Hunting the Higgs Boson at the LHC

Ricardo Gonçalo

NExT PhD Workshop University of Sussex – 21 August 2012

Hunting the Higgs Boson at the LHC

...and finding a New Particle with a mass of around 125 GeV/c^2 which could very well be... the Higgs boson!

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-218 Submitted to: Physics Letters B

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

Outline of the lecture

- Part I: Introduction & old history
 - Part II: tools of the trade
 - The LHC
 - The ATLAS and CMS experiments
 - Statistics survival guide
- Part III: LHC Higgs searches
 - The search channels
- Part IV: what now?
 - The big questions
 - Roadmap for the LHC

Part I: Higgs Physics and (old) history

Ricardo Gonçalo

Why look for the Higgs boson?

- Because the Standard Model works very well!
- For everything, except...

Local gauge invariance of the Standard Model would be violated by particle mass terms

Theory would become nonrenormalizable...

Why look for the Higgs boson?

- Simplest solution:
 - Introduces doublet of complex fields 4 degrees of freedom
 - Assume Mexican hat potential, to allow spontaneous symmetry breaking – potential follows symmetry but new vacuum doesn't
 - Three degrees of freedom turn into W[±] and Z longitudinal polarization (W[±] and Z now have mass!)
 - Remaining degree of freedom becomes new scalar particle – the Higgs boson
 - Fermions acquire mass through different mechanism interaction with the Higgs field
 - Higgs boson mass is the only unknown in the theory
- In the process, explain electroweak symmetry breaking

We need the SM Higgs mechanism to make sense of the data!

(in the most economical way...) NEXT PhD Workshop - Sussex - 21/8/2012

 $\phi =$

ZEUS

But there is more...

- We know the SM is incomplete
- For a low Higgs mass relative to the top quark mass, the quartic Higgs self-coupling runs at high energy towards lower values.
- At some point it would turn negative indicating that the vacuum is unstable.
- The universe could decay into a more stable lower energy vacuum state.
- Unless new physics appears at some energy scale
- The Higgs sector can give important clues to constrain new physics beyond the SM
- It is a great way to search for new physics!

So how were we doing 1 year ago?

rv uncertaint

9+0.00010

02750+0.00033

- 2011 limits on Higgs boson mass (only unknown parameter):
 - LEP excluded mass range below 114.4 GeV/c²
 - EW fit: m_H = **92**⁺³⁴₋₂₆ **GeV/c**² (July 2011)
 - Including LEP: m_H < **185 GeV/c²** (July 2011)
 - Tevatron excluded ranges of 100 108 GeV/c² and 156 - 177 GeV/c²

How were we doing 1 month ago?

- ≈5σ including announced on 4th of July by ATLAS and CMS independently!!
- ATLAS added H->WW later and • published result with $\approx 6\sigma$
- Did we find the Higgs boson?!

ATLAS Preliminary

2011 + 2012 Data

The **p0** Plot

Local p_0

10

10 10^{-1} 10-1

110

115

Part II: Tools of the Trade The Hardware

Ricardo Gonçalo

<u>File Edit View Tools Plug-Ins Help</u>

The Large Hadron Collider

- 26 659m circumference
- 9593 magnets: 1232 main dipoles (8T peak field)
- Cooled to 1.9K (colder than outer space) by 120 tonnes of liquid Helium
- Internal pressure 10-13 atm (10x less than on the Moon)
- $\sqrt{s} = 7$ TeV in 2010 and 2011
- $\sqrt{s} = 8$ TeV in 2012
- 50ns bunch crossing
- Design Vs = 14TeV and 25ns bunch crossing (7m at c)

<image>

Muon Spectrometer: $|\eta| < 2.7$ Air-core toroids and gas-based muon chambers $\sigma/p_T = 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)

EM calorimeter: $|\eta| < 3.2$ Pb-LAr Accordion $\sigma/E = 10\%/\sqrt{E \oplus 0.7\%}$

> Hadronic calorimeter: $|\eta| < 1.7$ Fe/scintillator $1.3 < |\eta| < 4.9$ Cu/W-Lar $\sigma/E_{iet} = 50\%/\sqrt{E \oplus 3\%}$

•L = 44 m, Ø ≈ 25 m
•7000 tonnes
•≈10⁸ electronic channels
•3-level trigger reducing 40 MHz collision rate to 200 Hz of events to tape

Inner Tracker: $|\eta| < 2.5$, B=2T Si pixels/strips and Trans. Rad. Det. $\sigma/p_T = 0.05\% p_T$ (GeV) $\oplus 1\%$

NExT PhD Workshop - Sussex - 21/8/2012

JINST (2008) 3 S08003

ATLAS

- Large angular coverage (|η|<4.9; tracking coverage up to η~2.5)
- Standalone muon spectrometer separate fast muon chambers for trigger
- Toroidal magnetic field in muon spectrometer (supercondutor air-core toroids)
- Liquid Argon electromagnetic sampling calorimeter with accordion geometry

Pixel: 10x100µm; 80 M channels Strips: 80µm; 6 M channels

	ATLAS	CMS
Magnetic field	2 T solenoid + toroid (0.5 T barrel 1 T endcap)	4 T solenoid + return yoke
Tracker	Si pixels, strips + TRT $\sigma/p_T \approx 5 \times 10^{-4} p_T + 0.01$	Si pixels, strips $\sigma/p_T \approx 1.5 \times 10^{-4} p_T + 0.005$
EM calorimeter	Pb+LAr σ/E ≈ 10%/√E + 0.007	PbWO4 crystals $\sigma/E \approx 2-5\%/VE + 0.005$
Hadronic calorimeter	Fe+scint. / Cu+LAr (10λ) σ/E ≈ 50%/√E + 0.03 GeV	Cu+scintillator (5.8 λ + catcher) $\sigma/E \approx 100\%/VE + 0.05 \text{ GeV}$
Muon	$\sigma/p_T \approx 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)	$\sigma/p_T \approx 1\%$ @ 50GeV to 5% @ 1TeV (ID+MS)
Trigger	L1 + RoI-based HLT (L2+EF)	L1+HLT (L2 + L3)

Event Reconstruction

- Detector design is a balance between precision to reconstruct particles of interest, feasibility, cost, etc
 - E.g. CMS electromagnetic calorimeter: excellent energy resolution for photons – designed with H->γγ in mind
- Event reconstruction:
 - Go from information in every subdetector to reconstructed physical objects:
 - Muons (inner detector + muon spectrometer)
 - Electrons, tau leptons, hadronic jets, b-quark initiated jets (inner detector+ calorimeter)

– etc

Hadronic Tau identification:

- Reconstruct individual decay modes
- Charged hadrons + electromagnetic obj arranged in strips or single photons

Tau Isolation:

 Multivariate discriminator using sum of energy deposits in dR rings around the tau (from 0.1 to 0.5)

τ Identification and Energy Scale

within 3%

Data

1

1.2

1.4

0.6

0.8

Simulation

---- TauES*1.03

---- TauES*0.97

Using Tag & Probe on $Z \rightarrow \tau \tau \rightarrow \tau \mu$

events in data for eff. with 6%

Jet Reconstruction

- Jets reconstructed in a cone of ΔR≈0.4 (ATLAS) and ΔR≈0.5 (CMS)
- Jet Energy Correction:
 - Electronic noise
 - Detector calibration & reconstruction efficiencies
 - Energy deposits from pileup
 - Dependence on $\eta \& P_T$

Transverse Missing Energy (M_{ET})

b-Jet Identification

Php Workshop - Sussex

10Ex1

- B-lifetime $\approx 1.5 \text{ ps}, <\beta\gamma \text{ct}> \approx 1800 \mu$
- Tracks from b-hadron decay have large P_T
- Average multiplicity ≈ 6
- B-taggers based on

Events

10⁴

10³

10²

10

-20

-10

REcardo Gonçalo

- Large signed impact parameter significance
- Secondary vertex with large decay length
- Mistag rate measured from "negative tags"

b jet efficiency

Displaced

LHC Luminosity

- $2010 \approx 45 \text{ pb}^{-1} / \text{experiment}$
 - No chance of searching for **Higgs boson**
 - But needed to understand our brand new detector!
- $2011 \approx 5$ fb-1 per experiment
 - Things start to be (very) interesting
 - Tevatron breathing down the LHC's metaphorical neck
- $2012 \approx 11 \text{ fb}^{-1}$ / experiment up to yesterday ... and counting
 - New Particle discovery announced!
- And the rest is (will be) history

ATLAS: Pileup Evolution: 2010 Collision Event at 7 TeV with 2 Pile Up Vertices

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

ATLAS: Pileup Evolution: 2011

11 vertices

ATLAS: Pileup Evolution: 2012

Bardo Gonçalo

Pileup & Its Consequences

35

2

0

3

5

4

40

s = 7 TeV

Many more particles to reconstruct <u>-</u>7 80 ATLAS Online Luminositv Recorded Luminosity [pb 70F →more CPU & $\sqrt{s} = 8 \text{ TeV}, \left[\text{Ldt} = 6.3 \text{ fb}^{-1}, <\mu > = 19.5 \right]$ 60F $\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 5.2 \text{ fb}^{-1}, <\mu > = 9.1$ 50 E memory in event N_{PV} 40⊢ reconstruction **30**⊨ **20**E 10 0, **Contaminated Jets** 5 10 15 20 25 30 Mean Number of Interactions per Crossing – (due to additional particles) CMS, L = 36 pb^{-1} GeV Markers: Data, Histograms: MC⁻ photons Minimum Bias - Noise L 8.0 (p 8.0 (b em deposits (PU)=1 e+mu neutral hadrons Worsening of MET resolution hadronic depositscharged hadrons (more objects to sample) 0.6 Worsening of Isolation observables 0.4 Ambiguity in hard-scatter vertex identification, e.g. $H \rightarrow \gamma \gamma$ 0.2

-3

Mitigating Pileup

- Detector level mitigation: Readout over smaller time slice
 - Significantly reduces OOT pileup
- Remove from consideration charge hadrons that originate from pileup vertices
- Amount of additional pileup energy is determined by the jet area (A) and the energy per unit area (ρ)
 - and subtracted
- Take advantage of the topological shape differences between jets from pileup and more collimated jets from hard-scatter of partons

Bilcardo Gonçalo

NExT PhD Workshop - Sussex - 21/8/2012

Typical jet

Pileup jet

Hadron Collider Variables

 $\theta = 0^{\circ} \rightarrow 1^{\circ}$ Pseudorapidity $\eta = -\ln(\tan\theta/2)$

 $\theta = 45^{\circ}$

θ=10°

θ=90°

=0.88

ΔR

- Use relativistic cylindrical coordinates (r,η,φ)
 - dN/dŋ is invariant for boosts along z for particles in a jet
- For object definitions, identification criteria etc. use cones with apex at interaction point and a radius ΔR:

 $p_{T} = psin\theta$

- $\Delta R = \sqrt{[(\Phi \Phi_0)^2 + (\eta \eta_0)^2]}$
- where (Φ_0 , η_0) gives the flight direction of object –e, μ , γ , τ .jets etc

Ζ

Trigger

- First step in every physics analysis!
- Much of LHC physics means cross sections x10⁶ times smaller than total cross section
- ATLAS offline processing: ≈400 Hz
 - ≈10 events per million crossings!
- In one second at design luminosity:
 - 40 000 000 bunch crossings
 - ≈2000 W events
 - ≈500 Z events
 - ≈10 top events
 - 400 events written out
 - Should take the right 400 events!...
 - **Different designs** in ATLAS and CMS
 - ATLAS has 3 processing levels; Region-of-Interest driven reconstruction; event built after Level 2
 - CMS has 3 levels but event built after Level 1
- Also different strategies:
 - ATLAS has most bandwidth assigned to exclusive triggers, e.g. muon trigger (+ anything)
 - CMS relies more on exclusive triggers e.g. muon + 2 jets

Old History – Rediscovering The SM

Part II: Tools of the Trade Statistics Survival Guide

The Brazil Plot

Expected:

 Upper limit on σ(S +B)/σ(B) at 95% CL in Monte Carlo assuming B-only hypothesis

Observed:

 Upper limit on σ(S +B)/σ(B) at 95% CL seen in data assuming B-only hypothesis

The **p0** Discovery Plot

- p0 is the probability that the background fluctuates to look like signal
- Translated into the one-sided Gaussian probability

The Cyan Band Plot – signal strength

• Best fit of $\mu = \sigma(S+B)/\sigma(B)$ to data

Error bands important.... As usual!

Ricardo Gonçalc

Part III: Higgs Hunting at the LHC

Ricardo Gonçalo

7

Higgs Boson Decay Channels

- Gluon-fusion has highest cross section
 - BUT only useful in decay channels not overwhelmed by multi-jet background: H->γγ, H->ZZ, H->WW
- VBF still not easy to distinguish from multi jets
- H->ττ and H->bb very challenging due to very large backgrounds
- Not only the production cross section matters
- Decay branching ratio depends strongly on Higgs boson mass
- 5 decay modes studied:
 - High mass: ZZ, WW
 - Low mass: bb, ττ, γγ, WW, ZZ
- Nature was kind! At m_H≈125GeV many channels can be used for measurements. Redundancy! Ricardo Gonçalo

ICHEP results:

	Higgs Decay	Final state	Mass range [GeV]	L [fb ⁻¹]		
	Η->γγ		110 – 150	4.8+5.9		
S.S.	H->ZZ	111'1'	110 - 600	4.8+5.8		
		llvv	200 - 600	4.7		
		llqq	200 - 600	4.7		
	H->WW	lvlv	110 - 600	4.7+5.8		
		lvqq	300 - 600	4.7		
	Η->ττ	ll4v	110 – 150	4.7		
5		lτ _{had} 3ν	110 – 150	4.7		
		$ au_{had} au_{had} 2 u$	110 – 150	4.7		
	H->bb	llbb	110 – 130	4.7		
		lvbb	110 – 130	4.7		
		vvbb	110 – 130	4.7		
		90				

70

NExT PhD Workshop - Sussex - 21/8/2012

Blind Analysis

- To avoid unintended experimenter's bias in search for the Higgs boson
- The analysis strategy, event selection & optimization criteria for each Higgs search channel were fixed by looking at data control samples before looking at the signal sensitive region
 - Logistically quite painful
 - But the right thing to do !

Diphoton mass reconstruction

- m2γγ= 2 E1 E2 (1-cosα)
- Present understanding of calorimeter E response (from Z, J/ψ -> ee, W -> ev data and MC):
 - E-scale at m_z known to ~ 0.3%
 - Linearity better than 1% (few-100 GeV)
 - "Uniformity" (constant term of resolution): ~ 1% (2.5% for 1.37<|η|<1.8)
- High pile-up: many vertices distributed over
- σZ (LHC beam spot) ~ 5-6 cm => difficult to know which one has produced the γγ pair
- Primary vertex from:
 - EM calorimeter longitudinal (and lateral) segmentation
 - Tracks from converted photons
- Calorimeter pointing alone reduces vertex uncertainty from beam spot spread of ~ 5-6 cm to ~ 1.5 cm and is robust against pile-up
 - Good enough to make contribution to mass
- Resolution from angular term negligible
- Addition of track information (less pile-up robust) needed to reject fake jets from pileup in 2j/VBF category Ricardo Gonçalo
 NEXT PhD Workshop - Sussex - 21/8/2012

Optimization wrt 2011 analysis

NExT PhD Workshop - Sussex - 21/8/2012

- Neural-net based photon ID for 2011 data
- Re-optimized cut-based photon ID for 2012, stable with high pileup
- New '2-jets' category to enhanced sensitivity to VBF
- Events divided in 10 categories based on:
 - γ rapidity,
 - converted/unconverted γ ;
 - $p_{Tt} (p_T^{\gamma\gamma} perpendicular to \gamma\gamma thrust axis);$
 - 2jets (VBF-like)

 \bar{q}' \bar{q}' H

thrust axis

Thrust $\vec{t} = \vec{p}_{T_1} - \vec{p}_{T_2}$

46

σ_{SM} (VBF) ~7%

Backgrounds

- Main backgrounds:
 - Continuum γγ
 production
 - Followed by γ misidentification
- Smooth mγγ spectrum
 - Use sidebands to fit sum of backgrounds
- Confirm each background source by data-driven techniques
 - E.g. reverse quality cuts on photon identification

Results

Combined $m_{\nu\nu}$ from all 10 categories and 7/8 TeV data

- Exclusion at 95% C.L. :
- Expected: 110 < mH < 139.5 GeV
- Observed: 112 < mH < 122.5 GeV 132 < mH < 143 GeV

Results in more detail

H->ZZ(*)->41

- The "golden channel":
 - Small rates, but high S/B
 - Can be fully reconstructed; mass resolution ~2% at 130 GeV
- Cross section times branching ratio (at mH=125 GeV):
- ~ 4 fb at $\sqrt{s}=7$ TeV
- ~ 5 fb at Vs=8 TeV
- Backgrounds:
 - Irreducible: pp->ZZ(*)->4I
 - Reducible: Z+jets, Zbb, tt (sizeable at low Higgs masses)
- Suppress backgrounds with isolation and impact parameters cut on two softest
- Leptons
 - Mass range under consideration: 110 GeV to 600 GeV
 - Four final states: 4e, 4μ , $2e2\mu$, $2\mu2e$

Good agreement with the expectation for a SM Higgs within the present statistical uncertainty

H-+bb Searches in WH production

-

- Three channels considered: $WH \rightarrow \ell \nu b\bar{b}$ $ZH \rightarrow \ell^+ \ell^- b\bar{b}$ $ZH \rightarrow \nu \bar{\nu} b\bar{b}$
- Analysis based on 4.6-4.7 fb⁻¹ of 2011 data collected by ATLAS at $\sqrt{s} = 7 \text{ TeV}$
- Main selection cuts:

- Anti-Kt jets with R=0.4 are reconstructed from calorimeter energy deposits.
- Pile-up jets are suppressed by requiring more of 75% of the summed momenta of tracks matched to the jet to be associated to the primary event vertex.

Leading background uncertainties

		$ZH \rightarrow \ell$! ⊤ℓ ⁻bb			WH -	$\rightarrow \ell \nu b b$			$H \rightarrow \nu \bar{\nu} b b$	>		
Bin	p_{T}^{Z} [GeV]			p_{T}^{W} [GeV]				$E_{\rm T}^{\rm miss}$ [GeV]					
	0-50	50 - 100	100-200	>200	0-50	50-100	100-200	>200	120 - 160	160-200	>200		
Number of events for $80 < m_{b\bar{b}} < 150 [\text{GeV}]$													
Signal	1.3 ± 0.1	1.8 ± 0.2	$.6 \pm 0.2$	0.4 ± 0.1	5.0 ± 0.6	5.1 ± 0.6	3.7 ± 0.4	1.2 ± 0.2	2.0 ± 0.2	1.2 ± 0.1 1	1.5 ± 0.2		
Total Bkg	148 ± 10	150 ± 6	67 ± 4	6.9 ± 1.2	596 ± 23	598 ± 16	302 ± 10	27 ± 5	85 ± 8	32 ± 3	20 ± 3		
Data	141	163	61	13	614	588	271	15	105	22	25		
Components of the Background Relative Systematic Uncertainties [%]													
B-tag Eff	1.4	1.0	0.3	4.8	0.9	1.3	0.9	7.2	4.1	4.2	5.5		
Bkg Norm	3.6	3.4	3.6	3.8	2.7	1.8	1.8	4.5	2.7	2.2	3.2		
$\mathrm{Jets}/E_{\mathrm{T}}^{\mathrm{miss}}$	2.1	1.2	2.7	5.1	1.5	1.4	2.1	9.5	7.7	8.2	12.1		
Leptons	0.2	0.3	1.1	3.4	0.1	0.2	0.2	1.7	0.0	0.0	0.0		
Luminosity	0.2	0.1	0.2	0.4	0.1	0.1	0.1	0.2	0.2	0.5	0.7		
Pile Up	0.9	1.6	0.5	1.3	0.1	0.2	0.8	0.5	1.6	2.5	3.0		
Theory	5.2	1.3	4.7	14.9	2.2	0.3	1.6	14.8	2.9	4.0	7.7		
Total Bkg	6.9	4.3	6.6	17.3	3.9	2.7	3.4	19.6	9.7	10.6	16.0		

- Total background uncertainty : ~3-20 %
 - The highest p_T bins suffer from the highest uncertainties, which limits the improvements from the better S/B.

NExT PhD Workshop - Sussex - 21/8/2012

Combined result

arXiv:1207.0210 (submitted to Phys. Rev. Lett. B)

- Hypothesis testing based on likelihood with m(bb-jet) distribution for signal and background in the signal region (80 GeV < m(bb) < 150 GeV).
- Systematic uncertainties through dependence of normalization and m(bb) shape on additional *nuisance* parameters, constrained within expected uncertainties.

- 95% confidence level upper limits on signal extracted using CL_s method.
- Expected limits from ~2.5 to ~5 times the Standard Model expectation, observed limits close to expectations (exclude ~4.6xSM at m(H)=125 GeV).
- Most of the sensitivity from WH → ℓvbb and ZH → vvbb.
- Looking forward to release 2012 data results!
- In the pipeline: better m(bb) resolution, MV analysis, lower theory systematics.

Where We Stand

Ricardo Gonçalo

70

References

- J. Ellis, J.R. Espinosaa, G.F. Giudice, A. Hoecker and A. Riotto, The Probable Fate of the Standard Model, arXiv: 0906.0954v2 [hep-ph], CERN-PH-TH/2009-058
- Search for the Higgs boson in the H--->WW--->Inujj decay channel at sqrt(s) = 7 TeV with the ATLAS detector ----- CERN--- PH---EP---2012---162 ----- arXiv:1206.6074v1 [hep---ex]
- Search for a Standard Model Higgs boson in the mass range 200-----600 GeV in the H--->ZZ--->llqq decay channel with the ATLAS Detector ----- ATLAS---CONF---2012---017 ----- arXiv:1206.2443
- Search for a Standard Model Higgs boson in the mass range 200---600 GeV in the H--->ZZ--->llqq decay channel ----- CERN---PH---EP---2012---125 ----- arXiv:1206.2443v1 [hep---ex]
- Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 T---1 of ATLAS data at sqrt(s)=7 TeV ----- ATLAS---CONF---2011---161 ----- arXiv:1202.1414
- Search for the Standard Model Higgs boson in the decay channel H--->ZZ(*)--->4I with 4.8 T---1 of pp collisions at sqrt(s) = 7 TeV with the ATLAS detector ----- Phys.Lev. B710 (2012) 383---402 ----- arXiv: 1202.1415
- Search for the Standard Model Higgs boson in the H → WW(*) → lvlv decay mode with 4.7 T---1 of ATLAS data at √s = 7 TeV ----- ATLAS---CONF---2012---012, ATLAS---CONF---2012---060 ------ arXiv:1206.0756
- Search for the Standard Model Higgs boson in the H ---> tau tau decay mode in sqrt(s) = 7 Tev pp collisions with ATLAS ------ ATLAS---CONF---2012---014 ----- arXiv:1206.5971
- Search for the Standard Model Higgs boson produced in associaAon with a vector boson and decaying to a b---quark pair with the ATLAS detector ----- CERN---PH---EP---2012---138 ------ arXiv:1207.0210v1 [hep---ex
- An update to the combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC using up to 4.9 T−1 of pp collision data at √s = 7 TeV ----- ATLAS---CONF---2012---019 ------ arXiv: 1207.0319
- Calculated cross sections:

0

• LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables -----arXiv:1101.0593, arXiv:1201.3084

Statistics

- E. Gross, Statistical Issues for Higgs Physics, lecture at the SLAC Summer Institute, 2012
- G. Cowan, K. Cramner, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554
- A.L. Read, Presentation of search results: the CL(s) technique, J. Phys, G28 (2002) 2893
- E. Gross and O. Vitells, Trial factors for the look elsewhere effect in high energy physics, Eur. Phys. J. C70 (2010) 525
- L. Moneta et al., The RooStats project, arXiv:1009.1003
- T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instr. Meth. A 434 (1999) 435

BACKUP SLIDES

7

Particle Detectors

 Detectors and accelerators which push the boundaries of technology

-

 But that would need a much longer talk...

Jets and Heavy Flavour Tagging

The ATLAS trigger

PhD Works hop -

Susse x -21/8/

Three trigger levels:

- Level 1:
 - Hardware based (FPGA/ASIC)
 - Coarse granularity detector data
 - Calorimeter and muons only
 - Latency 2.2 μs (on-detector buffer)
 - Output rate ~75 kHz
- Level 2:

High-Level Trigger

73

- Software based
- Only detector sub-regions (Regions of Interest) processed; seeded by level 1
- Full detector granularity in Rols
- Fast tracking and calorimetry
- Average execution time ~10 ms
- Output rate ~1 kHz
- Event Filter (EF):
 - Seeded by level 2
 - Full detector granularity
 - Potential full event access
 - Offline algorithms
 - Average execution time ~1 s
 - Output rate ~200 Hz

Selection method

Event rejection possible at each step

NExT PhD Workshop - Sussex -21/8/2012

Level1 Region of Interest is found and position in EM calorimeter is passed to Level 2

Level 2 seeded by Level 1 Fast reconstruction algorithms Reconstruction within Rol

Ev.Filter seeded by Level 2 Offline reconstruction algorithms Refined alignment and calibration

EMROI L2 calorim. cluster L2 tracking track? match E.F.calorim. E.F.tracking track? e/γ reconst. e/y OK?

Ricardo Gonçalo

Interlude: Vector Boson Fusion

Established by Zeppenfeld et al. for low-mass region Earlier studies by Dokshitzer, Khoze, Sjöstrand, Troyan, Kleiss, Stirling

