Higgs Physics at ATLAS

Ricardo Gonçalo, Laboratório de Instrumentação e Física Experimental de Partículas (LIP) Workshop on Multi-Higgs Models - 2014 Lisbon, 5 September 2014

INVESTIGADOR FCT

QUALIFICAR É CRESCER.

UNIÃO EUROPEIA Fundo Social Europeu

ATLAS EXPERIMENT

Outline

- The ATLAS detector and run-I performance
 ATLAS vs CMS strengths and weaknesses
- Higgs Boson Mass and Couplings
 - Recent ATLAS mass measurement
 - New coupling results what changed?
- Higgs boson width
- Run 2 outlook

The ATLAS Detector

Muon Spectrometer: $|\eta| < 2.7$ Air-core toroids and gas-based muon chambers $\sigma/p_T = 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)

EM calorimeter: $|\eta| < 3.2$ Pb-LAr Accordion $\sigma/E = 10\%/\sqrt{E \oplus 0.7\%}$

> Hadronic calorimeter: $|\eta| < 1.7$ Fe/scintillator $1.3 < |\eta| < 4.9$ Cu/W-Lar $\sigma/E_{iet} = 50\%/\sqrt{E} \oplus 3\%$

•L = 44 m, Ø ≈ 25 m
•7000 tonnes
•≈10⁸ electronic channels
•3-level trigger reducing
40 MHz collision rate to
200 Hz of events to tape

05/09/14

Inner Tracker: $|\eta| < 2.5$, B=2T Si pixels/strips and Trans. Rad. Det. $\sigma/p_T = 0.05\% p_T (GeV) \oplus 1\%$

The ATLAS and CMS Detectors In a Nutshell

Sub System	ATLAS	CMS		
Design	46 m	g 2 m		
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside		
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim 5 imes 10^{-4}p_T\oplus 0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 imes 10^{-4} p_T \oplus 0.005$		
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$		
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $\gtrsim 11\lambda_0$ $\sigma_E/E\sim 50\%/\sqrt{E}\oplus 0.03$	Brass-scint. $\gtrsim 7\lambda_0$ Tail Catcher $\sigma_E/E \sim 100\%/\sqrt{E} \oplus 0.05$		
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4 05/09/14	Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T \sim$ 4 % (at 50 GeV) Millil-Mgg(atol TeV)oa	Instrumented Iron return yoke $\sigma_{p_T}/p_T \sim 1\% \text{ (at 50 GeV)}$ $\sim 10\% \text{ (at 1 TeV)}$ 5		

LHC and ATLAS Performance

Outstanding performance of LHC and ATLAS detector! 7.7x10³³cm⁻²s⁻¹ peak luminosity Up to ≈40 pileup interactions 95% efficiency after physicsquality data requirements 20.3 fb⁻¹ at 8 TeV 4.7-4.9 fb⁻¹ at 7 TeV

Standar	d Model Total Productio	on Cross Section Measur	ements Status: July 2014	∫£ dt [fb ^{−1}]	Reference
pp total	$\sigma = 95.35 \pm 0.38 \pm 1.3 \; {\rm hackb} \; ({\rm data}) \\ {\rm COMPETE} \; {\rm RRpl2u} \; 2002 \; ({\rm theory})$	φ		8×10 ⁻⁸	ATLAS-CONF-2014-040
Jets R=0.4	$\sigma = 563.9 \pm 1.5 + 55.4 - 51.4 \text{ nb (data)} \\ \text{NLOJet++, CT10 (theory)}$	0.1 < p _T < 2 TeV	•	4.5	ATLAS-STDM-2013-11
Dijets R=0.4 y <3.0, y*<3.0	$\sigma = 86.87 \pm 0.26 + 7.56 - 7.2 \ {\rm nb} \ ({\rm data}) \\ {\rm NLOJet}{\rm ++, \ CT10} \ ({\rm theory})$	0.3 < m _{jj} < 5 TeV	0	4.5	JHEP 05, 059 (2014)
W total	$\sigma = 94.51 \pm 0.194 \pm 3.726 \text{ nb (data)} \\ \text{FEWZ+HERA1.5 NNLO (theory)}$	\$	4	0.035	PRD 85, 072004 (2012)
Z total	$\sigma = 27.94 \pm 0.178 \pm 1.096 \text{ nb (data)} \\ \text{FEWZ+HERA1.5 NNLO (theory)}$	\$	4	0.035	PRD 85, 072004 (2012)
++	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	¢.	Q	4.6	arXiv:1406.5375 [hep-ex]
total	$\sigma = 242.4 \pm 1.7 \pm 10.2 \text{ pb} \text{ (data)}$ top++ NNLO+NNLL (theory)	4	Δ.	20.3	arXiv:1406.5375 [hep-ex]
t	$\sigma = 68.0 \pm 2.0 \pm 8.0 \text{ pb (data)}$ NLO+NLL (theory)	0	0	4.6	arXiv:1406.7844 [hep-ex]
total	$\sigma = 82.6 \pm 1.2 \pm 12.0 \text{ pb (data)}$ NLO+NLL (theory)	Δ	4	20.3	ATLAS-CONF-2014-007
WW+WZ	$\sigma = 72.0 \pm 9.0 \pm 19.8 \text{ pb (data)}$ MCFM (theory)	ATLAS Preliminary		4.7	ATLAS-CONF-2012-157
۱۸/۱۸/	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)}$		0	4.6	PRD 87, 112001 (2013)
total	$\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9$ pb (data) MCFM (theory)	Run 1 $\sqrt{s} = 7, 8$ lev		20.3	ATLAS-CONF-2014-033
не	$\sigma = 19.0 + 6.2 - 6.0 + 2.6 - 1.9$ pb (data) LHC-HXSWG (theory)			4.8	ATL-PHYS-PUB-2014-009
∎ ggF total	$\sigma = 25.4 + 3.6 - 3.5 + 2.9 - 2.3 \text{ pb} (\text{data})$			20.3	ATL-PHYS-PUB-2014-009
\ \ /+	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb (data)}$	$\dot{\mathbf{D}}$		2.0	PLB 716, 142-159 (2012)
total	$\sigma = 27.2 \pm 2.8 \pm 5.4 \text{ pb} \text{ (data)}$	Theory		20.3	ATLAS-CONF-2013-100
	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb} \text{ (data)}$	ð Data		4.6	EPJC 72, 2173 (2012)
total	$\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb (data)}$			13.0	ATLAS-CONF-2013-021
77	$\sigma = 6.7 \pm 0.7 \pm 0.5 - 0.4 \text{ pb} (\text{data})$	b		4.6	JHEP 03, 128 (2013)
total	$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4$ pb (data)			20.3	ATLAS-CONF-2013-020
H vBF	$\sigma = 2.6 \pm 0.6 + 0.5 - 0.4 \text{ pb (data)}$ LHC-HXSWG (theory)	LHC pp $\sqrt{s} = 8$ TeV Theory		20.3	ATL-PHYS-PUB-2014-009
ttW	$\sigma = 300.0 + 120.0 - 100.0 + 70.0 - 40.0 \text{ fb (data)}$	Data stat		20.3	ATLAS-CONF-2014-038
ttZ total	$\sigma = 150.0 + 55.0 - 50.0 \pm 21.0 \text{ fb (data)}$ HELAC-NLO (theory)			20.3	ATLAS-CONF-2014-038
	10-5 $10-4$ $10-3$ $10-2$ $10-1$ 1	10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{11}			
	10 , 10 , 10 , 10 , 10 , 1	10^{-} 10^{-} 10^{-} 10^{-} 10^{-} 10^{-} 10^{-1}	0.5 1 1.5 2		
05/09/1	14	Multi-Higgs 2014, Lisboa [pb]	data/theory		7

Many BSM direct searches

- SUSY spectrum explored to ≈TeV scale
- Many other scenarios explored up to ≈1 ≈10 TeV: extra dimensions, new gauge bosons, Dark matter candidates, leptoquarks, fermion substructure, new heavy quarks, contact interactions, etc
- Nothing new... so far!

Higgs in ATLAS

Higgs Boson Mass

- New combined: m_H = 125.36 ± 0.37 (stat.) ± 0.18 (syst.) GeV
- m_{vv}=125.98 ± 0.42 (stat.) ± 0.28 (syst.) GeV
- m_{zz}=124.51 ± 0.52(stat.) ± 0.06(syst.) GeV
- CMS: m_H=125.03 ^{+0.26}_{-0.27} (stat.) ^{+0.13}_{-0.15} (syst.) GeV

Higgs Boson Mass

- New combined: m_H = 125.36 ± 0.37 (stat.) ± 0.18 (syst.) GeV
- m_{vv} = 125.98 ± 0.42 (stat.) ± 0.28 (syst.) GeV
- m_{zz} = 124.51 ± 0.52(stat.) ± 0.06(syst.) GeV
- Old combination (PLB 726(2013)88): m_H = 125.5 ±0.2 (stat) ±0.6 (syst) GeV
- $m_{\gamma\gamma} = 126.8 \pm 0.2$ (stat.) ± 0.7 (syst.) GeV
- $m_{ZZ} = 124.3 \pm {}^{+0.6}_{-0.5}$ (stat.) $\pm {}^{+0.5}_{-0.3}$ (syst.) GeV

Combining Higgs Channels

05/09/14

Multi-Higgs 2014, Lisboa

(a)

 $m_{\rm T}$ [GeV]

A bit more technically

- Assumptions:
 - Single resonance (at $m_H = 125.5 \text{GeV}$)
 - No modification of tensor structure of SM Lagrangian:
 - i.e. H has J^P = 0⁺
 - Narrow width approximation holds
 - i.e. rate for process i → H → f is:

$$\sigma \times BR = \frac{\sigma_{i \to H} \times \Gamma_{H \to f}}{\Gamma_{H}}$$

- Free parameters in framework:
 - Coupling scale factors: κ_i^2
 - Total Higgs width: κ_{H}^{2} σ_{i}^{SM} ; $\Gamma_{f} = \kappa_{f}^{2} \cdot \Gamma_{f}^{SM}$; $\Gamma_{H} = \kappa_{H}^{2} \cdot \Gamma_{H}^{SM}$
 - Or ratios of coupling scale factors: $\lambda_{ij} = \kappa_i / \kappa_j$
- Tree-level motivated framework
 - Useful for **studying deviations** in data with respect to expectations
 - E.g. extract coupling scale factor to weak bosons κ_V by setting $\kappa_W = \kappa_Z = \kappa_V$
 - Not same thing as fitting a new model to the data

Higgs couplings: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

- $H \rightarrow \gamma \gamma$ (arXiv: 1408.7084) : $\mu_{\gamma \gamma} = \sigma / \sigma_{SM} = 1.17 \pm 0.27$
- $H \rightarrow ZZ \text{ (arXiv: 1408.5191) : } \mu_{ZZ} = \sigma / \sigma_{SM} = 1.44 + 0.40 0.33$
- Old combination (PLB 726 (2013) 88):
- $\mu_{\gamma\gamma} = \sigma/\sigma_{SM} = 1.55^{+0.33}_{-0.28}$
- $\mu_{ZZ} = \sigma / \sigma_{SM} = 1.43 + 0.40 0.35$
- Large change in $H \rightarrow \gamma \gamma !!$
- $\mu_{\gamma\gamma}$ now SM compatible
- μ_{γγ} uncertainty increased !?
- $H \rightarrow ZZ$ unchanged

05/09/14

What happened?

- New electron and photon energy calibrations ightarrow
 - Intercalibration of calorimeter layers
 - New map of material in front of calorimeter
- Multivariate regression to calibrate e and γ ightarrow
 - Inputs: cluster position, calorimeter related quantities (deposit per layer etc), tracks
- Improved muon momentum scale and resolution systematics
- Used large calibration samples accumulated ulletduring the run:
 - − Z→ee (6.6M), Z→μμ (9M), J/ψ→μμ (6M) to determine calibration corrections
 - − J/ ψ →ee (0.3M), Z→eeγ (6.6M), Y→µµ (5M) to verify calibrations
- Bottom line: improved systematics from ulletultimate Run-I detector calibration
 - 10% improvement on m_{vv} resolution!
 - **≈x2 improvement** on γ resolution systematic uncertainty
 - **≈10% improvement** on $\mu(H \rightarrow \gamma \gamma)$ uncertainty

15

γγ, 105<m_{γγ}<160GeV

1 e/μ and b-jets No e/μ, 5-6 jets incl. b-jets

2 e/μ, m_{ee/μμ} ≈ m_z

 $1 \text{ e/}\mu$, E_t^{miss}

High E_t^{miss}

loose

2 jets, m_{jj} ≈ m_{z/w} |Δη(lead jets)|>2, BDT tight |Δη(lead jets)|>2, BDT

Untagged: 4 categories Dominated by ggF

H→γγ Analysis

- Analysis categories optimized for measuring signal strength
- m_H set to 125.4 GeV, as determined in arXiv:1406.3827
- 20% reduction in total uncertainty with respect to an inclusive analysis

05/09/14

H→γγ Analysis (cont.)

- m_H fixed at 125.4 GeV
- $\mu_{\nu\nu} = \sigma/\sigma_{SM} = 1.17 \pm 0.27 =$

 1.17 ± 0.23 (stat) $^{+0.10}_{-0.08}$ (syst) $^{+0.12}_{-0.08}$ (theory)

- Increased statistical uncertainty due to:
 - Lower signal rate
 - Fluctuation expected uncertainty 0.35 GeV

H→ZZ Analysis

- Also benefits from improved:
 - Electron identification and energy measurement
 - Muon momentum scale
- Plus:
 - New VH category
 - Multivariate method to discriminate ZZ* (BDT_{ZZ*})
 - Improved treatment of FSR photons
 - 2D fit to m(4l) and $BDT_{ZZ^{\ast}}$

- Signal strength: $\mu = \sigma/\sigma_{SM}$
- Inclusive:
 - $\mu_{ZZ} = 1.44 + 0.34_{-0.21}$ (stat) $+ 0.21_{-0.11}$ (syst)
- ggF and VBF categories:
 - $\mu_{ggF} = 1.66 \, {}^{+0.45}_{-0.41} \text{ (stat) } {}^{+0.26}_{-0.16} \text{ (syst)} \\ \mu_{VBF} = 0.26 \, {}^{+1.60}_{-0.91} \text{ (stat) } {}^{+0.38}_{-0.23} \text{ (syst)}$

We've been keeping busy...

SM Higgs and its properties

- Mass and couplings (ZZ+WW+γγ):
 - Phys. Lett. B 726 (2013), pp. 88-119
- (Updated Mass): arXiv:1406.3827
- (Updated Coupling yy): arXiv:1408.3827
- *(Updated Coupling ZZ):* arXiv:1408.5191
- Spin and parity (ZZ+WW+γγ):
- *Η* → *γγ*: ATLAS-CONF-2013-012
- *H* → *WW*: ATLAS-CONF-2013-030
- *H* → *Zγ*: ATLAS-CONF-2013-009
- *H* → *bb:* ATLAS-CONF-2013-079
- *H* → *π*: ATLAS-CONF-2013-108
- $H \rightarrow \mu\mu$: ATLAS-HIGG-2013-07
- *H* → *invisible:* Phys. Rev. Lett. 112, 201802 (2014)
- *ttH(yy):* ATLAS-CONF-2014-043
- VH(WW): ATLAS-CONF-2013-075
- Phys. Lett. B 726 (2013), pp. 120-14
- H → ZZ (on-shell cross-section and pT): ATLAS-CONF-2014-044 (off-shell cross-section) ATLAS-CONF-2014-042

Additional Higgs Boson searches

- H/h/A→ττ: ATLAS-CONF-2014-049 ATLAS-CONF-2014-005
- $X \rightarrow hh \rightarrow 4b$:
- *H*+ → τ ν: ATLAS-CONF-2013-090, JHEP03(2013)076
- *H*+ → *c ss̄*: Eur. Phys. J. C, 73 6 (2013) 2465
- *H* → *WW* (*2HDM*): ATLAS-CONF-2013-027
- *X→hh→γγbb:* ATLAS-HIGG-2013-29
- *Multi-higgs cascade:* Phys. Rev. D 89, 032002 (2014)
- SM Higgs Couplings and New Phenomena:
- ATLAS-CONF-2014-010

It is an old maxim of mine that when you have excluded the impossible, whatever remains, however improbable, must be the truth.' Sherlock Holmes

The landscape in the next decade(s)

D Charlton / Birmingham - 12 August 2013, ICISE inauguration, Quy Nhon, Vietnam 05/09/14 Multi-Higgs 2014, Lisboa

Run II – Not only more luminosity

- Higher centre of mass energy gives access to higher masses
- Hugely improves potential for discovery of heavy particles
- Increases cross sections limited by phase space
 - E.g. ttH increases faster than background (factor 4)
- But may make life harder for light states
 - E.g. only factor 2 increase for WH/ZH, $H \rightarrow bb$ and more pileup
 - Could be compensated by use of boosted jet techniques (jet substructure)

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Conclusions

- Only a very short review of the latest diboson mass and coupling results (apologies)
- Looking forward to Run II
 - Improve further on the precision measurements that I mentioned (and all the ones I didn't)
 - But not all channels will become easier

Any Questions?

An example: ttH

- Indirect constraints on top-Higgs Yukawa coupling from loops in ggH and ttH vertices
 - Assumes no new particles contribute to loops
- Top-Higgs Yukawa coupling can be measured directly
 - Allows probing for New Physics contributions in the ggH and $\gamma\gamma H$ vertices
- Top Yukawa coupling $Y_t = \sqrt{2}M_t/vev = 0.996 \pm 0.005$
 - Does this mean top plays a special role in EWSB?

Combination

Direct Evidence of Fermion Couplings

- Challenging channels at the LHC!
 - Huge backgrounds (H->bb,H->ττ)
 - Or low rate: H->μμ
- ATLAS:

4.1 σ evidence of H-> $\tau\tau$ decay 3.2 σ exp. $\mu = \sigma_{obs} / \sigma_{SM} = 1.4 \pm 0.3 (stat) \pm 0.4 (sys)$

• CMS:

- Combination of H->bb and H-> $\tau\tau$: 3.8 σ evidence (obs.) 4.4 σ (expected) $\mu = \sigma_{obs.} / \sigma_{SM} = 0.83 \pm 0.24$

CMS 1401.6527 Channel Significance (σ) Best-fit Expected $(m_{\rm H} = 125 \,{\rm GeV})$ Observed μ $VH \rightarrow bb$ 1.0 ± 0.5 2.3 2.1 0.78 ± 0.27 $H \rightarrow \tau \tau$ 3.73.2 Combined 3.8 0.83 ± 0.24 4.4

05/09/14

Multi-Higgs 2014, Lisboa

26

μ

CMS 1401.6527

ATLAS-CONF-2013-108

Direct Measure of Higgs Boson Width

- Going back to latest ATLAS mass measurement
 - Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
 - arXiv:1406.3827
- Direct measurement assuming no interference between signal and backgrounds
- Mass peak is a convolution of natural Higgs width and detector resolution
 - SM: Γ = 4 MeV << resolution
- $H \rightarrow ZZ \rightarrow 4I$:
 - Γ < 2.5 GeV @ 95% C.L.</p>
 - Expect 6.2 for μ = 1
- H→γγ:
 - Γ < 2.5 GeV @ 95% C.L.
 - Expect 6.2 for $\mu = 1$

Indirect Measurement

- High-mass region in H→ZZ (m_{zz} > 2 m_z) provides access to total width
 - Kauer and Passarino, JHEP 1208 (2012) 116
 - Caola and Melnikov, PRD 88 (2013) 054024
 - Campbell, Ellis, and Williams, PRD 89 (2014) 053011
- Off-shell signal strength is independent of total width (depends only on couplings) – unlike on-shell
 - Assumes background is immune to any new physics affecting off-shell couplings (and so κ factors)
 - Assumes кi,off-shell = кi,on-shell

$$\frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}} = \mu_{\text{off-shell}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{V,\text{off-shell}}^2$$
$$\frac{\sigma_{\text{off-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}} = \mu_{\text{on-shell}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

ATLAS-CONF-2014-042

05/09/14

Multi-Higgs 2014, Lisboa

ATLAS-CONF-2014-042

Indirect Measurement

Combination of ZZ \rightarrow 4l and ZZ \rightarrow 2l2v to fit $\mu_{off-shell}$

ZZ**→**4I

Off-shell region m₄₁=[220,1000] GeV Matrix element (ME) kinematic discriminant to separate $gg \rightarrow H \rightarrow ZZ$ from $gg \rightarrow ZZ$ and $qq \rightarrow ZZ$

ZZ**→**2l2v

- $E_{t^{miss}} > 150 \text{ GeV}, 76 < m_{I_{I}} < 106 \text{ GeV}$
- Main backgrounds: qq→ZZ + diboson
- Off –shell signal region: mTZZ > 350 GeV
- limit on µoff-shell
- Small dependence on the ratio between gg→ZZ and gg→H→ZZ k-factors
- RHB is ~ 1 in the soA collinear approxima4on Include low-mass region (4I) to fit μon-shell

Ratio of µon-shell/µoff-shell gives ГН

Off-shell signal strength is independent of total width (depends only on couplings) – unlike on-shell

Assumes background is immune to any new physics affecting offshell couplings (and so κ factors)

Assumes κi,off-shell = κi,on-shell

Higgs in ATLAS

NICK CAVE & THE BAD SEEDS

Higgs Boson Blues Words by Nick Cave Music by Nick Cave & Warren Ellis

05/09/14

Multi-Higgs 2014, Lisboa

Trigger: sistema de seleção em tempo real

- 25 ns entre pacotes
 - (i.e. ≈7.5m à velocidade de c)
 - 40 milhões de cruzamentos de feixes por segundo
 - Cada colisão daria ≈1.5Mb
 - => 60Tb por segundo
- Impossível guardar todos os dados
 - E desnecessário!
 - A maioria das colisões é sem interesse
- O sistema de trigger guarda apenas ≈10-15 colisões por cada milhão
- Mas tem que decidir em 2,5µs!!

^{05/09/14}

A Colaboração ATLAS

3000 cientistas(1000 estudantes)33 países177 universidadese laboratórios

Multi-Higgs 2014, Lisboa

Outline

- The ATLAS detector and run-I performance
 - ATLAS vs CMS strengths and weaknesses
- Standard Model Higgs
 - Bosonic decay channels γγ (incl., ttH), WW, ZZ, Zγ
 - Differential analyses γγ, ZZ
 - $ttH(H\rightarrow\gamma\gamma)$
 - Couplings and Properties from Bosonic Channels incl mass (ATLAS-CONF-2014-043)
 - Fermionic decay channels $\tau\tau$, bb (VH, ttH), $\mu\mu$
 - $H \rightarrow \tau \tau$, $VH(H \rightarrow bb)$, $ttH(H \rightarrow bb)$
 - Hcc access through H->J/Psi? http://arxiv.org/abs/1306.5770
 - Di-Higgs production γγbb
- Beyond the Standard Model
 - Constraints from current measurements
 - Direct BSM Searches
 - Additional γγ resonances
 - Cascade decays
 - Invisible Higgs in ZH production
 - FCNC $t \rightarrow Hq$
 - MSSM $H \rightarrow \tau \tau$ (in circulation)
 - High Mass $H \rightarrow \gamma \gamma$
 - PROCURAR em exotics (e.g. H++) e SUSY