Higgs Hands-On

Jorge Romão (CFTP), Ricardo Gonçalo (LIP) Fourth Lisbon mini-school on Particle/Astroparticle Physics Costa da Caparica, February 2019

Summary of the exercise

- We'll do an (extremely) simplified analysis of
 H→ γ γ in run 2 of the LHC.
- We will:
 - 1. Set the stage:
 - Learn about the LHC and its experiments
 - 2. Look at the physics:
 - Understand the signal we're trying to find
 - 3. Run the analysis:

The LHC

1. The LHC: colliding beams

- At the LHC we collide **protons against protons**
 - Protons are used as "bags of quarks and gluons"
- Protons are made of 3 valence quarks, exchanging gluons, and a sea of virtual quark pairs
- The deeper we look (more energy, smaller distances) the more we see gluons and quarks from the sea
- Note:
 - Only a part x of the proton's momentum intervenes in a collision
 - Generally $x_{\text{proton 1}} \neq x_{\text{proton 2}} \Rightarrow$ The collision reference frame is boosted

4th Lisbon Mini-School

Figure 17.6. Parton distribution functions $xf_f(x)$ for quarks, antiquarks, and gluons in the proton, at $Q^2 = 4 \text{ GeV}^2$. These distributions are obtained from a fit to deep inelastic scattering data performed by the CTEQ collaboration (CTEQ2L), described in J. Botts, et. al., *Phys. Lett.* B304, 159 (1993).

[see e.g

х

Colliding Beams

F

dipole

- All in a beam ≈ 16 µm thick
- Typical runs last ≈ 12 hours
- Intensity decreases from losses and collisions
- Then re-inject, accelerate, and collide again

- Beam energy:
- 2802 bunches of 1.15x10¹¹ protões
- 7TeV / proton (2015) = $7 \times 10^{12} \times$ 1.602x10⁻¹⁹ J
- Is 362 MJ per beam...
- Same as the kinetic energy of a • 20,000 t aircraft carrier travelling at 12 knt (21.7 km/h)

TeV

1. The LHC: Luminosity

- The **instantaneous luminosity** measures the rate of interactions
- If we collide, with a frequence f, two "bunches" with width σ_x and σ_y (rms) containing n_1 and n_2 protons, the luminosity is:

$$\mathscr{L} = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y}$$

• The event rate N_{exp} for a certain process is given by the product of the instantaneous luminosity and the _ - cross section σ

 $R = \mathcal{L} \sigma$

1. The LHC: luminosity

• The instantaneous luminosity has inverse area units, usually: [cm⁻² s⁻¹]

$$\mathscr{L} = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y}$$

The integrated luminosity is expressed in inverse cross section units

 Why does this make sense?

$$N_{exp} = \sigma_{exp} \times \int \mathscr{L}(t) dt$$

- In Run 1 we accumulated ≈25 fb⁻¹ per experiment at √s = 7 / 8 TeV
- In Run 2 (2015-2018) we got ≈**150 fb**⁻¹ at **13 TeV** per experiment

Note: $1fb^{-1} (1x10^{-15}/fb)$ has 1000 times more data than $1pb^{-1} (1x10^{-12}/fb)$

1. The LHC: Experiments

1. The LHC: trigger

- 25 ns bunch crossing
 - Means 40 million crossings per second
 - Each collision ≈1.5MBytes
 - Means > 60TB per second
- Impossible to keep all these data
 - And unnecessary!
 - Most collisions are boring (>99.99%)
- Use the trigger system to keep only 1 collision for every 40 000
 - But need to decide quickly in real time (in 2.5µs for the first trigger level!!)
- In our exercise we'll consider that the trigger selects events containing 2 photons with:

 p_{T} > 35GeV and $|\eta|$ <2.5

1. The LHC: the full picture

1. The LHC: TEST

- At the LHC, proton bunches collide every 25ns
- Each bunch has 10^{11} protons and a radius of $11.1\mu m$ (rms)
- The LHC has a circumference of 27 km
- 1. What is the instantaneous luminosity measured by the CMS experiment?
- 2. If the inclusive cross section for Z boson production is 28nb, how many are produced per second in ATLAS?
- 3. In 20fb⁻¹, how many Higgs bosons were produzidos during LHC run 1 if the inclusive cross section is 20pb?
- 4. How many proton bunches fit in the LHC?

Run Number: 182796, Event Number: 74566644 Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV PtCut>2.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: <mark>blue</mark> Electron: Black Cells:Tiles, EMC

2. The Higgs boson

2. The Higgs boson at the LHC

- Many different production and decay mechanisms
 - Span 3 orders of magnitude in cross section and branching ratio
 - Some very clean decays with low BR ($\gamma\gamma$, 4l)
 - Other very difficult with higher rates (bb, WW, ττ,...)
- Access Higgs properties through combination of different channels
- Enormous amount of progress since discovery 6 years ago!

2. The Higgs boson at the LHC

- Many different production and decay mechanisms
 - Span 3 orders of magnitude in cross section and branching ratio
 - Some very clean decays with low BR ($\gamma\gamma$, 4I)
 - Other very difficult with higher rates (bb, WW, ττ,...)
- Access Higgs properties through combination of different channels
- Enormous amount of progress since discovery 6 years ago!

2012: Descoberta do bosão de Higgs: H->γγ

2. The Higgs: TEST

- The centre of mass energy during the LHC run 2 is 13TeV
- The calculated Higgs production cross section is 51.01pb
- The Higgs Branching Ratio to 2 photons is 2.28x10⁻³
- 1. How many Higgs bosons do we expect to be produced in an integrated luminosity of 10.0 fb⁻¹ at the LHC?
- How many of those will decay into 2 photons? 2.
- 3. What do you expect the photon spectrum will look like in approximate terms?
- 4. Why does the Higgs decay mostly to a b-quark pair? 12/02/19

3. Running the analysis

3. Running the analysis

- 1. Look at sensitive **observables**
- 2. Apply selection cuts
- 3. Take a background template from a **control region**
- 4. Fit the signal+bacground to extract **signal strength**
- 5. If time allows: extend the search to heavier Higgses

Events / 2 GeV

Events - Fitted bkg

2. Explore the $H \rightarrow \gamma \gamma$ signal

• Go to the Monte Carlo directory :

```
> cd Exercise/MC/
```

```
    Start a ROOT session opening file H0.root and use .ls
    root H0.root
    root [1] .ls
    TFile** ../SecondSet/data/data50.root
    TFile* ../SecondSet/data/data50.root
    KEY: TTree T;1 event Tree
    KEY: TH1F h_Nph;1 Number of photons
    KEY: TH1F h_Njet;1 Number of jets
    KEY: TH1F h_Mgg;1 Inv.mass of 2 lead photons
```

• TBrowser -> starts an interactive browser; use it to look at the file contents

```
root [2] TBrowser
```

```
root [3] T->Print()
*Tree :T
                                        *
      : event Tree
*Entries : 2312 : Total =
                    218315 bytes File Size = 153299 *
*
          : Tree compression factor =
                          1.40
                                        *
    :
1 :Nph : Nph/I
                                        *
*Br
*Entries : 2312 : Total Size= 9781 bytes File Size =
                                      238 *
```

2. Explore the $H \rightarrow \gamma \gamma$ signal

- Plot the transverse momenta of the photons
 root [19] T->Draw("ph pT")
- Or

```
root [20] T->Draw("ph_pT", "ph_pT<200")</pre>
```

- Variables:
 - Nph: number of photons
 - ph_pT: photon p_T (from photon 0 to photon Nph-1)
 - ph_eta: photon η = -ln tan $\theta/2$ (pseudorapidity)
 - ph_phi: photon polar angle
 - Njet: number of jets
 - j_pT: jet p_T (from jet 0 to jet Nph-1)
 - j_eta: jet η = -ln tan $\theta/2$ (pseudorapidity)
 - j_phi: jet polar angle

2. Explore the $H \rightarrow \gamma \gamma$ signal

• Look at other variables to get a feeling for the signal...

3. The analysis: data

- Inside directory Exercise/ there are 4 directories:
- data/: contains data events (Vs = 13TeV)
 - Trigger cuts: 2 photons with $p_T > 35$ GeV and $|\eta| < 2.5$
 - 383019 events in 150 root files
 - Integrated luminosity: 11.5fb⁻¹
- backgr/: contains a sample of background events
 - Integrated luminosity: 432pb⁻¹
 - 11596 events
 - Sideband: $M_{yy} < 120 GeV$
- MC/: contains simulated $H \rightarrow \gamma \gamma$ events (m_H = 125 GeV)
 - 10 000 simulated; 6545 passed the trigger
 - Equivalent integrated luminosity: 156fb⁻¹
- root/: contains ROOT macros for analysis and plotting
 - analysis.Cand analysis.h contain the analysis code
 - analyze.C steers the analysis code and has the list of data/MC files
 - plot.C plots the histograms created in the analysis

3. The analysis: the code

- File analysis.C ontains the important bits of the analysis:
 - In method Begin(), instantiate histograms (declared in analysis.h):
 - h_Mgg = new TH1F("h_Mgg","Invariant mass of 2 lead photons",30,90,190.);
 - h_MggH = new TH1F("h_MggH","Di-photon invariant mass after cuts",30,90,190.);
 - ...etc
- In method analysis::Process(), select events with at least 2 photons and calculate the invariant mass of the two leading photons:

float Mgg

```
= sqrt(2*ph_pT[0]*ph_pT[1]*(cosh(ph_eta[0]-ph_eta[1]) - cos(dPhi)));
```

• Then apply cuts to refine the selection and put the values in histograms

```
if ( ph_pT[0] > 40. && fabs(ph_eta[0]) < 2.37 &&
    ph_pT[1] > 30. && fabs(ph_eta[1]) < 2.37 ) {
        h_MggH->Fill(Mgg);
        h_dPhiH->Fill(dPhi);
```

- Run the analysis code on simulated signal, on the background sample and on the data
 - To steer the analysis edit file analyze.C and change variable dataType
 - // add each root file into chain of TTrees only one in this case
 - int dataType = 0; // 0 = signal MC; 1 = background data; other = data
 - Rename the output file histograms.root into:
 - MChistos.root
 - backgrhistos.root
 - datahistos.root

3. Run the analysis

- 1. In ROOT, execute macro plot.C
 - Needs files MChistos.root, backgrhistos.root, datahistos.root to be present
 - You'll be guided through the various plots which will serve to illustrate aspects of a real analysis
 - Look at observables in the data after the trigger selection and after analysis cuts
 - A pure background sample can sometimes be taken from from a control region like a sideband; this can help study the background
 - 2. Now go back to refine the analysis and try to optimize the selection
 - E.g. try to estimate signal and background in the signal mass peak and change cuts to maximize S/VB
 - 3. If time allows: extend the search to heavier Higgses any surprises?

Now let's try an interactive analysis

http://opendata.atlas.cern/visualisations/analyser-js.php

Ricardo Gonçalo

BEACH'18 - Peniche, Portugal

SAY GOD PARTICLE

Questions??? jgoncalo@lip.pt

ONEMORITME

quickmeme.com

2. The Higgs at the LHC: production

- The Higgs couples to particles with mass:
 - Fermions or weak bosons, but not (directly) gluons or photons
 - But there are many gluons in our beams ...
- Largest cross section is "gluon fusion"
 - Loop is dominated by the massive virtual top quarks

2. The Higgs at the LHC: decay

- With the mass of m_H = 125 GeV, the Higgs boson decays mostly to b quarks
- But it is basically impossible to separate this signal from the b-quark production background (10⁶ times more frequent!...)
- H→γγ decays through W- and topdominated loop

Now let's try an interactive analysis

http://opendata.atlas.cern/visualisations/analyser-js.php

The Higgs boson discovery in cartoons...

Nigel finds the Higgs boson.

"Run! I've discovered the Higgs bison."

Cagle.com

 $M(H^{\circ}) = \pi \left(\frac{1}{137}\right)^{8} \sqrt{\frac{hc}{G}}$ 3987¹² + 4365¹² = 4472¹² n(t.))1 10

Muon Spectrometer: Steel return yoke and gas-based muon chambers $\sigma/p_T = 1\%$ @ 50GeV to 5% @ 1TeV (ID+MS) **EM calorimeter:** PbWO₄ crystals homogen. $\sigma/E = 2-5\%/\sqrt{E \oplus 0.005}$

> Hadronic calorimeter: Brass+scint./Steel+quartz σ/E_{jet} = 100%/ $\sqrt{E} \oplus 0.05$

Solenoid: B = 4 T Inner Tracker: Si pixels/strips $\sigma/p_T = 0.02\% p_T (GeV) \oplus 0.005$

BEACH'18 - Peniche, Portugal

Ricardo Gonçalo

1. The LHC: Experiments

Muon Spectrometer: $|\eta| < 2.7$ Air-core toroid + gas-based muon chambers $\sigma/p_T = 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)

EM calorimeter: $|\eta| < 2.5 (3.2)$ Pb-LAr accordion sampling $\sigma/E = 10\%/\sqrt{E \oplus 0.7\%}$

Solenoid: B = 2 T Inner Tracker: $|\eta| < 2.5$ Si pixels/strips and Trans. Rad. Det. $\sigma/p_T = 0.05\% p_T (GeV) \oplus 1\%$

Ricardo Gonçalo

BEACH'18 - Peniche, Portugal

Hadronic calorimeter: Fe/scintillator / Cu/W-LAr σ/E_{iet} = 50%/ $\sqrt{E} \oplus 3\%$

Standard Model Production Cross Section Measurements

Status: July 2018

Quantum Mechanics Strikes Back!

12/02/19

 \bar{q}

The ATLAS and CMS Detectors In a Nutshell

Sub System	ATLAS	CMS
Design	46 m	E 2 m
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim 5 imes 10^{-4}p_T\oplus 0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E\sim 10\%/\sqrt{E}\oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $\gtrsim 11\lambda_0$ $\sigma_E/E\sim 50\%/\sqrt{E}\oplus 0.03$	Brass-scint. $\gtrsim 7\lambda_0$ Tail Catcher $\sigma_E/E \sim 100\%/\sqrt{E} \oplus 0.05$
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4 12/02/19	Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T\sim$ 4 $\%~({ m at}~50~{ m GeV})$ 476113 $\%~({ m at}~1.15\%)$	Instrumented Iron return yoke $\sigma_{p_T}/p_T \sim 1\% \text{ (at 50 GeV)}$ $\sim 10\% \text{ (at 1 TeV)}$ 50

Agora os problemas...

Isto não devia funcionar!...

Л

The landscape in the next decade(s)

D Charlton / Birmingham - 12 August 2013, ICISE inauguration, Quy Nhon, Vietnam 12/02/19 4th Lisbon Mini-School