases
 - \succ Therefore analysis broken into different p_T bins (use p_T^V of W or Z)
 - ➤ Not yet enough ∫Ldt to use jet substructure techniques future!

- ➤ The analysis is divided into 16 categories using p_T^V
 - 0-lepton: E_T^{miss} [120-160] [160-200] [>200] GeV x (2 jets or 3 jets)
 - 1 & 2 lepton: p_TW/Z [0-50],[50,100],[100-150],[150-200] [>200] GeV
- ➤ Cuts are optimised for each category (~30% increase in sensitivity)
- ➤ Muon energy (p_T>4 GeV) added for b-jets (~10% resolution improve/)
- ➤ Additional ttbar based b-tagging calibration (~50% reduction in b-tagging systematic uncertainty)

 p_T^H

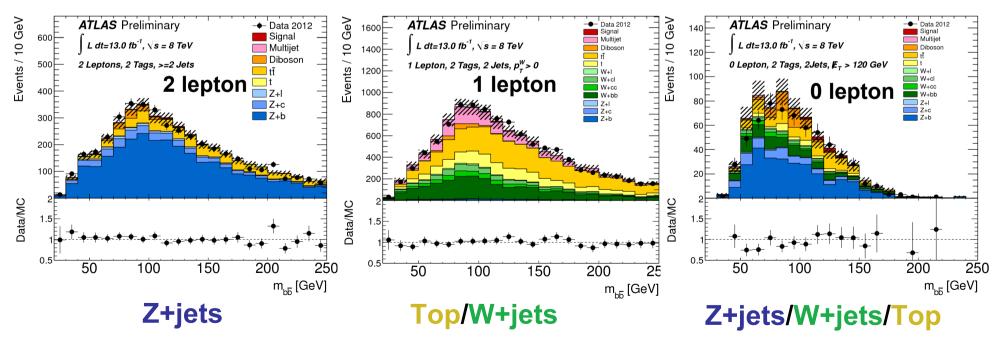
Details of event selection

Basic event selection:

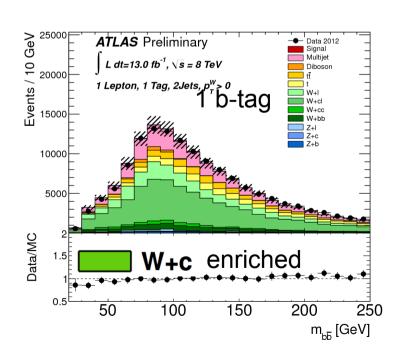
Object	0-lepton	1-lepton	2-lepton
Lantons	0 loose leptons	1 tight lepton	1 medium lepton
Leptons		+ 0 loose leptons	+ 1 loose lepton
	2 b-tags	2 b-tags	2 b-tags
Jets	$p_{\rm T}^1 > 45 {\rm \ GeV}$	$p_{\rm T}^1 > 45 {\rm GeV}$	$p_{\rm T}^1 > 45 {\rm \ GeV}$
Jets	$p_{\rm T}^1 > 45 { m GeV}$ $p_{\rm T}^2 > 20 { m GeV}$	$p_{\rm T}^{2} > 20 {\rm GeV}$	$p_{\mathrm{T}}^{2} > 20 \; \mathrm{GeV}$
	$+ \le 1$ extra jets	+ 0 extra jets	-
Missing F.	$E_{\rm T}^{\rm miss} > 120~{\rm GeV}$	-	$E_{\rm T}^{\rm miss} < 60~{ m GeV}$
Missing E_T	$p_{\rm T}^{\rm miss} > 30~{\rm GeV}$		
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$		
	$Min[\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet})] > 1.5$		
	$\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$		
Vector Boson	-	$m_{\mathrm{T}}^{W} < 120 \; \mathrm{GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$

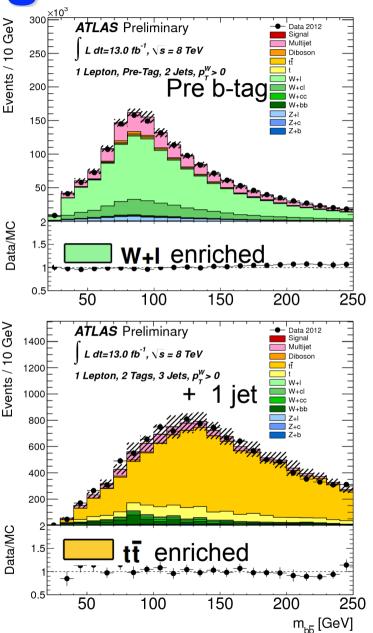
 Tuned kinematic cuts to optimise sensitivity in each category:

0-lepton channel								
$\overline{E_{\mathrm{T}}^{\mathrm{miss}}}$ (GeV)	120	0-160	160-	-200	>200			
$\Delta R(b, \bar{b})$	0.7	7-1.9	0.7-	-1.7	<1.5			
1-lepton channel								
$p_{\mathrm{T}}^{W}\left(\mathrm{GeV}\right)$	0-50	50-100	100-150	150-200	>200			
$\Delta R(b, \bar{b})$	>0.7			0.7-1.6	<1.4			
$E_{\rm T}^{\rm miss}$ (GeV)			> 25		> 50			
$m_{\mathrm{T}}^{W}(\mathrm{GeV})$		-						
2-lepton channel								
$p_{\mathrm{T}}^{\mathrm{Z}}(\mathrm{GeV})$	0-50	50-100	100-150	150-200	>200			
$\Delta R(b, \bar{b})$		>0.7	7	0.7-1.8	<1.6			
			<u> </u>					


Backgrounds and MC

Signal: WH/ZH Pythia6/8


- Diboson WW/WZ/ZZ Herwig
- Multijet: Data driven
- ttbar: MC@NLO
- Single Top Acer/MC@NLO
- W+b Powheg
- W+c/light-jets Alpgen
- Z+ b/c/light-jets Alpgen/Sherpa


- Background shapes from simulation and normalised using flavour & data fit
- Multi-jet bkg determined by data-driven techniques
- WZ(Z→bb) & ZZ(Z→bb)
 resonant bkg normalisation
 and shape from simulation

Control regions:

- Pre b-tag: rich in V+light jets
- 1 b-tag: V+light, V+c, V+b etc
- Top:
 - ➤ 1-lepton: ≥3-jet region;
 - > 2-lepton: m(II) sidebands of m_Z

Maximum likelihood Fits

- First perform the flavour ML fit
 - Determined V+light and V+c scale factors
 - > Z+c factor changes due to MC treatment

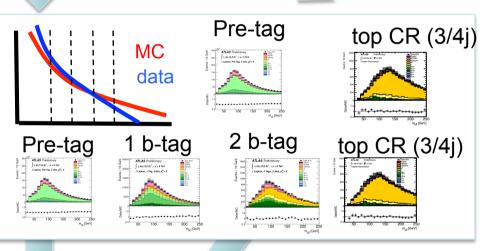
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Z + c-jet	1.99 ± 0.51	0.71 ± 0.23
Z+ light jet	0.91 ± 0.12	0.98 ± 0.11
W + c-jet	1.04 ± 0.23	1.04 ± 0.24
W+ light jet	1.03 ± 0.08	1.01 ± 0.14

- Improved understanding of bkg V pT
 - ➤ Using the high statistics at 8 TeV we discovered that the V pT spectrum falls more rapidly in data than expected from MC ©
 - ➤ W + jets and Z + jets: 5-10 % correction required
 - > Top background: 15 % correction required
- Using corrections & scale factors get good MC/data agreement
- Binned profile likelihood fit to 16 signal regions & top control regions
 - ➤ W+b, Z+b and top bkg are floated
 - ➤ Rescaling factors from the fit →
- $L(\mu,\theta)$ fit to signal strength μ (= σ/σ_{SM})
 - \triangleright Nuisance parameters θ for systematics

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Top	1.10 ± 0.14	1.29 ± 0.16
Z + b-jet	1.22 ± 0.20	1.11 ± 0.15
W + b-jet	1.19 ± 0.23	0.79 ± 0.20

Analysis

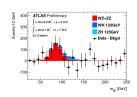
Event selection:

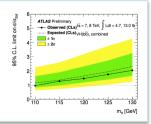

0 lepton

1 lepton

2 lepton

Data-driven corrections: p_T^V correction of W+jets, Z +jets and top


Flavour fit (V+c, V+light): Use different b/c/light content to get correction to flavour fractions



Fix Higgs to SM and fit to get diboson significance:

Fix diboson to SM and do fit to extract final background normalizations and limits:

Systematic Uncertainties

Experimental uncertainties

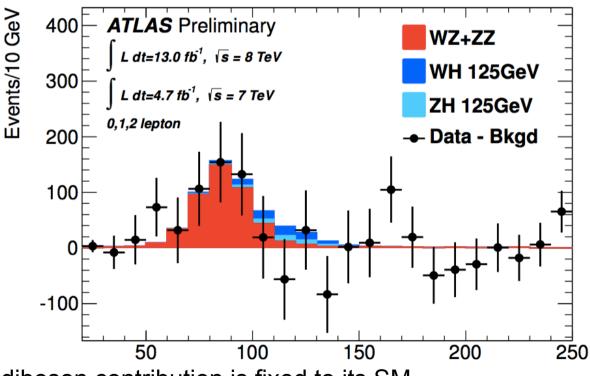
b-tagging and **jet energy** dominate

- ➤ Jets: components (7 JES, 1 p_T^{Reco}, resol.)
- ➤ E_T^{miss} scale and resolution of soft components. Data/MC for E_T^{miss} trigger
- ▶ bTagging light, c & 6 p_T bins for b-jet efficiency
- ➤ Lepton energy, resolution, efficiency
- Multijet / diboson / Luminosity / MC stats

Theoretical uncertainties

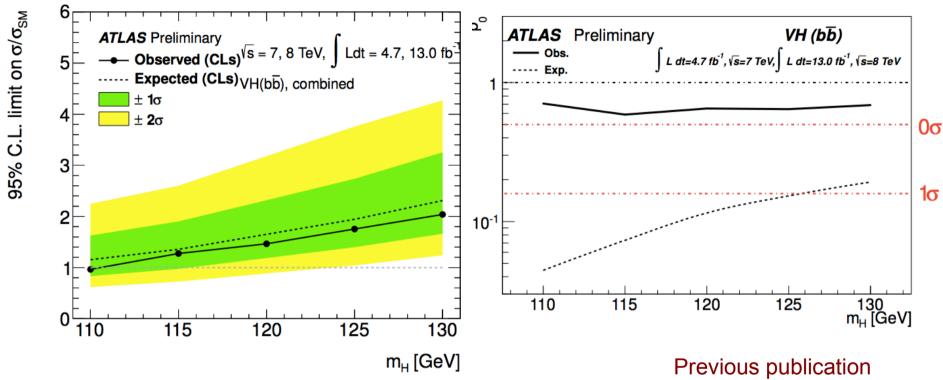
- ▶ BR(H→bb) @ mH=125 GeV (3.3%)
- ➤ W/Z+jet m_{bb} (20%) and V pT (5-10%)
- ➤ Single top/top normalisation (15%)
- W+c/W+jets (30%), Z+c/Z+jets (30%)
- ➤ Diboson (11%)

Uncertainties given are after full cuts (pre-fit)

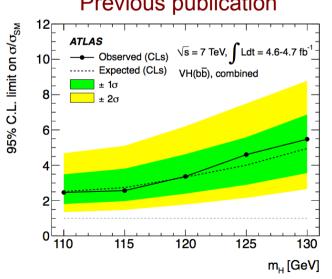

Systematic [%]	0 lepton	1 lepton	2 leptons
b-tagging	6.5	6.0	6.9
c-tagging	7.3	6.4	3.6
light tagging	2.1	2.2	2.8
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20	7.0	5.4
Lepton	0.0	2.1	1.8
Top modelling	2.7	4.1	0.5
W modelling	1.8	5.4	0.0
Z modelling	2.8	0.1	4.7
Diboson	0.8	0.3	0.5
Multijet	0.6	2.6	0.0
Luminosity	3.6	3.6	3.6
Statistical	8.3	3.6	6.6

Background systematics

Systematic [%]	0 le	pton	1 lepton	2 leptons
	ZH	WH	WH	ZH
b-tagging	8.9	9.0	8.8	8.6
c-tagging	0.1	0.1	0.0	0.1
light tagging	0.0	0.0	0.1	0.3
Jet/Pile-up/ $E_{\mathrm{T}}^{\mathrm{miss}}$	19	25	6.7	4.2
Lepton	0.0	0.0	2.1	1.8
$H \rightarrow bb$ BR	3.3	3.3	3.3	3.3
VH p_T -dependence	5.3	8.1	7.6	5.0
VH theory PDF	3.5	3.5	3.5	3.5
VH theory scale	1.6	0.4	0.4	1.6
Luminosity	3.6	3.6	3.6	3.6


Diboson production

- WZ & ZZ production with Z→bb
 - Similar signature, but 5 times larger cross-section
- Perform a separate fit for this to validate the analysis procedure
 - Profile likelihood fit performed (with systematics)
 - > All bkgs (except diboson) subtracted
- Clear excess is observed in data at the expected mass
- 0,1 and 2- lepton channels combined
- 2011 & 2012 data combined
- Full systematics are applied
- Results
 - $> \sigma/\sigma_{SM} = \mu_D = 1.05 \pm 0.32$
 - \triangleright Significance = 4.0 σ
- In agreement with Standard Model

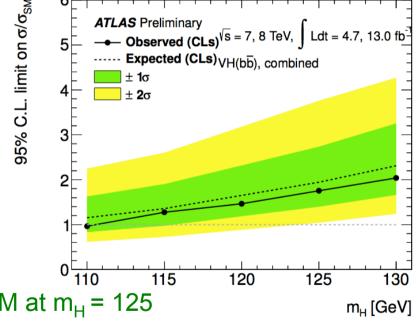

 For the Higgs analysis the diboson contribution is fixed to its SM expectation in the likelihood profile, with an uncertainty of 11%

Combined (2011 & 2012) result

- Observed (expected) limit at m_H =125 GeV
 ➤ 1.8 (1.9) x SM prediction
- Observed (expected) p₀ value 0.64 (0.15)
- $\sigma/\sigma_{SM} = \mu = -0.4 \pm 0.7 \text{(stat.)} \pm 0.8 \text{(syst.)}$
- Exclusion at m_H ~ 110 GeV

More than doubled the analysis sensitivity

Conclusions

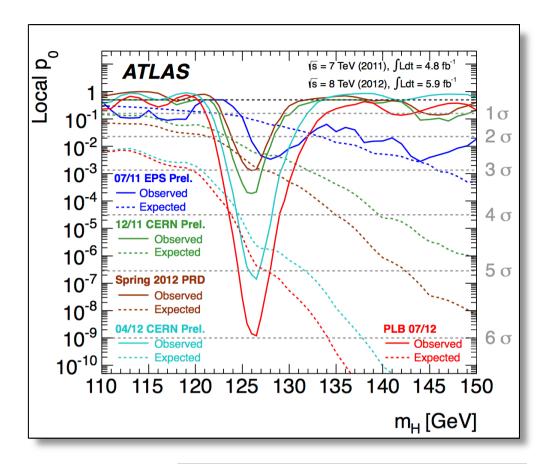

- First combined 2011 & 2012 VH analysis in H->bb channel
 - ➤ Using 4.7fb⁻¹ (2011) and 13fb⁻¹ (2012) data
 - > Significant improvements to all aspects of the analysis
- Observed (exp.) limits are 1.8 (1.9) x SM at $m_H = 125$
- Clear di-boson signal measured

$$\mu_{\text{Diboson}}$$
 = 1.05 ± 0.32
Significance = 3.9 σ

- > First iteration of a difficult analysis
- Severely affected by systematics
 - But will benefit much from more stats

- Observed (CLs) $\sqrt{s} = 7, 8 \text{ TeV}, \text{ Ldt} = 4.7, 13.0 fb}$

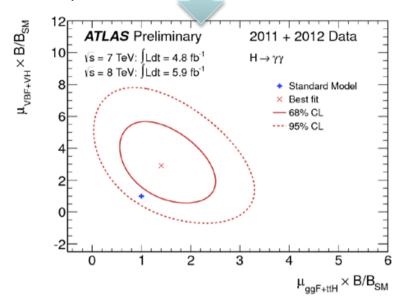
Expected (CLs)_{VH(bb)}, combined

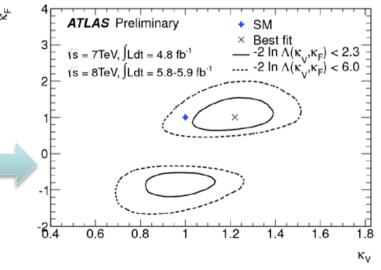

No observation and no surprises... YET! (But watch this space! Unless it's the end of the world...)

Bonus slides

- 5σ announced on 4th of July independently by ATLAS and CMS!!
- Data analysed:
 4.8 fb⁻¹ @7TeV & 5.6 fb⁻¹ @8TeV
- Clear excess only in bosonic decay channels:
 - → H→ZZ, H→γγ, H→WW
- Hints of H→TT from LHC and evidence from Tevatron for H→bb and hints from CMS
- Need to keep looking!
 - SM Higgs search is a great way to search new physics!
- The 6 billion Swiss Franc question (+ M&O):
 Is it THE Standard Model Higgs?...
 Or something even more interesting?

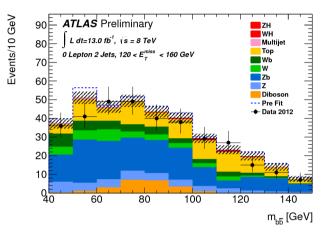
Search channel	Dataset	m _{max} [GeV]	$Z_{l}\left[\sigma ight]$	$E(Z_l)[\sigma]$
	7 TeV	125.0	2.5	1.6
$H \to ZZ^{(*)} \to 4\ell$	8 TeV	125.5	2.6	2.1
	7 & 8 TeV	125.0	3.6	2.7
	7 TeV	126.0	3.4	1.6
$H{ ightarrow}\gamma\gamma$	8 TeV	127.0	3.2	1.9
	7 & 8 TeV	126.5	4.5	2.5
	7 TeV	135.0	1.1	3.4
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$	8 TeV	120.0	3.3	1.0
	7 & 8 TeV	125.0	2.8	2.3
	7 TeV	126.5	3.6	3.2
Combined	8 TeV	126.5	4.9	3.8
Combined	7 & 8 TeV	126.5	6.0	4.9

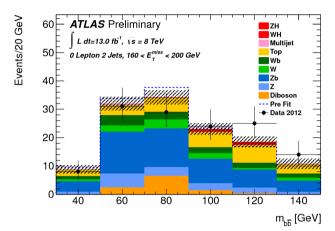

- What do we know about the new particle?
 - ➤ Mass ≈ 126 GeV
 - Electric charge = 0 (neutral final state)
- Unknown/incomplete knowledge:
 - Spin (J) = 0, 1, 2, ... ? J=1 disfavored (Landau-Yang theorem and observation in $H \rightarrow \gamma \gamma$)
 - Charge-conjugation, parity (CP)
 - > Couplings?
- September analysis used same data as July 2012 observation paper
 - ATLAS-CONF-2012-127: https://cdsweb.cern.ch/record/ 1476765?ln=en
- Fit data to estimate factors κ multiplying coupling in each SM production and decay mode

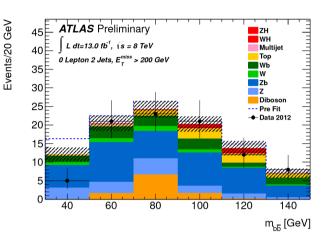

 κ_V versus κ_F – assume a single κ_F factor for all fermions t, b, τ and a single factor κ_V for vector

Sign comes from interference between t and W loops in H→γγ

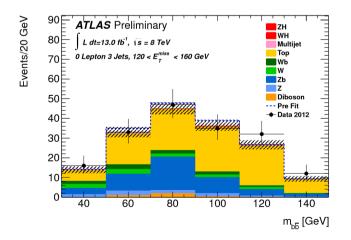
Signal strength for the γγ final state (gluon fusion vs VBF

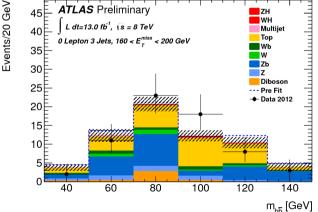


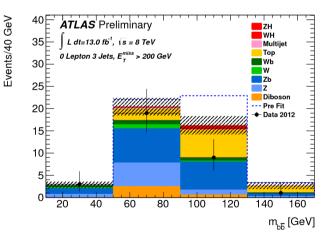




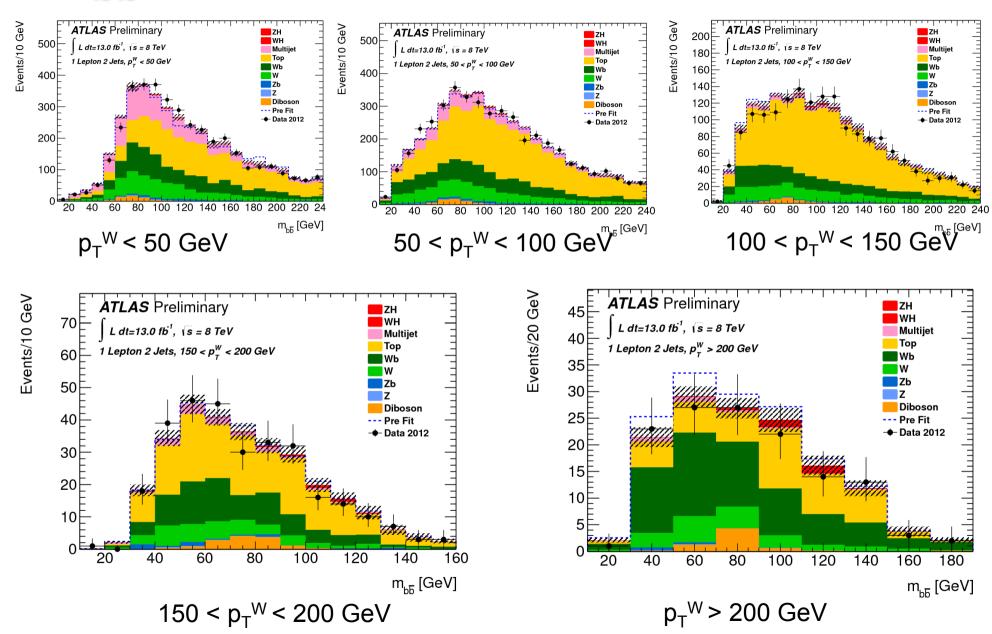
M_{bb} distribution (0-lepton, 8TeV)


2-jet categories

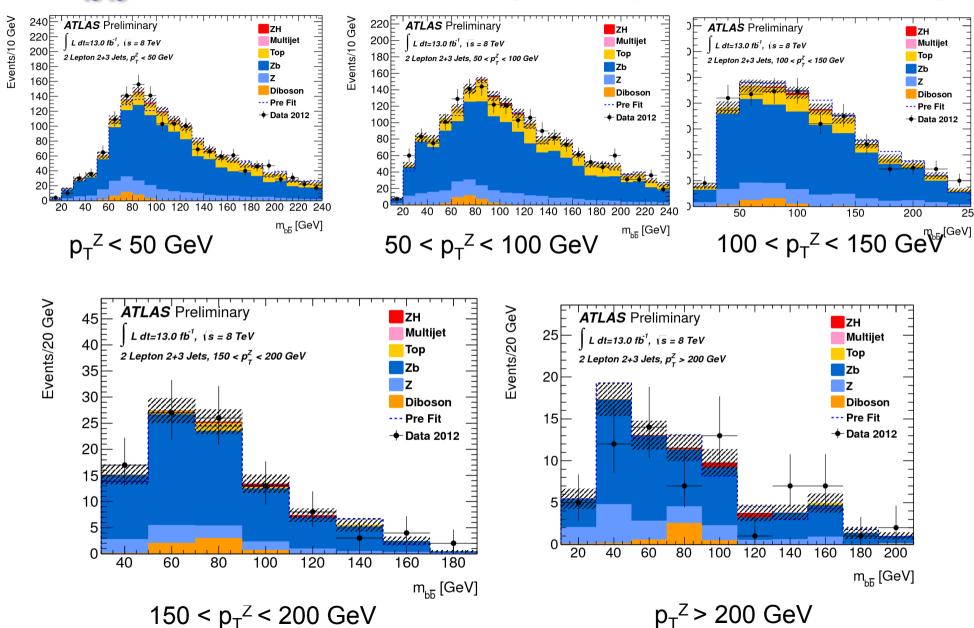




3-jet categories



 $120 < E_T^{miss} < 160 \text{ GeV}$


160 < E_T^{miss} < 200 GeV New Worlds, Lisbon 2012

 $160 < E_T^{miss} < 200 \text{ GeV}$

M_{bb} distribution (1-lepton, 8TeV)

M_{bb} distribution (2-lepton, 8TeV)

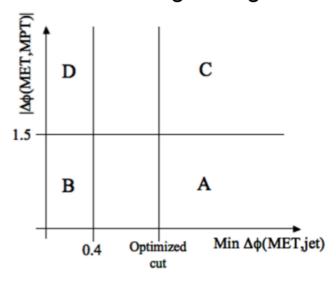
Results: Exp. S+B & Obs. events

8TeV analysis:

	0-le	pton, 2 je	t	0-lej	pton, 3 je	t			1-lepton	l				2-lepton	1	
Bin			$E_{ m T}^{ m miss}$ [GeV]					$p_{\mathrm{T}}^{W}[\mathrm{GeV}]$]				$p_{\rm T}^{\rm Z}[{\rm GeV}]$]	
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Top	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c, light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z+b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	± 110	± 47	± 12	± 12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

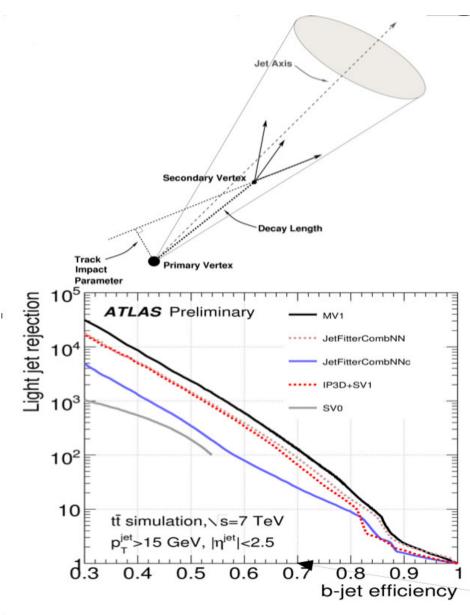
QCD/multi-jet modelling

- 0 lepton
 - Use ABCD method
 - Regions defined by relative directions of MET/jets/pTmiss
 - ➤ Found to be small (~1%)
- 1 lepton
 - ➤ MET template by reverse isolation cuts
 - Normalised by fitting each WpT bin
 - Electroweak contamination removed from template
- 2 lepton
 - ➤ Template: reverse isolation/quality selection
 - ➤ Found to be small (<1%)


ABCD method

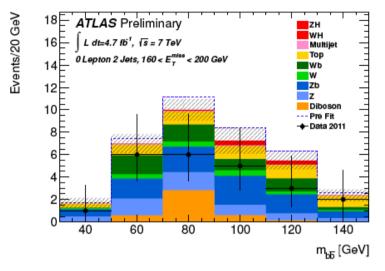
Use lack of correlation

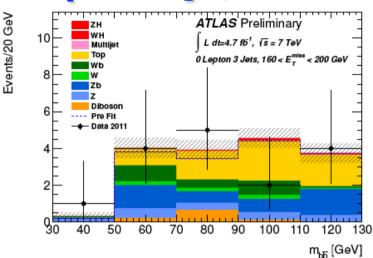
 $\Delta \phi$ (Etmiss,pTmiss) vs


Δφ (Etmiss,jets)

for multi-jet background estimation in signal region

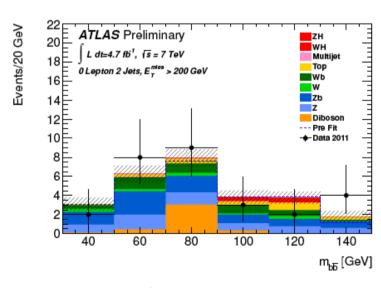
$$N_{QCD}(A) = \frac{N(B)}{N(D)} \times N(C)$$

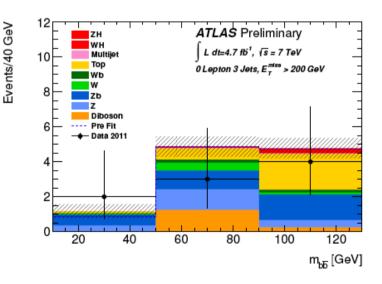

B-tagging



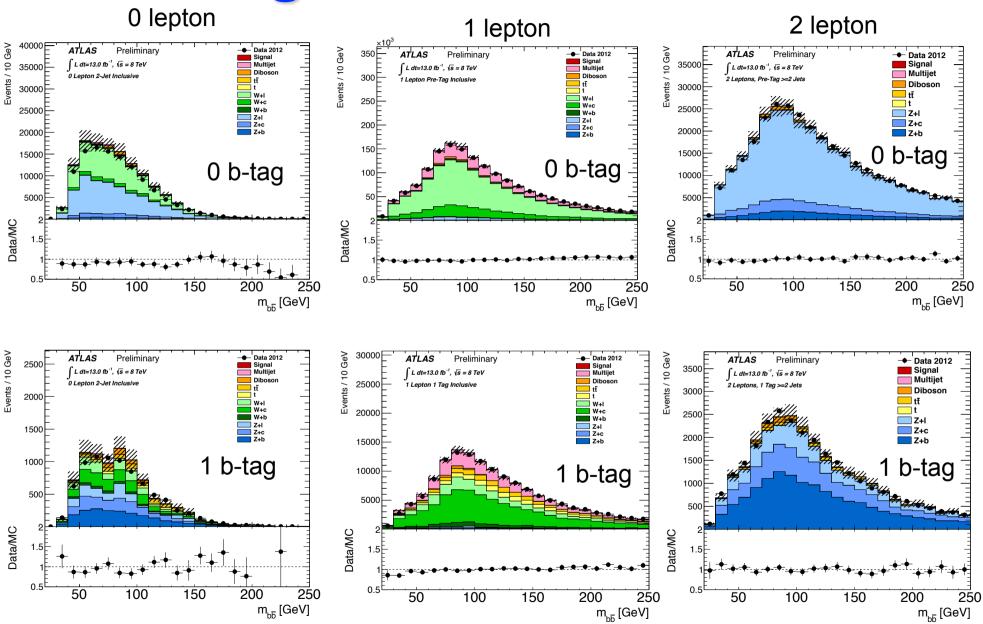
- Algorithms to identify heavy flavour content in reconstructed jets
- Impact parameter of tracks in jet
 - IP3D uses track weights based on longitudinal and transverse IP significance
- Displaced secondary vertex
 - SV1 reconstructs inclusive displaced vertex
 - JetFitter reconstructs multiple vertices along implied b-hadron line of flight
 - Cascade decay topologies
- Advanced NN based algorithms
 - JetFitterCombNN: IP3D+JetFitter
 - MV1: IP3D+JetFitterCombNN+SV1

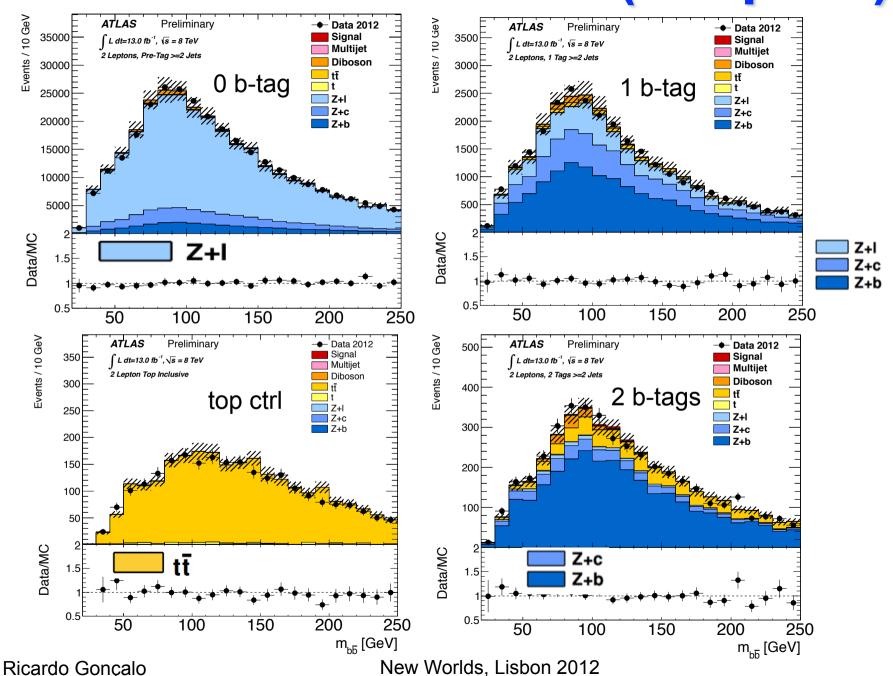
MC calibration results illustrated with MV1 @ 70% b-jet efficiency


Mbb distributions (0-lep, 7TeV)

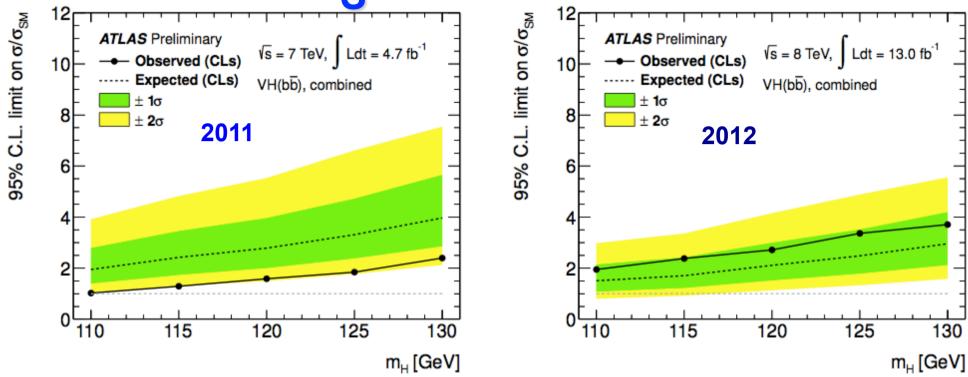


(c)
$$160 < E_{\rm T}^{\rm miss} < 200 \text{ GeV}, 2 \text{ jets}$$




(e)
$$E_{\rm T}^{\rm miss} > 200$$
 GeV, 2 jets

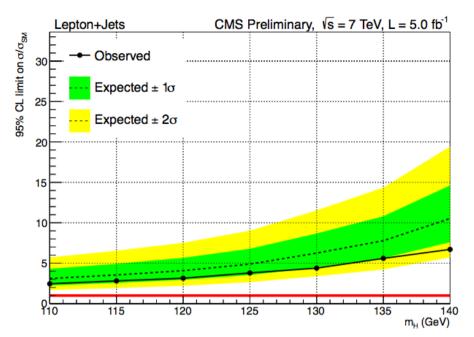
(f)
$$E_{\rm T}^{\rm miss} > 200$$
 GeV, 3 jets


V+light & V+c flavour fit

Flavour fit results (2-lepton)

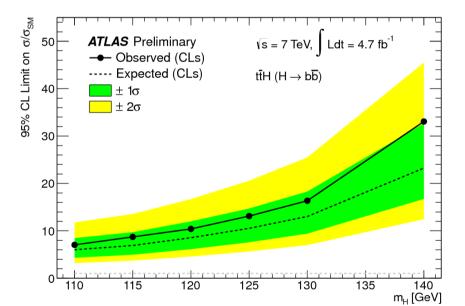
CL_s limit results

- Observed & expected CL_S limit on normalised signal strength as function of Higgs Boson mass (0,1,2 lepton combined)
- Observed (expected) values at m_H = 125 GeV
 - ➤ Limits 1.8 (3.3) & 3.4 (2.5) times the Standard Model
 - \triangleright p₀ values: 0.97 (0.26) & 0.17 (0.20)
 - $> \sigma/\sigma_{SM}$: $\mu = -2.7 \pm 1.1(stat.) \pm 1.1(syst.) & <math>\mu = 1.0 \pm 0.9(stat.) \pm 1.1(syst.)$


Samples & Yields for ≥ 6 jets ≥ 4 b's

Signal: 2.3 events

• PYTHIA 6.425, $m_t = 172.5$ GeV. Charged lepton filter: $p_T > 5$, $|\eta| < 5$


Backgrounds:

- Dominant are tt+jets (16.4 events) and ttbb (26.5 events):
 - > ALPGEN 2.13+HERWIG 6.520 HFOR overlap removal.
 - \rightarrow tt+jets: Npartons = 0-5, σ =73.08pb, K=1.755;
 - \rightarrow ttbb : σ = 0.856 pb, K=1.687 (biggest sys.)
- Multijets (data-driven): 6.22 events (5.67 e channel; 0.55 μ channel)
- ttV: 2.2 events
 - ightharpoonup Madgraph 4 + PYTHIA 6.425 σ_{HW} = 0.12pb, σ_{HZ} = 0.096pb
- Single Top: 1.28 events
 - > s-channel (1.5 pb) and Wt (15.74 pb): MC@NLO 4.01 with HERWIG 6.520 and Jimmy 4.31.
 - > t-channel (20.92 pb, K=0.866): AcerMC 3.8 with PYTHIA 6.425
- W+jets: 0.54 events
 - \blacktriangleright ALPGEN 2.13+HERWIG 6.520: Wbb, Wcc, Wc, Z \rightarrow II, W \rightarrow Iv; HFOR overlap removal
 - > Uses data to normalize and change mix of heavy flavours
- Minor backgrounds: 0.2 events
 - Dibosons and Z + jets;
 - \triangleright Dibosons: HERWIG 6.520 and JIMMY 4.31; charged lepton filter p_T > 10GeV, | η | < 2.8.

CMS

m_H (GeV/c ²)	Obs limit	Median Exp limit
110	2.5	3.1
115	2.8	3.6
120	3.1	4.1
125	3.8	4.9
130	4.4	6.3
135	5.6	7.8
140	6.7	10.5

Lepton+jets mode ATLAS

m_H (GeV)	observed	median	stat only
110	7.0	6.0	3.5
115	8.7	6.9	4.0
120	10.4	8.5	4.9
125	13.1	10.5	6.1
130	16.4	13.0	7.8
140	33.0	23.2	14.2

Very big difference!...

ttH Systematic Uncertainties

• **tt+heavy-flavour** fractions: vary by 50% - theory studies suggest cross section uncertainty is 50-75%; should be weighted down by the fraction of this background. Fit puts it at 30%.

• **tt modeling** (Alpgen):

- \triangleright **Qfac**: (±2.3%) The factorization scale for the hard scatter is varied by a factor of two up and down relative to the original scale, Q² = Σ_{partons}m²+ p²_T
- ightharpoonup **kTfac**: (±9.2%) The renormalisation scale associated with the evaluation of α_s at each local vertex in the matrix element calculation is varied by a factor of two up and down relative to the original scale, k_T , between two partons.
- Functional form of the factorization scale (**iqopt2**): (± 13%) Default choice (=1) for dynamic factorization scale, $Q^2 = \Sigma_{partons} m^2 + p_T^2$, changed to $Q^2 = x_1x_2$ s. This has an order of magnitude larger effect than Qfac.

- tt cross section: +9.9 -10.7% using NNLO Hathor.
- **Jet Energy scale**: 16 eigenvectors recommended by the jet/ ETmiss group are varied.
- b, c and light tagging: 9 (btag),5(ctag) eigenvectors recommended by b-tagging group are varied for heavy flavours and the one value for light flavours.
- QCD Multijets: Mostly in the electron channel. Correlated 50% uncertainty plus uncorrelated statistical estimate in each channel (66% in 6 jet 4 b-tag)
- ttH parton shower modelling: 1-5% effect at mH = 120 GeV

ATLAS/CMS differences

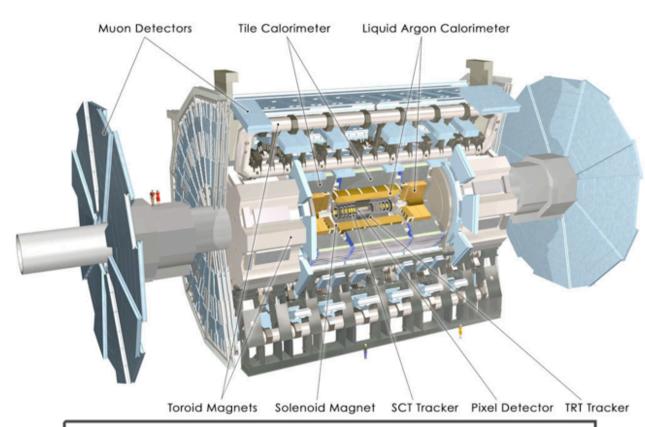
Systematics:

- No QCD systematics (no QCD background?!)
- No ttH modeling
- No W+jets/HF systematic
- No JVF systematic (pileup suppression)
- Different treatment of Jet Energy Scale (ATLAS 16 NP), b-tag sys. (ATLAS 9 NP) and c-tag sys (ATLAS 5 NP): CMS one Nuis. Par.
- b and c tagging correlated
- One tt systematic uncertainty (ATLAS 3 NP)
- ttbar+HF 20% instead of 50% uncertainty

Cuts:

- Electrons and muon:
 - ➤ ATLAS p_T>20/25GeV
 - \triangleright CMS p_T > 30 GeV
- Jets:
 - ATLAS pT>25GeV
 - > CMS 3 leading jets pt > 40 GeV (otherwise 30 GeV)
- More signal and higher cuts. Not clear what signal sources are used

Summary:


- ATLAS using CMS systematics: 35% better
- 20% improvement from more signal
- Remaining improvement from use of Multivariate analysis (22%)

In numbers:

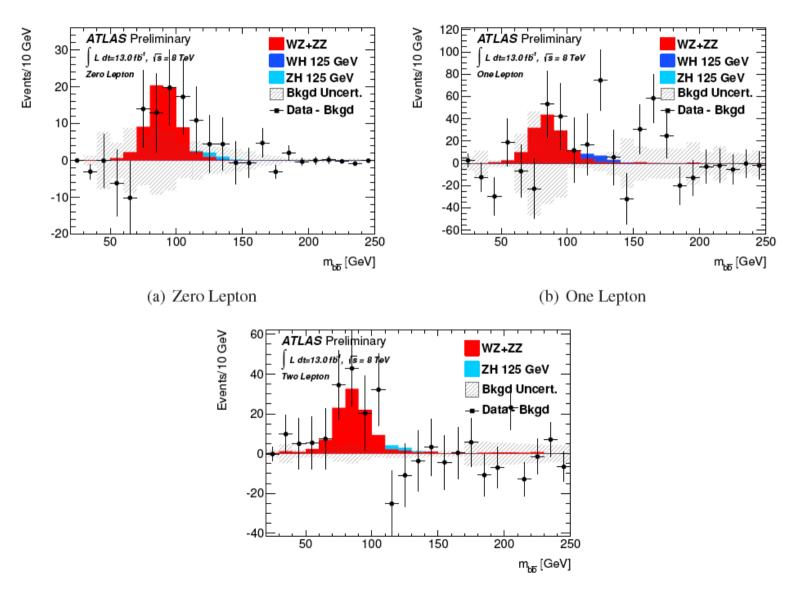
- σ/σ_{SM} = 10.5 -> 7.8 from systematics
- Take 22% improvement from MVA: -> 6.1
- Take 20% additional signal: $\sigma/\sigma_{SM} \rightarrow 5.1$ (expect)
- CMS: 4.9 (expected)

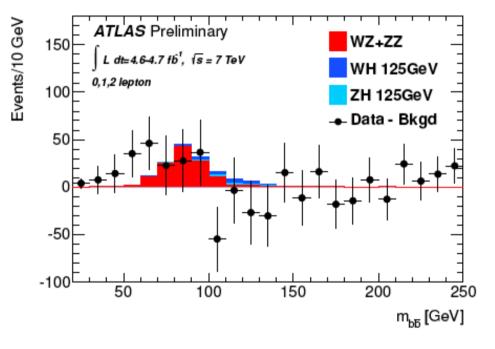
Channel	Signal		Background		$S/\sqrt(B)$		Ratio: $S/\sqrt(B)$
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	CMS/ATLAS
6jet, 2tag	4.45	6.3	3567.38	2255.8	0.0745	0.133	1.78
4jet, 3tag	1.23	3.5	1294.14	1041.6	0.0341	0.108	3.17
5jet, 3tag	2.8	4.7	887.25	666.7	0.0940	0.182	1.94
6jet, 3tag	4.61	4.4	622.88	404.9	0.1847	0.219	1.18
4jet, 4tag	0.16	0.5	19.94	20	0.0358	0.112	3.12
5jet, 4tag	0.83	1.2	38.33	31.8	0.1341	0.213	1.59
6jet, 4tag	2.28	1.7	53.12	39.3	0.3128	0.271	0.86
Total	16.4	22.3			0.4084	0.492	1.20

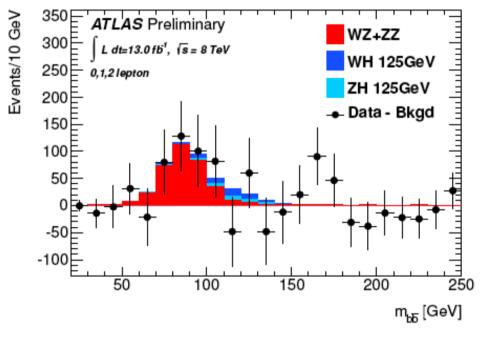
The ATLAS detector

Inner detector

- for η =0, track has typically 3 Pixel, 8 SCT and 30 TRT hits
- magnetic field (~2 T) produced by solenoid
- coverage: |η|<2.5 (2.0 for TRT)
- resolution: $\sigma(p_t)/p_t$ =0.05%⊕1%


Calorimeters


- Pb/LAr accordion structure for EM
- provides e/γ energy measurement with σ/E~10%/√E(GeV)⊕0.7%
- Iron scintillator tiles for hadronic
- provides jet and E_t^{miss}
 measurement with
 σ/E~50%/√E (GeV)⊕3%
- Forward calorimeter:
 FCAL covers up to |η|<4.9


Muon spectrometer

- coverage: |η|<2.7
- magnetic field (~0.5 T)
 produced by toroids
- $\sigma(p_t)/p_t \approx 10\%$ for $p_t = 1$ TeV

DIBOSON

(a)
$$\sqrt{s} = 7 \text{ TeV}$$

(b)
$$\sqrt{s} = 8 \text{ TeV}$$