

# Higgs Boson Searches with ATLAS

## Ricardo Gonçalo Royal Holloway, University of London On behalf of the ATLAS Collaboration



Royal Holloway University of London



Third Symposium on Prospects in the Physics of Discrete Symmetries 3-7 December 2012 – CFTP, Instituto Superior Técnico



# Outline

- After the discovery
- SM Higgs News:
  - $-H\rightarrow WW\rightarrow |v|v$
  - Η→ττ
  - H**→**bb
  - Signal strength



See ATLAS overview in Patricia Conde-Muiño's plenary talk



## The story so far... we found a Higgs-like boson! ③



CERN-PH-EP-2012-218



5% CL Limit on  $\mu$ WE HAVE DISCOVERED WHAT NOTHINGNESS IS MADE OF ...IT'S QUITE SOMETHING! do Gonçalo

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC



## **SAY GOD PARTICLE**

MUR

N TIME

UNE

GOT

## 6 months ago: ICHEP 2012

CERN-2011-002; arXiv:1101.0593



- 5σ announced on 4th of July independently by ATLAS and CMS!!  $\approx 6\sigma$  with ATLAS H->WW
- Data analysed: 4.8 fb<sup>-1</sup> @7TeV & 5.6 fb<sup>-1</sup> @8TeV
- Clear excess only in bosonic decay channels:
  - $H \rightarrow ZZ, H \rightarrow \gamma\gamma, H \rightarrow WW$
- Hints of  $H \rightarrow \tau \tau$  from LHC and evidence from Tevatron for  $H \rightarrow bb$  and hints from CMS
- Need to keep looking!
  - SM Higgs search is a great way to search new physics!
- The 6 billion Swiss Franc question (+ M&O): Is it THE Standard Model Higgs?

More details of LHC Higgs implications in Abdelhak Djouadi's talk in Monday Plenary session

**Ricardo Gonçalo** 



| al p <sub>o</sub> | 4                                                                                                                                                                                                          | ATLAS<br>√s = 7 TeV (2011), ∫Ldt = 4.8 fb <sup>-1</sup><br>√s = 8 TeV (2012), ∫Ldt = 5.9 fb <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Loci              | 1<br>10 <sup>-1</sup><br>10 <sup>-2</sup><br>10 <sup>-3</sup><br>10 <sup>-4</sup><br>10 <sup>-5</sup><br>10 <sup>-6</sup><br>10 <sup>-7</sup><br>10 <sup>-8</sup><br>10 <sup>-9</sup><br>10 <sup>-10</sup> | 07/11 EPS Prel.         Observed         Expected         12/11 CERN Prel.         Observed         Expected         Spring 2012 PRD         Observed         Expected         04/12 CERN Prel.         Observed         Expected         01 115 120 125 130 135 140 145 15         m [GeV] | 1σ<br>2σ<br>3σ<br>4σ<br>5σ<br>6σ<br>0 |
| -                 | _                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                     |

| Search channel                                         | Dataset   | m <sub>max</sub> [GeV] | $Z_l[\sigma]$ | $E(Z_l)[\sigma]$ |
|--------------------------------------------------------|-----------|------------------------|---------------|------------------|
|                                                        | 7 TeV     | 125.0                  | 2.5           | 1.6              |
| $H \to ZZ^{(*)} \to 4\ell$                             | 8 TeV     | 125.5                  | 2.6           | 2.1              |
|                                                        | 7 & 8 TeV | 125.0                  | 3.6           | 2.7              |
|                                                        | 7 TeV     | 126.0                  | 3.4           | 1.6              |
| $H \rightarrow \gamma \gamma$                          | 8 TeV     | 127.0                  | 3.2           | 1.9              |
|                                                        | 7 & 8 TeV | 126.5                  | 4.5           | 2.5              |
|                                                        | 7 TeV     | 135.0                  | 1.1           | 3.4              |
| $H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ | 8 TeV     | 120.0                  | 3.3           | 1.0              |
|                                                        | 7 & 8 TeV | 125.0                  | 2.8           | 2.3              |
|                                                        | 7 TeV     | 126.5                  | 3.6           | 3.2              |
| Combined                                               | 8 TeV     | 126.5                  | 4.9           | 3.8              |
| Combined                                               | 7 & 8 TeV | 126.5                  | 6.0           | 4.9              |

- What do we know about the new particle?
  - Mass ≈ 126 GeV
  - Electric charge = 0 (neutral final state)
- Unknown/incomplete knowledge:
  - Spin (J) = 0, 1, 2, ... ? J=1 disfavored (Landau-Yang theorem and observation in  $H \rightarrow \gamma \gamma$ )
  - Charge-conjugation, parity (CP)
  - Couplings?
- September analysis used same data as July 2012 observation paper
  - ATLAS-CONF-2012-127: <u>https://cdsweb.cern.ch/record/1476765?In=en</u>
- Fit data to estimate factors κ multiplying coupling in each SM production and decay mode

 $κ_V$  versus  $κ_F$  – assume a single  $κ_F$  factor for all fermions t, b, τ and a single factor  $κ_V$  for vector Sign comes from interference between t and W loops in H→γγ



1.2

1.4

6.4

0.6

0.8

1.6

1.8

ĸν

## Latest Results



70

# $H \rightarrow WW^{(*)} \rightarrow ev\mu v$

- 13 fb<sup>-1</sup> of 8 TeV data

   ATLAS-CONF-2012-158: http://cdsweb.cern.ch/record/1493601
- Signature:
  - Increased pileup in 2012
  - $\Rightarrow$  Degraded  $E_T^{miss}$  resolution
  - $\Rightarrow$  Poor Z/ $\gamma^{(*)}$  rejection
  - Used  $e + \mu + E_T^{miss}$  only
    - Good sensitivity
    - $Z/\gamma^{(*)}$  contamination suppressed
- Backgrounds:
  - WW
  - Top: tt+single top
  - W+jets, Z/ $\gamma^{(*)}$ , W+ $\gamma^{(*)}$
- Split into categories:
  - 0-/1-jet (<2 jets to reject top)</p>
  - $\mu e / e \mu$  (first lepton has higher  $p_T$ )

- Neutrinos => use transverse mass
  - Coarse  $m_T$  resolution
  - => broad Higgs signal
  - => Low sensitivity to Higgs mass
- Search for Higgs in  $m_T$  distribution
- Signal region blinded until backgrounds well understood in control regions:
  - Blind region:  $93.75 < m_T < 125 \text{ GeV}$



## **Event Selection:**

- $E_{T,rel}^{miss} > 25 \text{ GeV to remove } Z \rightarrow \tau \tau$  and fake E<sub>T</sub><sup>miss</sup>
- Scalar Higgs means leptons have • preferentially small separation
  - Small azimuthal separation
  - $\Rightarrow$  small invariant mass: m(II) < 50 GeV
  - $\Rightarrow$  dilepton recoiling against v's:
  - $\Delta \phi(II) < 1.8$
- Also (0-jet analysis):
  - $\Delta \phi(II, E_{T}^{miss}) > \pi/2$
  - $p_{T}(II) > 30 \text{ GeV}$
- Dedicated  $Z \rightarrow \tau \tau$  veto  $|m_{\tau \tau} m_{\tau}| > 25$  GeV in 1-jet category
- Veto events containing b-jets to reject top









# Background

#### W+jets:

- Control sample: one loosely identified lepton failing tight selection
- Transfer shape to signal region using fake factor evaluated • with inclusive di-jet data sample (50% syst. from fake factor)

#### Top:

- **Control samples:** 
  - 0 jet: loosen N<sub>iet</sub> cut, remove m(II) and  $\Delta \phi(II)$  cuts
  - 1 jet: reverse b-jet veto (I.e. require a b-tagged jet)
- Correction factors applied to MC prediction: 1.04±0.14 (stat ٠ +syst), 1.03±0.37 (stat+syst) for the 0-,1-iet analysis

#### WW:

- Remove  $\Delta \phi_{\parallel}$  cut, change m<sub> $\parallel$ </sub> cut to m<sub> $\parallel$ </sub> > 80 GeV .
- Normalization factors: 1.13±13% (0-jet), 0.84±54% (1-jet) •







## Results – I



|                  | Signal     | WW           | $WZ/ZZ/W\gamma$ | tī        | tW/tb/tqb | $Z/\gamma^*$ + jets | W + jets   | Total Bkg.   | Obs. |
|------------------|------------|--------------|-----------------|-----------|-----------|---------------------|------------|--------------|------|
| H+ 0-jet         | $45 \pm 9$ | $242 \pm 32$ | $26 \pm 4$      | $16\pm2$  | $11\pm2$  | $4\pm3$             | $34\pm17$  | $334\pm28$   | 423  |
| <i>H</i> + 1-jet | $18\pm 6$  | $40 \pm 22$  | $10 \pm 2$      | $37\pm13$ | $13\pm7$  | $2 \pm 1$           | $11 \pm 6$ | $114 \pm 18$ | 141  |

## Results – II (note: 2012 data only)

-ocal p

 $10^{\circ}$ 

10

10<sup>-2</sup> 10<sup>-3</sup>

10

10<sup>-5</sup>

 $10^{-6}$ 

 $10^{-7}$ 

ATLAS Preliminary

√s = 8 TeV: ∫Ldt = 13 fb⁻¹

120

Obs

100

 $H \rightarrow WW^{(*)} \rightarrow ev\mu v/\mu vev (0/1 jets)$ 

140

160

180

0σ 1σ

2σ

3σ

 $4\sigma$ 

 $5\sigma$ 

200

m<sub>H</sub> [GeV]

At  $m_{H}$ =125GeV:

- Signal significance: 2.6σ (expected 1.9σ)
- Signal strength (ratio to SM rate):  $\mu = 1.5 \pm 0.6$

Assuming SM ratio of production mechanisms:

 $\sigma(pp \to H) \cdot \mathcal{B}(H \to WW)_{m_H=125 \text{ GeV}} = 7.0^{+1.7}_{-1.6} \text{ (stat)}^{+1.7}_{-1.6} \text{ (syst theor)}^{+1.3}_{-1.3} \text{ (syst exp)} \pm 0.3 \text{ (lumi) pb}$ SM expectation:

 $\sigma(pp \rightarrow H) \cdot Br(H \rightarrow WW) = 4.77 \pm 0.64 \text{ (xsec)} \pm 0.2 \text{ (BR) pb}$ 



# H→ττ analysis

- Analysed 4.6fb<sup>-1</sup> (7TeV) + 13fb<sup>-1</sup> (8TeV)
  - ATLAS-CONF-2012-160: <u>https://cdsweb.cern.ch/record/1493624</u>
- Three ττ decay modes:
  - "lep-lep": ll4v; "lep-had":  $l\tau_{had}$ 3v; "had-had":  $\tau_{had}\tau_{had}$ vv (l=e/ $\mu$ )
- Three production channels:
  - gluon fusion, Vector boson fusion (VBF), WH/ZH production
- τ identification: BDT based on calorimeter and tracking
- m<sub>ττ</sub> reconstructed with Missing Mass Calculator (MMC)
  - Kinematic fit to τ,  $E_{T}^{miss}$  in  $\Delta \phi(\tau_{vis}, v)$  parameter space using  $\Delta \theta_{3D}(\tau_{vis}, v)$  template from simulation as PDF
  - Mass resolution from 13% to 20% depending on kinematics and decay mode





# H→ττ→ll4ν (lep-lep)

- BR(H→ττ→ll4ν) = 12.4%
- 5 mutually exclusive categories (all using bjet veto):
  - **1. 2-jet VBF**: P<sub>T</sub>(j) > 25 GeV, Δη(jj) > 3.0, m(jj) > 400 GeV
  - 2. Boosted: NOT 2-jet VBF, P<sub>T</sub>(ττ) > 100 GeV
  - 2-jet VH: NOT Boosted and Δη(jj) < 2.0, 30 GeV < m(jj) < 160 GeV</li>
  - **4. 1-jet**: NOT 2-jet VBF, Boosted, or 2-jet VH, and m(ττj) > 225 GeV
  - 5. **0-jet**: oppositely charged leptons, 30 < m(II) < 100 GeV,  $P_T(II) > 35 \text{ GeV}$ ,  $\Delta \phi(II) > 2.5$  (not used at 8 TeV)
- Backgrounds:
  - Dominant: Z → ττ
  - Z → ττ estimated using "embedding": replace mu in real Z→μμ events with simulated τ's of same momentum
  - $Z \rightarrow ee/\mu\mu$  backgrounds determined from data: simulations normalized to control regions
  - Fake leptons: determined from data using templates, fitted in control regions with relaxed lepton identification criteria



# $H \rightarrow \tau \tau \rightarrow I \tau_{had} 3 \nu$ (lep-had)

- BR(H $\rightarrow \tau \tau \rightarrow |\tau_{had}3) = 45.6\%$
- 4 exclusive categories (here for 8 TeV):
  - 2-jet VBF: P<sub>T</sub>(jet) > 40/30 GeV, Δη(jj) > 3.0, m(jj) > 500 GeV, m<sub>T</sub> < 50 GeV</li>
  - Boosted: NOT 2-jet VBF, and PT(ττ) > 100 GeV, mT < 50 GeV</li>
  - **3. 1-jet**: NOT 2-jet VBF or boosted, and  $P_T$  (jet) > 30 GeV,  $m_T < 50$  GeV
  - 4. **0-jet**: No jets with  $P_T(jet) > 30 \text{ GeV}$
- Backgrounds:
  - Dominant:  $Z \rightarrow \tau \tau$
  - Non-VBF categories:
    - Multijets: Estimated from same lepton sign events
  - VBF category:
    - Modeled by simulation normalized in data Z -> ee/μμ events with VBF-like cuts
    - Multi-jet and W+jet backgrounds normalised in control regions after relaxed lepton ID criteria and scaled to signal region



# $H \rightarrow \tau \tau \rightarrow \tau_{had} \tau_{had} \nu \nu$ (had-had)

- BR( $H \rightarrow \tau \tau \rightarrow \tau_{had} \tau_{had} \nu \nu$ ) = 42%
- 2 mutually exclusive categories:
  - 2-jet VBF:
  - $P_{T}(jet) > 50/30$  GeV, Δη(jj) > 2.6, m(jj) > 350 GeV, τ between "tag" jets in η
  - Boosted:
  - NOT 2-jet VBF, PT( $\tau$ ) > 70 (50) GeV for 2012 (2011),  $\Delta R(\tau_1, \tau_2) < 1.9$ .
- Backgrounds:
- Multijet background:
  - Broad track multiplicity, τ mostly 1 or 3
  - From same-sign events using 2D templates of N<sub>tracks</sub> for each τ to fit track multiplicity to data
- Dominant Z ->  $\tau\tau$  embedding technique
  - 2D template fit to track multiplicity for the two hadronic taus
  - Normalize in region  $60 < m_{\tau\tau} < 108$  GeV to exclude possible Higgs signal
- Other EWK backgrounds small taken directly from MC



# H→ττ results

- Total of 25 channels combined (13 for 7TeV, 12 for 8TeV)
- Small excess, consistent with SM Higgs hypothesis (and to lesser extent, with background-only)
  - Best-fit signal strength  $\mu$  value at 125 GeV is  $\mu$  = 0.7  $\pm$  0.7
- Combined local significance for  $m_{H} = 125 \text{ GeV}$  is  $1.1\sigma$  observed ( $1.7\sigma$  expected)
- Observed (expected) exclusion is 1.9 (1.2) times the SM predicted value ( $\mu$ =1)
- Separating out VBF categories broad excess seen in non-VBF categories



# WH/ZH, H→bb

- This analysis:  $4.7 \text{ fb}^{-1} \text{ Vs} = 7 \text{ TeV} \& 13 \text{ fb}^{-1} \text{ Vs} = 8 \text{ TeV}$ 
  - ATLAS-CONF-2012-161: <u>http://cdsweb.cern.ch/record/1493625</u>
- Analysis divided into three channels
  - <u>Two</u> (IIbb), <u>one</u> (Ivbb) or <u>zero</u> (vvbb) leptons (I= $e,\mu$ )
- Cuts common to all channels
  - Two or three jets:  $1^{st}$  jet  $p_T > 45$  & other jets > 20 GeV
  - Two b-tags: 70% efficiency per tag; mistag rate: c-jet ≈20%; light-jet ≈0.7%
- 16 categories determined by  $p_T^V$  and  $N_{leptons}$ :
  - 0-lepton:  $E_T^{miss}$  [120-160] [160-200] [>200] GeV x (2 or 3 jets)
  - 1 & 2 lep:  $p_T^{W/Z}$  [0-50] [50,100] [100-150] [150-200] [>200] GeV  $\overline{q}$

# $q \qquad W^{+} \qquad H^{0}$ $q \qquad Z^{0} \qquad Z^{0} \qquad H^{0}$ $q \qquad Z^{0} \qquad H^{0}$

## **Two lepton**

## $ZH \rightarrow IIbb$

- No additional leptons
- $E_T^{miss} < 60 \text{ GeV}$
- 83 < m<sub>II</sub> < 99 GeV

## One lepton

- WH  $\rightarrow$  Ivbb
- No additional leptons
- $E_{T}^{miss} > 25 \text{ GeV}$
- $40 < M_T^W < 120 \text{ GeV}$

## Zero lepton

## $ZH \rightarrow vvbb$

- No leptons
- $E_T^{miss} > 120 \text{ GeV}$
- E<sub>T</sub><sup>miss</sup> trigger

# Backgrounds and MC

Signal **Multijet** Diboson tī W+I W+c W+b Z+I Z+c

Z+b

- Data 2012

- WH/ZH Pythia6/8 Signal: WW/WZ/ZZ Herwig Diboson
- Multijet: Data driven
- ttbar: MC@NLO
- Acer/MC@NLO Single Top
- Powheg W+b
- W+c/light-jets Alpgen
- Z+ b/c/light-jets Alpgen/Sherpa

- Background shapes from ٠ simulation and normalised using flavour & data fit
- Multi-jet bkg determined by datadriven techniques
- WZ( $Z \rightarrow bb$ ) & ZZ( $Z \rightarrow bb$ ) resonant ٠ bkg normalisation and shape from simulation



DISCRETE 2012 - Lisbon - December 2012

# WH/ZH, $H \rightarrow bb$ results

Events/10 GeV

95% C.L. limit on  $\sigma/\sigma_{SM}$ 

2

110

300

200

100

-100

400 - ATLAS Preliminary

0,1,2 lepton

50

ATLAS Preliminary

115

120

± **1**σ + **2**σ 100

150

 $L dt = 13.0 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV}$ 

 $L dt = 4.7 \text{ fb}^{-1}$ ,  $\sqrt{s} = 7 \text{ TeV}$ 

## **Dibosons:**

- WZ & ZZ production with  $Z \rightarrow bb$ 
  - Similar signature, but 5 times larger crosssection
  - Clear excess is observed in data at expected mass
- Perform separate fit for  $Z \rightarrow bb$  to validate  $H \rightarrow bb$  analysis:
  - $-\sigma/\sigma_{SM} = \mu_D = 1.05 \pm 0.32$
  - Significance =  $4.0 \sigma$
  - In agreement with Standard Model!

## WH/ZH, $H \rightarrow bb$ :

- Some excess in 2012 data but deficit from 2011 re-analysis
- **Results:** 
  - Limit: 1.8 (1.9)
  - p0 value 0.64 (0.15)
  - $-\sigma/\sigma_{SM} = \mu = -0.4 \pm 0.7(\text{stat.}) \pm 0.8(\text{syst.})$
  - Exclusion at  $m_{H} \approx 110 \text{ GeV}$

## Note: CMS observed broad 2.2 $\sigma$ excess



WZ+ZZ

WH 125GeV

ZH 125GeV

- Data - Bkgd

# ttH, H->bb Analysis

- Challenging analysis!
  - High combinatorial background
  - Small signal cross section
  - Important for top Yukawa coupling!
- Data: 4.7fb<sup>-1</sup> at Vs = 7 TeV (2011)
  - ATLAS-CONF-2012-135: <u>https://cdsweb.cern.ch/record/1478423</u>
- 9 categories based on jet & b-tag multiplicity
  - Signal enriched: (5 jets,  $\geq$ 6 jets) x (3, $\geq$ 4 b-tag)
  - Other categories are background enriched to constrain those backgrounds
- Final discriminants
  - m<sub>bb</sub> for ≥6 jets and (≥3 b-tag) categories
    - Do kinematic fit to reconstruct tt+H→bb
  - $H_T^{had}$  ( $\sum p_{T,jet}$ ) for other categories

|         | 0 b-tags               | 1 b-tag                | 2 b-tags               | 3 b-tags               | ≥4 b-tags              |
|---------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 4 jets  | $\mathbf{H}_{T}^{had}$ | $\mathbf{H}_{T}^{had}$ |                        | $\mathbf{H}_{T}^{had}$ |                        |
| 5 jets  | $\mathbf{H}_{T}^{had}$ | $H_{T}^{had}$          | $\mathbf{H}_{T}^{had}$ | $\mathbf{H}_{T}^{had}$ | $\mathbf{H}_{T}^{had}$ |
| ≥6 jets | $\mathbf{H}_{T}^{had}$ | $\mathbf{H}_{T}^{had}$ | $\mathbf{H}_{T}^{had}$ | m <sub>bb</sub>        | m <sub>bb</sub>        |

- Backgrounds constrained in limits fit by profiling nuisance parameters
- To check fit control regions are used



# ttH, H->bb Analysis



- Poor theory constraints on ttbb/ttjj ratio – interaction with theory community important!
- Large impact of systematic uncertainties
- …but we can do it! <sup>(C)</sup>

| m <sub>H</sub> (GeV) | Obs.<br>limit | Exp.<br>limit | Stat<br>only |
|----------------------|---------------|---------------|--------------|
| 110                  | 7.0           | 6.0           | 3.5          |
| 115                  | 8.7           | 6.9           | 4.0          |
| 120                  | 10.4          | 8.5           | 4.9          |
| 125                  | 13.1          | 10.5          | 6.1          |
| 130                  | 16.4          | 13.0          | 7.8          |
| 140                  | 33.0          | 23.2          | 14.2         |

## Updated signal strength

- Previous combined signal strength result:  $\mu = 1.4 \pm 0.3$ 
  - 2011 analyses of  $\tau\tau$  and bb, July analyses for  $\gamma\gamma,$  4-lepton, and WW
- New result using analysis shown today:  $\mu = 1.3 \pm 0.3$ 
  - Compatibility with SM  $\mu$ =1 with observed measurement is 23%.





# Summary & Outlook

New boson looks SM-like so far...

## Wishlist for 2011+2012 data

- $\approx 25 30 \text{ fb}^{-1}/\text{experiment}$
- Clear observation of H→ττ and H→bb sensitive to fermion and lepton couplings
- Sensitivity to Higgs spin and CP!

## Beyond 2014... increase statistics!

- Essential to observe a signal in remaining SM Higgs decay modes!
- Measure precisely new particle properties
  - ATL-PHYS-PUB-2012-004: <u>http://cdsweb.cern.ch/record/1484890</u>
  - Couplings: 20 30% with 300fb<sup>-1</sup> & 5 25% with 3ab<sup>-1</sup> at 14 TeV
  - Spin/CP determined with >  $5\sigma$  with 300 fb<sup>-1</sup>
  - $3\sigma$  Self-coupling observation with  $3ab^{-1}$



**ATLAS** Preliminary (Simulation)

# Bonus slides

## PDG 2009 Review





## Muon Spectrometer: $|\eta| < 2.7$ Air-core toroids and gas-based muon chambers $\sigma/p_T = 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)

**EM calorimeter:**  $|\eta| < 3.2$ Pb-LAr Accordion  $\sigma/E = 10\%/\sqrt{E \oplus 0.7\%}$ 

> Hadronic calorimeter:  $|\eta| < 1.7$  Fe/scintillator  $1.3 < |\eta| < 4.9$  Cu/W-Lar  $\sigma/E_{iet} = 50\%/\sqrt{E \oplus 3\%}$

•L = 44 m, Ø ≈ 25 m
•7000 tonnes
•≈10<sup>8</sup> electronic channels
•3-level trigger reducing
40 MHz collision rate to
200 Hz of events to tape

Inner Tracker:  $|\eta| < 2.5$ , B=2T Si pixels/strips and Trans. Rad. Det.  $\sigma/p_T = 0.05\% p_T (GeV) \oplus 1\%$ 

Ricardo Gonçalo

JINST (2008) 3 S08003

DISCRETE 2012 - Lisbon - December 2012



# $H \rightarrow WW^{(*)} \rightarrow ev\mu v$ Event Selection

- Exactly one e and one  $\mu$ 
  - Of opposite charge
  - p<sub>T1</sub> > 25, p<sub>T2</sub> > 15 GeV;
  - $|\eta| < 2.5 (\mu) / < 2.47 (e)$
  - Isolated (calorimeter & tracking)
- 0 or 1 Jet (anti-k<sub>t</sub>, R=0.4):
  - |η| < 2.5: p<sub>T</sub> > 25 GeV
  - $-2.5 < |\eta| < 4.5$ : p<sub>T</sub> > 15 GeV
  - >50% Σp<sub>T</sub><sup>trk</sup> from primary vertex
- Veto events containing btagged jets (ε≈85%)

- 0-jet category:
  - $\Delta \phi(II, E_T^{miss}) > \pi/2$
  - $p_{T}(II) > 30 \text{ GeV}$
  - m(ll) < 50 GeV
  - $\Delta \phi(II) < 1.8$
- 1-jet category:
  - $Z \rightarrow \tau \tau$  veto  $|m_{\tau \tau} m_z| > 25$ GeV
- m(ll) < 50 GeV, Δφ(ll) < 1.8

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - (\mathbf{P}_{\rm T}^{\ell\ell} + \mathbf{P}_{\rm T}^{\rm miss})^2}$$

# $H \rightarrow WW^{(*)} \rightarrow ev\mu v$

## Uncertainties on expected yields

| Source (0-jet)                          | Signal (%) | Bkg. (%)   |
|-----------------------------------------|------------|------------|
| Inclusive ggF signal ren./fact. scale   | 13         | <u>1</u> 0 |
| 1-jet incl. ggF signal ren./fact. scale | 10         | -10        |
| PDF model (signal only)                 | 8          | -          |
| QCD scale (acceptance)                  | 4          | -          |
| Jet energy scale and resolution         | 4          | 2          |
| W+jets fake factor                      | 2-1        | 5          |
| WW theoretical model                    |            | 5          |
| Source (1-jet)                          | Signal (%) | Bkg. (%)   |
| 1-jet incl. ggF signal ren./fact. scale | 26         | -3         |
| 2-jet incl. ggF signal ren./fact. scale | 15         | -          |
| Parton shower/ U.E. model (signal only) | 10         | -          |
| b-tagging efficiency                    |            | 11         |
| PDF model (signal only)                 | 7          |            |
| QCD scale (acceptance)                  | 4          | 2          |
| Jet energy scale and resolution         | 1          | 3          |
| W+jets fake factor                      |            | 5          |
| WW theoretical model                    | -          | 3          |



#### Uncertainties on $\mu$

| 26           | -  | Source                           | Upward uncertainty (%) | Downward uncertainty (%) |
|--------------|----|----------------------------------|------------------------|--------------------------|
| 10           |    | Statistical uncertainty          | +23                    | -22                      |
| 10           |    | Signal yield $(\sigma \cdot Br)$ | +14                    | -9                       |
| -            | 11 | Signal acceptance                | +9                     | -6                       |
| 7            | -  | WW normalisation, theory         | +20                    | -20                      |
| 4            | 2  | Other backgrounds, theory        | +9                     | -9                       |
| 1            | 3  | W+jets fake rate                 | +11                    | -12                      |
| 1            | 5  | Experimental + bkg subtraction   | +14                    | -11                      |
| -            | 5  | MC statistics                    | +8                     | -8                       |
| 1 <u>-</u> 1 | 3  | Total uncertainty                | +41                    | -38                      |

$$\sigma(pp \to H) \cdot \mathcal{B}(H \to WW)_{m_H=125 \text{ GeV}} = 7.0^{+1.7}_{-1.6} \text{ (stat)}^{+1.7}_{-1.6} \text{ (syst theor)}^{+1.3}_{-1.3} \text{ (syst exp)} \pm 0.3 \text{ (lumi) pb}$$

 $\mu = 1.48^{+0.35}_{-0.33} \text{ (stat)}^{+0.41}_{-0.36} \text{ (syst theor)} ^{+0.28}_{-0.27} \text{ (syst exp)} \pm 0.05 \text{ (lumi)}$ 

# Η→ττ

- Systematic uncertainties for  $Z \rightarrow \tau \tau$  background and Signal.
- Dominant systematics are Embedding, Tau Energy Scale and Jet Energy Scale. Both Shape and Normalization variation are taken into account.

| Uncertainty        | $H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$ | $H \rightarrow \tau_{\rm lep} \tau_{\rm had}$ | $H \rightarrow \tau_{\rm had} \tau_{\rm had}$ |  |  |  |
|--------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|
|                    | $Z \to \tau^+ \tau^-$                         |                                               |                                               |  |  |  |
| Embedding          | 1-4% (S)                                      | 2–4% (S)                                      | 1–4% (S)                                      |  |  |  |
| Tau Energy Scale   | -                                             | 4–15% (S)                                     | 3–8% (S)                                      |  |  |  |
| Tau Identification | _                                             | 4–5%                                          | 1-2%                                          |  |  |  |
| Trigger Efficiency | 2-4%                                          | 2–5%                                          | 2-4%                                          |  |  |  |
| Normalisation      | 4.7%                                          | 4% (non-VBF), 16% (VBF)                       | 9-10%                                         |  |  |  |
|                    |                                               | Signal                                        |                                               |  |  |  |
| Jet Energy Scale   | 1.0–5.0% (S)                                  | 3–9% (S)                                      | 2–4% (S)                                      |  |  |  |
| Tau Energy Scale   | -                                             | 2–9% (S)                                      | 4–6% (S)                                      |  |  |  |
| Tau Identification | -                                             | 4–5%                                          | 10%                                           |  |  |  |
| Theory             | 7.9–28%                                       | 18-23%                                        | 3-20%                                         |  |  |  |
| Trigger Efficiency | small                                         | small                                         | 5%                                            |  |  |  |

# H→ττ→lep-lep Selection

| 2-jet VBF                                                                                                  | boosted                                         | 2-jet VH                                             | 1-jet                              |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------|--|--|
| Pre-selection: exactly two leptons with opposite charges                                                   |                                                 |                                                      |                                    |  |  |
| 30                                                                                                         | $\text{GeV} < m_{\ell\ell} < 75 \text{ GeV} ($  | $30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$   |                                    |  |  |
| for same-fl                                                                                                | avor (different-flavor) le                      | eptons, and $p_{T,\ell_1} + p_{T,\ell_2} > 3$ .      | 5 GeV                              |  |  |
| At least                                                                                                   | one jet with $p_T > 40$ Ge                      | eV $( JVF_{jet}  > 0.5 \text{ if }  \eta_{jet}  < 2$ | 2.4)                               |  |  |
| $E_{\rm T}^{\rm miss} > 40 { m Ge}$                                                                        | $eV(E_{\rm T}^{\rm miss} > 20 \text{ GeV})$ for | r same-flavor (different-flavo                       | r) leptons                         |  |  |
|                                                                                                            | 0.1 < 2                                         | $x_{1,2} < 1$                                        |                                    |  |  |
|                                                                                                            | $0.5 < \Delta q$                                | $b_{\ell\ell} < 2.5$                                 |                                    |  |  |
| $n_{\rm T} = 25  {\rm GeV}  ({\rm IVF})$                                                                   | excluding 2 jet VBE                             | $n_{\rm m} = 25  {\rm GeV}  ({\rm IVF})$             | excluding 2-jet VBF,               |  |  |
| $p_{T,j2} > 25 \text{ GeV}(JVT)$                                                                           | excluding 2-jet v Br                            | $p_{1,j2} > 25$ GeV (5 V1)                           | boosted and 2-jet VH               |  |  |
| $\Delta \eta_{jj} > 3.0$                                                                                   | $p_{T,\tau\tau} > 100 \text{ GeV}$              | excluding boosted                                    | $m_{\tau\tau j} > 225 \text{ GeV}$ |  |  |
| $m_{jj} > 400 \text{ GeV}$                                                                                 | b-tagged jet veto                               | $\Delta \eta_{jj} < 2.0$                             | <i>b</i> -tagged jet veto          |  |  |
| <i>b</i> -tagged jet veto                                                                                  |                                                 | $30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$          |                                    |  |  |
| Lepton centrality and CJV                                                                                  |                                                 | <i>b</i> -tagged jet veto                            |                                    |  |  |
| 0-jet                                                                                                      |                                                 |                                                      |                                    |  |  |
| Pre-selection: exactly two leptons with opposite charges                                                   |                                                 |                                                      |                                    |  |  |
| Different-flavor leptons with 30 GeV $< m_{\ell\ell} < 100$ GeV and $p_{T,\ell 1} + p_{T,\ell 2} > 35$ GeV |                                                 |                                                      |                                    |  |  |
| $\Delta \phi_{\ell\ell} > 2.5$                                                                             |                                                 |                                                      |                                    |  |  |
|                                                                                                            | b-tagged                                        | l jet veto                                           |                                    |  |  |

# $H \rightarrow \tau \tau \rightarrow lep-had selection$

|           | 7 TeV                                                                        |                                                                  | 8 TeV                                                                       |                                                                             |  |
|-----------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|           | VBF Category                                                                 | Boosted Category                                                 | VBF Category                                                                | Boosted Category                                                            |  |
|           | $\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{~GeV}$ | -                                                                | $\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$ | $\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$ |  |
|           | $\triangleright E_{\rm T}^{\rm miss} > 20  {\rm GeV}$                        | $\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$              | $\triangleright E_{\rm T}^{\rm miss} > 20  {\rm GeV}$                       | $\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$                         |  |
|           | $\triangleright \geq 2$ jets                                                 | $\triangleright p_{\mathrm{T}}^{\mathrm{H}} > 100 \mathrm{~GeV}$ | $\triangleright \geq 2$ jets                                                | $\triangleright p_{\mathrm{T}}^{\mathrm{H}} > 100 \mathrm{GeV}$             |  |
|           | ▶ $p_{\rm T}^{j1}, p_{\rm T}^{j2} > 40 \text{ GeV}$                          | $ 0 < x_1 < 1 $                                                  | ▶ $p_{\rm T}^{j1} > 40, p_{\rm T}^{j2} > 30 {\rm GeV}$                      | $ 0 < x_1 < 1 $                                                             |  |
|           | $\triangleright \Delta \eta_{jj} > 3.0$                                      | ▶ 0.2 < <i>x</i> <sub>2</sub> < 1.2                              | $\triangleright \Delta \eta_{jj} > 3.0$                                     | ▶ 0.2 < <i>x</i> <sub>2</sub> < 1.2                                         |  |
|           | $\triangleright m_{jj} > 500 \text{ GeV}$                                    | ► Fails VBF                                                      | $> m_{jj} > 500 \text{ GeV}$                                                | ▹ Fails VBF                                                                 |  |
|           | ▷ centrality req.                                                            | -                                                                | ▷ centrality req.                                                           | -                                                                           |  |
|           | $\triangleright \eta_{j1} \times \eta_{j2} < 0$                              | -                                                                | $\triangleright \eta_{j1} \times \eta_{j2} < 0$                             | -                                                                           |  |
|           | ▶ $p_{\rm T}$ Total < 40 GeV                                                 | -                                                                | $\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 30 \mathrm{GeV}$          | -                                                                           |  |
|           | _                                                                            | -                                                                | $\triangleright p_{\mathrm{T}}^{\ell} > 26  \mathrm{GeV}$                   | -                                                                           |  |
|           | • $m_{\rm T} < 50 { m GeV}$                                                  | • <i>m</i> <sub>T</sub> <50 GeV                                  | • $m_{\rm T}$ <50 GeV                                                       | • $m_{\rm T}$ <50 GeV                                                       |  |
|           | • $\Delta(\Delta R) < 0.8$                                                   | • $\Delta(\Delta R) < 0.8$                                       | • $\Delta(\Delta R) < 0.8$                                                  | • $\Delta(\Delta R) < 0.8$                                                  |  |
|           | • $\sum \Delta \phi < 3.5$                                                   | • $\sum \Delta \phi < 1.6$                                       | • $\sum \Delta \phi < 2.8$                                                  | -                                                                           |  |
|           | _                                                                            | _                                                                | • <i>b</i> -tagged jet veto                                                 | <ul> <li><i>b</i>-tagged jet veto</li> </ul>                                |  |
|           | 1 Jet Category                                                               | 0 Jet Category                                                   | 1 Jet Category                                                              | 0 Jet Category                                                              |  |
|           | ▶ ≥ 1 jet, $p_{\rm T}$ >25 GeV                                               | ▷ 0 jets $p_{\rm T}$ >25 GeV                                     | $\triangleright \ge 1$ jet, $p_{\rm T} > 30$ GeV                            | $\triangleright 0$ jets $p_{\rm T} > 30$ GeV                                |  |
|           | $\triangleright E_{\rm T}^{\rm miss} > 20  {\rm GeV}$                        | $\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$              | $\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$                        | $\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$                         |  |
|           | ▹ Fails VBF, Boosted                                                         | Fails Boosted                                                    | ▹ Fails VBF, Boosted                                                        | Fails Boosted                                                               |  |
|           | • $m_{\rm T}$ <50 GeV                                                        | • <i>m</i> <sub>T</sub> <30 GeV                                  | • $m_{\rm T} < 50 {\rm ~GeV}$                                               | • <i>m</i> <sub>T</sub> <30 GeV                                             |  |
|           | • $\Delta(\Delta R) < 0.6$                                                   | • $\Delta(\Delta R) < 0.5$                                       | • $\Delta(\Delta R) < 0.6$                                                  | • $\Delta(\Delta R) < 0.5$                                                  |  |
|           | • $\sum \Delta \phi < 3.5$                                                   | • $\sum \Delta \phi < 3.5$                                       | • $\sum \Delta \phi < 3.5$                                                  | • $\sum \Delta \phi < 3.5$                                                  |  |
| Ricardo G | _                                                                            | • $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$            | _                                                                           | • $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$                       |  |

33

# $H \rightarrow \tau \tau \rightarrow had-had selection$

| Cut          | Description                                                                                                                                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preselection | No muons or electrons in the event                                                                                                                                                        |
|              | Exactly 2 medium $\tau_{had}$ candidates matched with the trigger objects                                                                                                                 |
|              | At least 1 of the $\tau_{had}$ candidates identified as tight                                                                                                                             |
|              | Both $\tau_{had}$ candidates are from the same primary vertex                                                                                                                             |
|              | Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta  < 2.5$                                                                                   |
|              | $\tau_{had}$ candidates have opposite charge and 1- or 3-tracks                                                                                                                           |
|              | $0.8 < \Delta R(\tau_1, \tau_2) < 2.8$                                                                                                                                                    |
|              | $\Delta\eta(\tau,\tau) < 1.5$                                                                                                                                                             |
|              | if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$   |
| VBF          | At least two tagging jets, $j_1$ , $j_2$ , leading tagging jet with $p_T > 50$ GeV                                                                                                        |
|              | $\eta_{j1} \times \eta_{j2} < 0, \ \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV                                                                                          |
|              | $\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$                                                                                                  |
|              | $E_{\rm T}^{\rm miss} > 20 {\rm GeV}$                                                                                                                                                     |
| Boosted      | Fails VBF                                                                                                                                                                                 |
|              | at least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset                                                                                                                  |
|              | $\Delta R(\tau_1, \tau_2) < 1.9$                                                                                                                                                          |
|              | $E_{\rm T}^{\rm miss} > 20 {\rm GeV}$                                                                                                                                                     |
|              | if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$ . |

-----

# Details of VH, $H \rightarrow bb$ event selection

• Basic event selection:

| Object                        | 0-lepton                                                                                      | 1-lepton                      | 2-lepton                              |
|-------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|
| Loptons                       | 0 loose leptons                                                                               | 1 tight lepton                | 1 medium lepton                       |
| Leptons                       |                                                                                               | + 0 loose leptons             | + 1 loose lepton                      |
|                               | 2 <i>b</i> -tags                                                                              | 2 <i>b</i> -tags              | 2 <i>b</i> -tags                      |
| Late                          | $p_{\rm T}^1 > 45 { m ~GeV}$                                                                  | $p_{\rm T}^1 > 45 { m ~GeV}$  | $p_{\rm T}^1 > 45 { m ~GeV}$          |
| Jets                          | $p_{\rm T}^2 > 20 {\rm ~GeV}$                                                                 | $p_{\rm T}^2 > 20 { m ~GeV}$  | $p_{\rm T}^2 > 20 { m ~GeV}$          |
|                               | $+ \leq 1$ extra jets                                                                         | + 0 extra jets                | -                                     |
| Missing Fr                    | $E_{\rm T}^{\rm miss} > 120 { m ~GeV}$                                                        | -                             | $E_{\rm T}^{\rm miss} < 60 { m ~GeV}$ |
| wissing <i>L</i> <sub>T</sub> | $p_{\rm T}^{\rm miss} > 30 {\rm ~GeV}$                                                        |                               |                                       |
|                               | $\Delta \phi(\tilde{E}_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$ |                               |                                       |
|                               | $\operatorname{Min}[\Delta \hat{\phi}(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})] > 1.5$   |                               |                                       |
|                               | $\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$                                           |                               |                                       |
| Vector Boson                  | -                                                                                             | $m_{\rm T}^W < 120 { m ~GeV}$ | $83 < m_{\ell\ell} < 99 \text{ GeV}$  |

 Tuned kinematic cuts to optimise sensitivity in each category:

| 0-lepton channel                   |      |        |         |         |      |  |  |  |  |  |  |
|------------------------------------|------|--------|---------|---------|------|--|--|--|--|--|--|
| $E_{\rm T}^{\rm miss}$ (GeV)       | 120  | 0-160  | 160-    | >200    |      |  |  |  |  |  |  |
| $\Delta R(b, \bar{b})$             | 0.7  | 7-1.9  | 0.7     | <1.5    |      |  |  |  |  |  |  |
| 1-lepton channel                   |      |        |         |         |      |  |  |  |  |  |  |
| $p_{\rm T}^W ({\rm GeV})$          | 0-50 | 50-100 | 100-150 | 150-200 | >200 |  |  |  |  |  |  |
| $\Delta R(b, \bar{b})$             |      | >0.7   | 7       | 0.7-1.6 | <1.4 |  |  |  |  |  |  |
| $E_{\rm T}^{\rm miss}~({\rm GeV})$ |      | > 50   |         |         |      |  |  |  |  |  |  |
| $m_{\rm T}^W({\rm GeV})$           |      |        |         |         |      |  |  |  |  |  |  |
| 2-lepton channel                   |      |        |         |         |      |  |  |  |  |  |  |
| $p_{\rm T}^{\rm Z}({\rm GeV})$     | 0-50 | 50-100 | 100-150 | 150-200 | >200 |  |  |  |  |  |  |
| $\Delta R(b, \bar{b})$             |      | >0.7   | 7       | 0.7-1.8 | <1.6 |  |  |  |  |  |  |

# QCD/multi-jet modelling

- 0 lepton
  - Use ABCD method
  - Regions defined by relative directions of MET/ jets/pTmiss
  - Found to be small (~1%)
- 1 lepton
  - MET template by reverse isolation cuts
  - Normalised by fitting each WpT bin
  - Electroweak contamination removed from template
- 2 lepton
  - Template: reverse isolation/quality selection
  - Found to be small (<1%)</li>

ABCD method

Use lack of correlation  $\Delta \phi$  (Etmiss,pTmiss) vs

## Δφ (Etmiss,jets)

for multi-jet background estimation in signal region



# Maximum likelihood Fits

- First perform the flavour ML fit
  - Determined V+light and V+c scale factors
  - Z+c factor changes due to MC treatment
- Improved understanding of bkg V pT

|              | $\sqrt{s} = 7 \text{ TeV}$ | $\sqrt{s} = 8 \text{ TeV}$ |
|--------------|----------------------------|----------------------------|
| Z + c-jet    | $1.99 \pm 0.51$            | $0.71 \pm 0.23$            |
| Z+ light jet | $0.91 \pm 0.12$            | $0.98 \pm 0.11$            |
| W + c-jet    | $1.04 \pm 0.23$            | $1.04 \pm 0.24$            |
| W+ light jet | $1.03 \pm 0.08$            | $1.01 \pm 0.14$            |

Using the high statistics at 8 TeV we discovered that the V pT spectrum

falls more rapidly in data than expected from MC  $\ensuremath{\textcircled{\odot}}$ 

- W + jets and Z + jets: 5-10 % correction required
- Top background: 15 % correction required
- Using corrections & scale factors get good MC/data agreement
- Binned profile likelihood fit to 16 signal regions & top control regions
  - W+b, Z+b and top bkg are floated
  - Rescaling factors from the fit
- $L(\mu, \theta)$  fit to signal strength  $\mu$  (=  $\sigma/\sigma_{SM}$ )
- Nuisance parameters θ for systematics
- CL<sub>s</sub> used to determine limits

|           | $\sqrt{s} = 7 \text{ TeV}$ | $\sqrt{s} = 8 \text{ TeV}$ |
|-----------|----------------------------|----------------------------|
| Тор       | $1.10\pm0.14$              | $1.29 \pm 0.16$            |
| Z + b-jet | $1.22\pm0.20$              | $1.11 \pm 0.15$            |
| W + b-jet | $1.19\pm0.23$              | $0.79\pm0.20$              |

# **Background estimation**

- Most background shapes are taken from simulation and normalised using data control regions
- Multi-jet background determined entirely from data-driven techniques
- WZ(bb) & ZZ(bb) resonant bkg normalisation and shape from simulation



# Systematic Uncertainties

## • Experimental uncertainties

## **b-tagging** and **jet energy** dominate

- Jets: components (7 JES, 1 p<sub>T</sub><sup>Reco</sup>, resol.)
- $E_T^{miss}$  scale and resolution of soft components. Data/MC for  $E_T^{miss}$  trigger
- bTagging light, c & 6  $p_T$  bins for b-jet efficiency
- Lepton energy, resolution, efficiency
- Multijet / diboson / Luminosity / MC stats

## • Theoretical uncertainties

- BR(H→bb) @ mH=125 GeV (3.3%)
- W/Z+jet m<sub>bb</sub> (20%) and V pT (5-10%)
- Single top/top normalisation (15%)
- W+c/W+jets (30%), Z+c/Z+jets (30%)
- Diboson (11%)

## Uncertainties given are after full cuts (pre-fit)

| Systematic [%]                      | 0 lepton | 1 lepton | 2 leptons |
|-------------------------------------|----------|----------|-----------|
| b-tagging                           | 6.5      | 6.0      | 6.9       |
| <i>c</i> -tagging                   | 7.3      | 6.4      | 3.6       |
| light tagging                       | 2.1      | 2.2      | 2.8       |
| Jet/Pile-up/ $E_{\rm T}^{\rm miss}$ | 20       | 7.0      | 5.4       |
| Lepton                              | 0.0      | 2.1      | 1.8       |
| Top modelling                       | 2.7      | 4.1      | 0.5       |
| W modelling                         | 1.8      | 5.4      | 0.0       |
| Z modelling                         | 2.8      | 0.1      | 4.7       |
| Diboson                             | 0.8      | 0.3      | 0.5       |
| Multijet                            | 0.6      | 2.6      | 0.0       |
| Luminosity                          | 3.6      | 3.6      | 3.6       |
| Statistical                         | 8.3      | 3.6      | 6.6       |

#### Background systematics

| Systematic [%]                      | 0 lepton |     | 1 lepton | 2 leptons |
|-------------------------------------|----------|-----|----------|-----------|
|                                     | ZH       | WH  | WH       | ZH        |
| <i>b</i> -tagging                   | 8.9      | 9.0 | 8.8      | 8.6       |
| <i>c</i> -tagging                   | 0.1      | 0.1 | 0.0      | 0.1       |
| light tagging                       | 0.0      | 0.0 | 0.1      | 0.3       |
| Jet/Pile-up/ $E_{\rm T}^{\rm miss}$ | 19       | 25  | 6.7      | 4.2       |
| Lepton                              | 0.0      | 0.0 | 2.1      | 1.8       |
| $H \rightarrow bb \text{ BR}$       | 3.3      | 3.3 | 3.3      | 3.3       |
| $VH p_T$ -dependence                | 5.3      | 8.1 | 7.6      | 5.0       |
| VH theory PDF                       | 3.5      | 3.5 | 3.5      | 3.5       |
| VH theory scale                     | 1.6      | 0.4 | 0.4      | 1.6       |
| Luminosity                          | 3.6      | 3.6 | 3.6      | 3.6       |

## Signal systematics

Ricardo Gonçalo

## VH, H->bb Results: Exp. S+B & Obs. events

#### 8TeV analysis:

|             | 0-lepton, 2 jet 0-lepton, 3 jet |         |      |         |         | 1-lepton                 |       |        |         | 2-lepton                       |       |      |        |         |         |      |
|-------------|---------------------------------|---------|------|---------|---------|--------------------------|-------|--------|---------|--------------------------------|-------|------|--------|---------|---------|------|
| Bin         | $E_{\rm T}^{\rm miss}$ [GeV]    |         |      |         |         | $p_{\rm T}^W[{\rm GeV}]$ |       |        |         | $p_{\rm T}^{\rm Z}[{\rm GeV}]$ |       |      |        |         |         |      |
|             | 120-160                         | 160-200 | >200 | 120-160 | 160-200 | >200                     | 0-50  | 50-100 | 100-150 | 150-200                        | > 200 | 0-50 | 50-100 | 100-150 | 150-200 | >200 |
| ZH          | 2.9                             | 2.1     | 2.6  | 0.8     | 0.8     | 1.1                      | 0.3   | 0.4    | 0.1     | 0.0                            | 0.0   | 4.7  | 6.8    | 4.0     | 1.5     | 1.4  |
| WH          | 0.8                             | 0.4     | 0.4  | 0.2     | 0.2     | 0.2                      | 10.6  | 12.9   | 7.5     | 3.6                            | 3.6   | 0.0  | 0.0    | 0.0     | 0.0     | 0.0  |
| Тор         | 89                              | 25      | 8    | 92      | 25      | 10                       | 1440  | 2276   | 1120    | 147                            | 43    | 230  | 310    | 84      | 3       | 0    |
| W + c,light | 30                              | 10      | 5    | 9       | 3       | 2                        | 580   | 585    | 209     | 36                             | 17    | 0    | 0      | 0       | 0       | 0    |
| W + b       | 35                              | 13      | 13   | 8       | 3       | 2                        | 770   | 778    | 288     | 77                             | 64    | 0    | 0      | 0       | 0       | 0    |
| Z + c,light | 35                              | 14      | 14   | 8       | 5       | 8                        | 17    | 17     | 4       | 1                              | 0     | 201  | 230    | 91      | 12      | 15   |
| Z + b       | 144                             | 51      | 43   | 41      | 22      | 16                       | 50    | 63     | 13      | 5                              | 1     | 1010 | 1180   | 469     | 75      | 51   |
| Diboson     | 23                              | 11      | 10   | 4       | 4       | 3                        | 53    | 59     | 23      | 13                             | 7     | 37   | 39     | 16      | 6       | 4    |
| Multijet    | 3                               | 1       | 1    | 1       | 1       | 0                        | 890   | 522    | 68      | 14                             | 3     | 12   | 3      | 0       | 0       | 0    |
| Total Bkg.  | 361                             | 127     | 98   | 164     | 63      | 42                       | 3810  | 4310   | 1730    | 297                            | 138   | 1500 | 1770   | 665     | 97      | 72   |
|             | ± 29                            | ± 11    | ±12  | ± 13    | ± 8     | ± 5                      | ± 150 | ± 86   | ± 90    | ± 27                           | ±14   | ± 90 | ±110   | ± 47    | ± 12    | ± 12 |
| Data        | 342                             | 131     | 90   | 175     | 65      | 32                       | 3821  | 4301   | 1697    | 297                            | 132   | 1485 | 1773   | 657     | 100     | 69   |



- Limit: 1.8 (1.9)
- p0 value 0.64 (0.15)
- $\sigma/\sigma_{SM} = \mu = -0.4 \pm 0.7(\text{stat.}) \pm 0.8(\text{syst.})$
- Exclusion at m<sub>H</sub> ≈ 110 GeV
- Note: CMS observed broad 2.2σ excess



٠

# ttH Samples & Yields for $\geq$ 6 jets $\geq$ 4 b's

## Signal: 2.3 events

• PYTHIA 6.425,  $m_t = 172.5$  GeV. Charged lepton filter:  $p_T > 5$ ,  $|\eta| < 5$ 

## Backgrounds:

- **Dominant** are **tt+jets** (16.4 events) and **ttbb** (26.5 events):
  - ALPGEN 2.13+HERWIG 6.520 HFOR overlap removal.
  - tt+jets: Npartons = 0–5, σ=73.08pb, K=1.755;
  - ttbb :  $\sigma$  = 0.856 pb, K=1.687 (biggest sys.)
- Multijets (data-driven): 6.22 events (5.67 e channel; 0.55 μ channel)
- ttV: 2.2 events
  - Madgraph 4 + PYTHIA 6.425  $\sigma_{ttw}$  = 0.12pb,  $\sigma_{ttz}$  = 0.096pb
- Single Top: 1.28 events
  - s-channel (1.5 pb) and Wt (15.74 pb): MC@NLO 4.01 with HERWIG 6.520 and Jimmy 4.31.
  - t-channel (20.92 pb, K=0.866): AcerMC 3.8 with PYTHIA 6.425
- W+jets: 0.54 events
  - − ALPGEN 2.13+HERWIG 6.520: Wbb, Wcc, Wc,  $Z \rightarrow II$ ,  $W \rightarrow Iv$ ; HFOR overlap removal
  - Uses data to normalize and change mix of heavy flavours
- Minor backgrounds: 0.2 events
  - Dibosons and Z + jets;
  - Dibosons: HERWIG 6.520 and JIMMY 4.31; charged lepton filter  $p_T > 10$ GeV,  $|\eta| < 2.8$ .

# **ATLAS Analysis**

7



