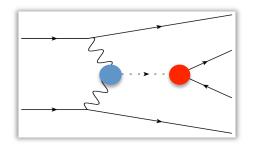
CP violation results in the ATLAS experiment

R. Gonçalo (U.Coimbra / LIP) on behalf of the ATLAS Collaboration Higgs Hunting, Orsay-Paris, Sep.12-14 2022

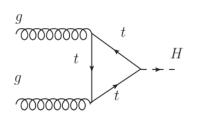


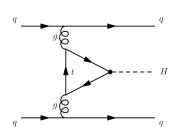
CP Violation in the Higgs Sector?

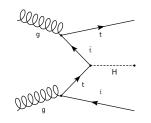
- Sakharov conditions for a matter-dominated universe require CP violation⁽¹⁾
- Some CP-violating processes are well known and measured:
 - Described with complex phases in CKM-matrix quark mixing
 - Maybe in PNMS-matrix as well neutrino mixing
- But insufficient, by orders of magnitude, to explain baryon asymmetry(1)
- CP violation in Higgs sector?
 - Possible in some models with extended Higgs sector (e.g. some 2HDMs)
 - Mixing of scalar (CP-even) and pseudo-scalar (CP-odd) Higgs states would make CP violation an enticing possibility
- What do we know about Higgs CP properties?
 - In the SM, Higgs scalar is a CP eigenstate with JCP = 0++
 - Pure $J^P = 0^-$ hypothesis for observed Higgs boson was ruled out in Run $1^{(2)}$
 - But hypothesis of a CP-odd admixture is far from being constrained experimentally!

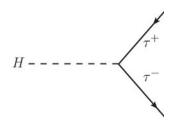
How to search for a CP-odd admixture?

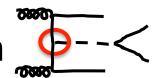
- Effect of CP-odd components on bosonic couplings parametrized as expansion with higher order terms suppressed by powers of scale of new physics Λ
- Could explain why a CP-odd admixture has not been seen

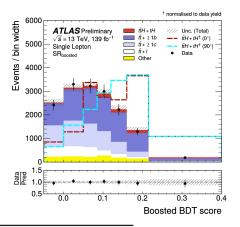


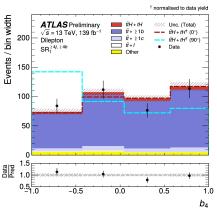

- Fermionic couplings are affected at tree level
- Mixing angle α between CPeven and CP-odd coupling components
- More notable for heavier fermions due to enhanced coupling

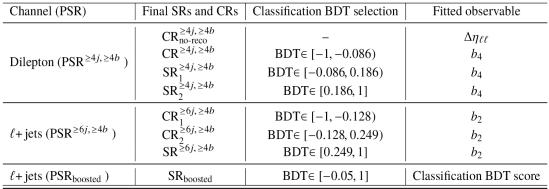

$$\mathcal{L}_{VVH} = \mathcal{L}_{VVH,SM} + \frac{1}{\Lambda^2} c \,\phi \widetilde{V}_{\mu\nu} V^{\mu\nu} + \dots \qquad \mathcal{L}_{ffH} = \kappa_f' y_f \phi \bar{\psi}_f(\cos \alpha + i\gamma_5 \sin \alpha) \psi_f$$

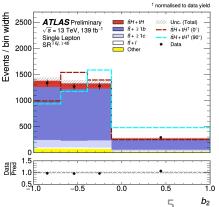

$$\mathcal{L}_{ffH} = \kappa_f' y_f \phi \bar{\psi}_f(\cos \alpha + i\gamma_5 \sin \alpha) \psi_f$$


Fermionic Higgs Couplings




See talk by Neelam in YSF yesterday

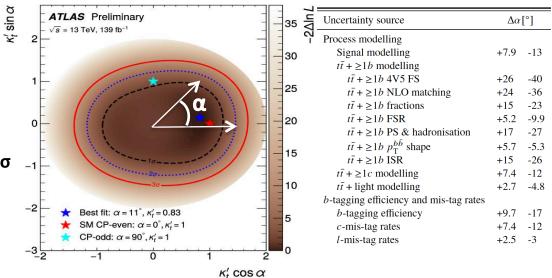

- Calculate CP-sensitive observables b_2 and b_4 from top-quark 3-momenta
- Use different observables in combined fit depending on region


$$b_2 = \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1||\vec{p}_2|}$$

$$b_4 = \frac{p_1^z p_2^z}{|\vec{p}_1| |\vec{p}_2|}$$



Simultaneous fit in all regions

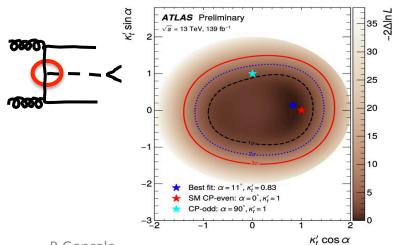

- $\mu = 0.83^{+0.30}_{-0.46}$
- $\alpha = 11^{\circ} + 55_{-77}$

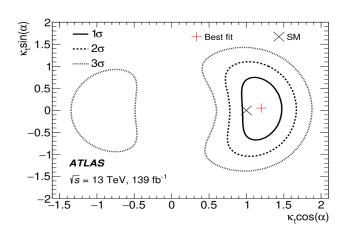
Expected:

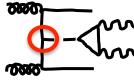
- $\mu = 1.0^{+0.25}_{-0.27}$
- $\alpha = 0^{\circ +49}_{-50}$
- Pure CP-odd ($\alpha = 90^{\circ}$) disfavoured at **1.2** σ

Systematics-dominated analysis:

 Dominant uncertainties from tt+≥1b modelling: NLO matching, PS and hadronisation, flavour scheme

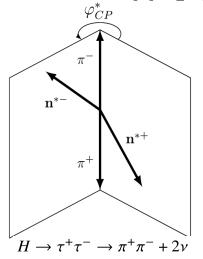

$$\mathcal{L}_{t\bar{t}H} = -\kappa_t' y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$$

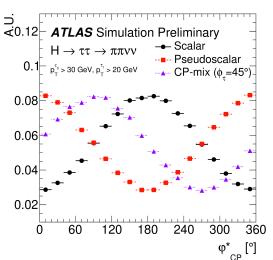

New analysis: ttH ($H\rightarrow$ bb):


- $\mu = 0.83^{+0.30}_{-0.46}$ (exp. $\mu = 1.0^{+0.25}_{-0.27}$)
- $\alpha = 11^{\circ} + 55_{-77} (exp. \alpha = 0^{\circ} + 49_{-50})$
- Pure CP-odd ($\alpha = 90^{\circ}$) disfavoured at **1.2** σ

Complementary to previous $ttH(H \rightarrow \gamma \gamma)$ analysis:

- Phys. Rev. Lett. 125 (2020) 061802
- Pure CP-odd ($\alpha = 90^{\circ}$) excluded at **3.9** σ
- Limit on |α| < 43° at 95% C.L.




R.Goncalo

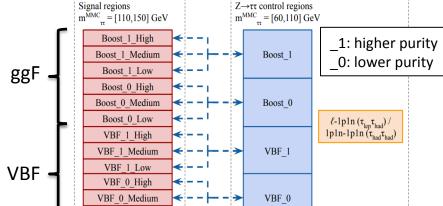
Higgs Hunting 2022

H-τ Coupling in inclusive production

Notation	Decay mode	Branching fraction		
ℓ	$\ell^{\pm}ar{ u} u$	35.2 %		
1p0n	$h^{\pm} v \; (\pi^{\pm} v)$	11.5 % (10.8 %)		
1p1n	$h^{\pm}\pi^{0}\nu\;(\pi^{\pm}\pi^{0}\nu)$	25.9 % (25.5 %)		
1pXn	$h^{\pm} \ge 2\pi^0 \nu \; (\pi^{\pm} 2\pi^0 \nu)$	10.8 % (9.3 %)		
3p0n	$3h^{\pm}v\;(3\pi^{\pm}v)$	9.8 % (9.0 %)		

 ${
m YpXn}$ Y charged pions; X neutral pions

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{v} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H$$


- Angle between τ decay planes in H rest frame sensitive to CP mixing angle φ_{τ}
- Due to neutrinos, use ϕ^{*CP} angle as proxy:
 - Acoplanarity angle between τ decay planes in Zero Momentum Frame of visible decay products
- ϕ^{*CP} reconstructed with dedicated methods for semi-exclusive decay modes
 - Total branching ratio in targeted decay modes: 68%

H-τ Coupling in inclusive production

 π^0 -related NPs

Decay channel	Decay mode combination	Method	Fraction in all τ lepton pair decays	
$ au_{ m lep} au_{ m had}$	ℓ-1p0n	IP	8.1%	•
	ℓ-1p1n	$\text{IP-}\rho$	18.3%	
	ℓ-1pXn	$\text{IP-}\rho$	7.6%	
	ℓ-3p0n	$IP-a_1$	6.9%	
$ au_{ m had} au_{ m had}$	1p0n-1p0n	IP	1.3%	•
	1p0n-1p1n	IP- $ ho$	6.0%	
	1p1n-1p1n	ρ	6.7%	
	1p0n-1pXn	IP- $ ho$	2.5%	
	1p1n-1pXn	ρ	5.6%	,
	1p1n-3p0n	ρ - a_1	5.1%	

4 Z→ττ NFs

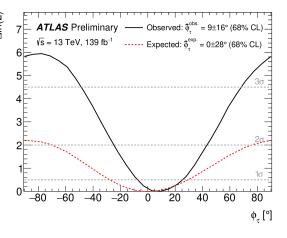
VBF 0 Low

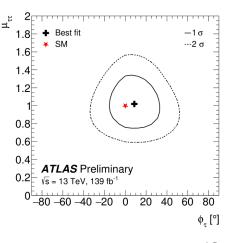
 ϕ_{τ} (POI), $\mu_{\tau\tau}$

YpXn

Y charged pions; X neutral pions

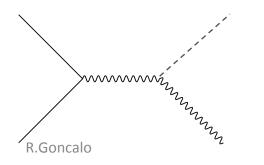

- 24 Signal categories and 10 Control Regions
 - 2 channels × VBF or Boost (ggF $p_T^H > 100$ GeV) × 2 purity regions × High/Medium/Low sensitivity
- Angle reconstruction requires excellent performance:
 - Particle flow based τ_{had} reconstruction
 - π⁰→γγ and vertex / impact parameter reconstrucion
 - Both efficiency and purity around 80% for dominant decays

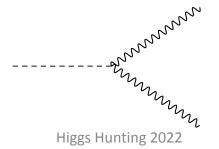

H-τ Coupling in inclusive production



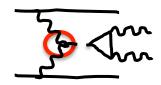
- Simultaneous fit in all regions
- Analysis leaves μ free to float agnostic with respect to rate effects
- Best fit observed: $\phi_{\tau} = 9^{\circ} \pm 16^{\circ}$ (expected: $\phi_{\tau} = 0^{\circ} \pm 28^{\circ}$)
- Pure CP-odd ($\alpha = 90^{\circ}$) disfavoured at 3.4 σ

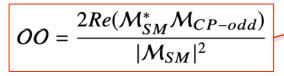
- $\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{v} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H$
- Dominant background is $Z \rightarrow \tau \tau$: constrained from Control Regions
- Statistics-dominated analysis; dominant systematic uncertainty from jet calibration

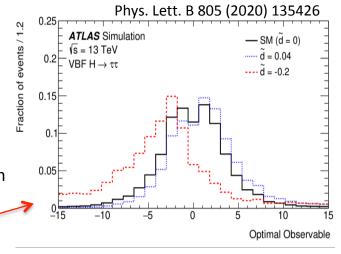




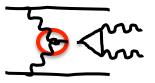
Higgs Hunting 2022


Bosonic Higgs Couplings

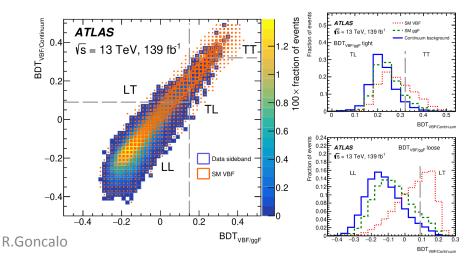

HVV Coupling in Vector Boson Fusion

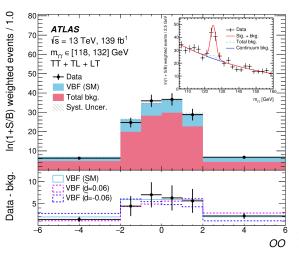


- New analysis: VBF H→γγ
- Consider effective HVV Lagrangian augmented with dimension six CP-odd operators
- Strength of CP violation in VBF matrix element can be described by a single parameter^(*) giving:


$$\mathcal{M} = \mathcal{M}_{SM} + \tilde{d} \cdot \mathcal{M}_{CP\text{-}odd}$$
$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + \tilde{d} \cdot 2 \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd}) + \tilde{d}^2 \cdot |\mathcal{M}_{CP\text{-}odd}|^2$$

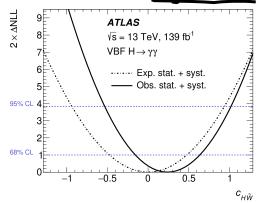
- Calculate LO matrix elements using 4-momenta of Higgs and VBF jets
 - Extract initial-state parton momentum fractions from jet momenta
- Use to calculate Optimal Observable (OO):
 - Expected to be symmetric with mean value of zero if no CP-violation

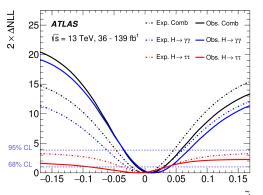




HVV Coupling in Vector Boson Fusion

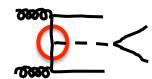
- Select events with ≥2 photons and ≥2 tag jets (energy flow)
- Increase signal purity with 2 BDTs:
 - BDT_{VBF/ggF}: separate VBF signal from gluon-fusion Higgs production
 - BDTVBF/Continuum: separate VBF signal from continuum diphoton background
- Split into signal regions using BDT output: Tight-Tight (TT); Loose-Tight (LT); Tight-Loose (TL)
- In each OO bin extract signal yield from a fit to the di-photon mass spectrum
- Fit shape of Optimal Observable to extract the coefficient of the interference term \hat{d}
 - Pure **shape analysis** signal normalisation is left floating in the fit to depend only on interference term




HVV Coupling in Vector Boson Fusion

- Result interpretation with \tilde{d} (HISZ EFT operator basis) but also $c_{H\tilde{W}}$ (Warsaw basis)
 - No improvement from using quadratic term sensitivity driven by interference
- Results are the strongest existing bounds on CP violation in HVV
- Combination with previous analysis of VBF H $\rightarrow \tau\tau$ (36 fb⁻¹)
 - Phys. Lett. B 805 (2020) 135426
 - Confidence intervals further improved

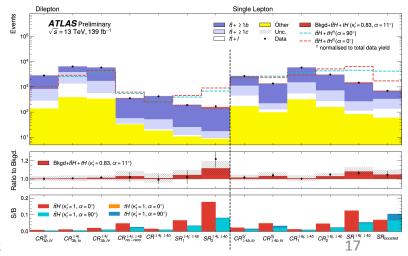
	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)	
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]	
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]	
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	_	[-0.090, 0.035]	-	
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]	
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]	
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]	


Summary & Outlook

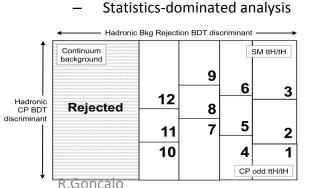
- The search for a CP structure of Higgs boson couplings is being very actively pursued in ATLAS
 - Still much space for CP odd admixture, potential source for CP violation
 - Would be clear evidence for deeper theory, beyond the SM and might address fundamental question of baryon asymmetry
- Results generally in agreement with Standard Model CP-even hypothesis
- Several Run 2 measurements using 139 fb⁻¹
 - Produced about 8 M Higgs bosons in Run 2!
 - A lot to expect from Run 3 and later!
- Today: showed only latest results in this presentation:
 - − H-top Coupling in ttH/tH production with H \rightarrow γγ, H \rightarrow bb
 - H-τ Coupling in VBF + hhF production
 - HVV Coupling in VBF , H → γγ
 - More Run 2 analyses reaching results soon

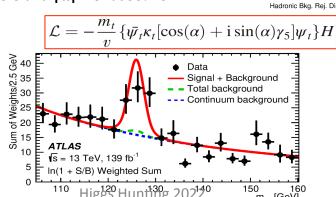
Pure CP-odd ttH coupling excluded at 3.9 σ Pure CP-odd H $\tau\tau$ coupling excluded at 3.4 σ Strongest existing bounds on \tilde{d} and $c_{H\tilde{W}}$

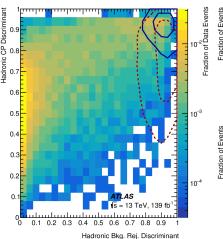
Backup slides

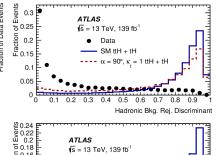


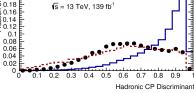
- Recent analysis with H→bb decay
 - High branching ratio, but challenging backgrounds
 - Complementary to previous $ttH(H \rightarrow \gamma \gamma)$ analysis
- Two channels:
 - Lepton+jets: target 1 semi-leptonic top decay dedicated boosted region targets p_T^H>200 GeV using large-R jets (R=1, m_i > 50 GeV)
 - Dilepton: target 2 semi-leptonic top decays
- Reconstruct top and Higgs candidates in regions
 - "Reconstruction" BDT selects jet combinations to build top and Higgs candidates
 - "Classification" BDT separates signal (trained on ttH) from background

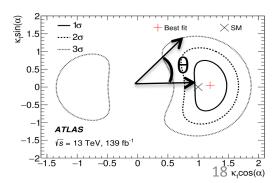

See talk by Neelam in YSF yesterday

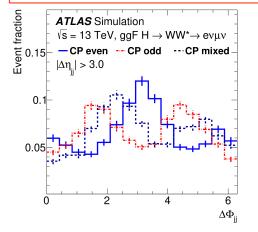

PSR: Preliminary Signal Region (before classification BDT)

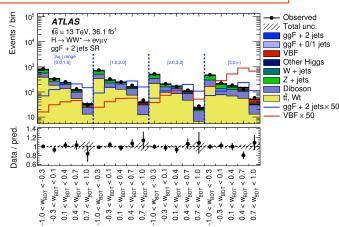

Danian	Dilepton		ℓ+ jets						
Region		$PSR^{\geq 4j, \geq 4b}$	CR ^{≥4j,3b} _{hi}	$CR_{lo}^{\geq 4j,3b}$	$CR^{3j,3b}_{hi}$	$PSR^{\geq 6j, \geq 4b}$	CR ^{5j,≥4b} _{hi}	$CR_{lo}^{5j, \geq 4b}$	$PSR_{boosted} \\$
N _{jets}		≥ 4 = 3			≥ 6	:	= 5	≥ 4	
$N_{b-{ m tag}}$	@85%		-				≥	4	
	@77%	-			-			≥ 2 [†]	
	³ @70%	≥ 4		= 3			≥ 4		-
	@60%	_	= 3	< 3	= 3	_	≥ 4	< 4	_
N _{boost}	ed cand.		-				0		≥ 1

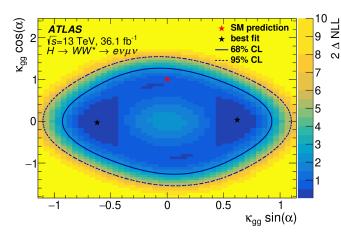



- Reconstruct Leptonic or Hadronic **yy + top** events
- Two BDTs to define 2D space:
 - Reject continuum background and
 - Enrich in CP-odd-like events (kinematic and angular variables)
- Simultaneous fit to \mathbf{m}_{vv} in 2D regions defined by BDT outputs
 - Established 5σ observation of ttH(vv)
 - Assuming SM decay get $\mu = 1.43^{+0.33}_{-0.31} (\text{stat})^{+0.17}_{-0.14} (\text{sys})$
 - Set upper limit of 12×SM for tH production
 - Pure **CP-odd** ($\alpha = 90^{\circ}$) excluded at **3.9** σ and $|\alpha|>43^{\circ}$ at 95% C.L.






Hgg Effective Coupling


- Depending on the production mode, H+2 jets probse CP violation (for ggF) or W/Z polarization (for VBF)
- In gluon fusion:
 - Effective vertex either or top Yukawa coupling or BSM particles in loop
 - Use BDT to separate signal and background (no CP sensitivity)
 - Classify H+2jets into 4x5 categories according to $|\Delta\eta|$ and BDT score

$$\mathcal{L}_{0}^{\text{loop}} = -\frac{g_{Hgg}}{4} \left(\kappa_{gg} \cos(\alpha) G_{\mu\nu}^{a} G^{a,\mu\nu} + \kappa_{gg} \sin(\alpha) G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right) H$$

$$tan(\alpha) = 0.0 \pm 0.4(stat.) \pm 0.3(syst.)$$

- Search for changed shapes of differential cross sections due to CP-odd observables (2nd term)
- Or on process **rates** (cross sections) from 3rd term but other BSM scenarios can change rates

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2 \cdot c_i \cdot \text{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-odd}})|$$
$$+ c_i^2 \cdot |\mathcal{M}_{CP\text{-odd}}|^2.$$

See e.g. arXiv:2208.02338 [hep-ex], arXiv:1008.3869v3 [hep-ph], or C.Grefe, ICHEP'22