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Resumo

Actualmente, com o Observatório Pierre Auger terminado, esperam-se cerca de 30 eventos com energias acima
de 1020eV e muitos mais abaixo desta. Tendo em conta que o Observatório utiliza uma técnica h́ıbrida, obtêm-
se eventos com uma qualidade muito melhor do que experiências anteriores (e em maior quantidade). Assim,
estamos em uma fase essencial para novos estudos aplicados aos raios cósmicos. Para além disto, ainda
assistimos ao inicio do funcionamento do LHC (Large Hadron Collider), onde se poderem retirar grandes
constrangimentos nas caracteŕısticas da interacções, facilitando o para o estudo de raios cósmicos.
Na primeira fase desta tese, faz-se uma śıntese das principais caracteŕısticas dos raios cósmicos, bem como
dos principais problemas a eles associados. Como por exemplo, qual a sua composição, qual a sua origem
e processos de produção e a sua propagação pelo espaço. Em seguida, descrevem-se a f́ısica das cascatas
de part́ıculas e formas de detecção. No caṕıtulo 5 apresenta-se a descrição do observatório e os seus dados
recentes.
No caṕıtulo 4, faz-se uma breve descrição do estado actual dos modelos das interacções hadronicas. Verifica-
se que significativas extrapolações dos dados dos aceleradores são necessárias para descrever as energias
das interacções dos raios cósmicos. E existe uma grande desconfiança sobre as suas validades (devido às
ambiguidades previstas, quando comparadas com os dados).
Neste âmbito, na fase inicial estuda-se a probabilidade do χ2 do fit das cascatas com a função de Geisser-
Hillas. Pretendendo-se extrair a fracção de eventos com flutuações acima das flutuações Gaussianas, que
serão o rúıdo dos eventos de cenários exóticos e servirão de base para o principal objectivo da tese.
No último caṕıtulo propõe-se um método para determinação da secção eficaz das primeiras leadings dos
chuveiros. Considera-se que o perfil longitudinal observado, é a soma de dois perfis (com a forma da equação de
Geisser-Hillas), um correspondendo a uma leading e o outro ao conjunto das restantes part́ıculas, produzidas
na primeira interacção. A distribuição do espaçamento entre os dois perfis corresponderá ao comprimento de
interacção da leading (retirando-se a secção eficaz). Aplica-se este método as chuveiros simulados, estuda-se
a validade, significado dos resultados e zonas onde os método funciona. Também se verifica a existência de
eventos reais candidatos a serem descritos apenas por este método e não por uma Geisser-Hillas.

Palavras-chave: raios cósmicos de altas energias, Observatório Pierre Auger, cascatas atmosféricas
de part́ıculas, modelos hadronicos, secção eficaz a altas energias.
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Abstract

Nowadays, with the Pierre Auger Observatory completed, we expect about 30 events with energies above
1020eV and many more underneath it. Since the Observatory uses a hybrid technique, we obtain events
with a much better quality than previous experiments (and in larger quantity). So we are in a crucial phase
for further studies applied to cosmic rays. In addition, we still watching the start of operation of the LHC
(Large Hadron Collider), which can give major constraints on the characteristics of interactions, facilitating
the study of cosmic rays.
The first phase of this thesis is a summary of the main features of cosmic rays, as well as the main problems
associated with them, as their composition, what are its sources and production processes, and their propa-
gation through space. Then we describe the physics of particle cascades and forms of detection. Chapter 5
presents a description of the observatory and its recent data.
Chapter 4 is a brief description of the current state of hadronic models for interactions. It appears that
significant extrapolations of the data from accelerators are needed to describe cosmic rays at the energies
of their interactions. And there is great scepticism about their validity (due to ambiguities predicted, when
compared with the data).
In this context, in the initial phase, we study the probability of χ2 of the fit of cascades with the Geisser-
Hillas function. With the purpose of extracting the fraction of events with fluctuations above the Gaussian
fluctuations, which will be the background of events in exotic scenarios and will be the basis for the primary
purpose of the thesis.
The last chapter proposes a method for determining the cross section of the first leadings of showers. It is
considered that the observed longitudinal profile is the sum of two profiles (with the Hillas-Geisser equation
shape), where one corresponds to a leading and the other to all the other particles produced in the first
interaction. The distribution of the spacing between the two profiles correspond to the interaction length of
the leading (taking out the cross section). We apply this method to simulated showers, study the validity,
the results interpretation and areas where the method works. we also check in real events for candidates to
be described only by this method and not by one Geisser-Hillas.

Keywords: ultra high energy cosmic rays, Pierre Auger Observatory, extensive air showers, hadronic
models, cross section at high energies.
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Chapter 1

Introduction

Our planet is constantly being bombarded by extraterrestrial particles called cosmic rays (CR). They consist
mainly of charged particles, such as ionized nuclei, protons and other particles like electrons and gammas.
On the surface, we continue to receive the secondary particles of the CR. This natural radiation is on average
about 0.4 mSv (average annual effective dose) of the total 2.4 mSv.
It was from this natural radiation that the CR story begins, at about 100 years ago. In 1912, Hess[1]
and successively Kolhorster, using balloons, found that the average ionization increases with altitude (even
overnight). This could indicate that part of the radiation came from abroad and not just from radioactive
isotopes on the ground. Later, Millikan called this radiation cosmic rays, since they considered them to be
high energetic gammas.
With more sophisticated instruments such as Geiger-Muller detectors, it was found that the CR were mostly
charged and have energies of about 109eV , due to larger interaction lengths with matter. With that, Bruno
Rossi studied the secondary particles of the CR and verified that there were strange coincidences between
different spaced detectors [2]. In 1937, using the first coincidence circuit with a resolution of ∼ 10× 10−6s,
Pierre Auger discovered coincidences in detectors spaced up to 300m [3]. Those would be the secondary
particles of a CR forming a cascade of particles, which he called Extensive Air Auger Shower (EAS). Using
the new model of Bhabha and Heitler [4], Auger showed that the original CR should have energies above
1015eV , which astonished the scientific community.
With cosmic rays, the elementary particle physics begins. Using cloud chambers, the discover of a wide
variety of particles started. In 1933, the positron was discovered, which was prediccted by Dirac. In 1936,
the muon was found [6], which was initially believed to be the Yukawa particle of his theory of the nuclear
force, but close measurements, shows that this particle was significantly lighter and interacts weakly with
atomic nuclei, unlike Yukawa particle. However, in 1947 the pion was discover as the real Yukawa particle[5],
at the Pyrenees, and later at the Andes Mountains. By mid-60’s, thanks to the CR, many particles have
been discovered, which became known as the particle zoo.
In 1961, MIT installed 19 detectors of 3.3m2 plastic scintillators on the surface and detected the first ultra
high energy cosmic ray (UHECR) with about ∼ 1020eV [7]. This corresponds approximately to the energy of
a tennis ball, but in a particle with dimensions on the order of fermi (10−15m).
Over the next forty years there were several experiments dedicated to CR as AGASA, Fly’s Eye and Haverah
Park. However, the study of CR has proved to be extremely difficult due to the small particle fluxes. For a
particle with 1020eV , we have a flow of 1 particle per km2 per century. This means that these experiments
at the ultra high energy (UHE) will be dominated by statistical uncertainties.
At energies above 1015eV , the reduced flux does not allow to detect directly the CR, but only through the
EAS. Thus, in UHE, the composition of the CR spectrum is not known. In addition, there are problems related
with the difficulty of find cosmological structures and processes that can produce such energies. And, there
are even contradictory evidences on the possible GZK cutoff. Another very difficult challenge, and related to
the composition of the spectrum, comes from the lack of theories capable of describing satisfactorily hadronic
interactions (with the strong force) at these energies. So, extrapolations are needed, which will probably
lead to biases in the analysis of the initial development of a shower. Nowadays, there are challenges from the
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sources and propagation of CR throughout the universe, until the composition and characterization of the
ends of the energy spectrum.
In order to solve these challenges, in 2007 the construction of the Pierre Auger Observatory (PAO) was
completed. The PAO is the largest experience, allowing detection of much more UHECR than before. The
observatory uses a hybrid technique that combines the detection with surface detectors (SD) for the lateral
profile and fluorescence detectors (FD) for the longitudinal profile. Still, there has several additional systems,
mainly for control of the atmosphere to better determine the systematic.
With the new PAO results in bigger quantity and better quality than ever, we are in a very exciting step
for further studies and apply methods to data. Therefore, it will arise many implications in several areas of
physics, like particle physics, astrophysics and cosmology.
In this context, this thesis aims to study the events with extreme fluctuations, using a new method for
obtaining the interaction length (or a cross-section) of the first particles of an EAS, from a CR with energy
between 1018 and 1019eV (in the laboratory frame). Basically, the new method consider an independent
development of the leadings (from first interactions), that carries an high fraction of the CR primary energy,
from the remaining particles. Consequently, we will have two EAS, instead of one. If we can recover the
two showers, we will be able to recover the distance travel by the leading and therefore, obtain a interaction
length.
The thesis is structured as follow. The second chapter is an introduction of the main characteristics and
problems existing in CR, with the description of the spectrum, composition, propagation, production and
sources. In chapter 3, we will explain the physics of extensive air showers and the main detection techniques.
Chapter 4 is devoted to hadronic interactions. Although some problems of the perturbative QCD and a brief
summary of the models that describe those interactions at UHE are described, I will mention some features
of most popular Monte Carlo models (for hadronic interaction). The fifth chapter will begin by describing
the observatory and then the reconstruction methods. Finally, we describe the current state of the results
with PAO. In Chapter 6, we determine the number of events with extreme fluctuations, which are preferably
used in Chapter 7 to use the new method. In chapter 7, we want to find an effective cross section and a
fraction of mesons to baryons in simulation, that could greatly constrain the hadronic models, when applied
to data.
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Chapter 2

Ultra High Energy Cosmic Rays

The Cosmic Ray term is somewhat misleading, since it is a radiation that consists mainly of ionized atomic
nuclei. The term was assigned by Robert Millikan, after V. Hess prove it came from space. Millikan believed
that throughout the universe, there was the release of binding energy of atoms in the form of gamma rays,
and this would be the cosmic rays.

This radiation is simply particles that collide with earth, have various compositions and a wide range of
energies. In this chapter, we will describe the spectra, composition, origin and propagation of cosmic rays.

2.1 Energy spectrum

The detected cosmic rays spectrum extends over several orders of magnitude both in energy and in flux on
Earth. In figure 2.1 is shown a compilation of data from the cosmic rays spectrum made by Thomas Gaisser
in [8].

In the figure, we see a variation in flux of 33 orders of magnitude, and can be detected about 15 orders
in energy (106eV to 1021eV at least). For example, at 1011eV we have a rate of 1 m−2s−1, while for 1020eV ,
we have about 1/km2/century [9]. With this decrease in flux is only possible to directly detect the particles
of energy up to 1014−15eV (with balloons and satellites). Above these energies would require very large areas
of detectors to identify something and is no longer possible to detect directly. Thus, from there, we use the
atmosphere as a calorimeter and cosmic rays are detected in the atmosphere as cascades of particles (which
will be described in the following chapter 3). It is interesting that the spectrum can be described with a
simple power law:

J(E) =
dN

dE
∝ E−γs (2.1)

Where γs is the spectral index and has a value near 3. The spectrum has some features, the index changes
at 3 � 1015eV, called the knee, and for logE = 18.45, the ankle. For E < 3 � 1015eV, the flux is proportional
to E−2.7 [8]. In this region the particles are derived primarily from the sun and other galactic sources such
as supernova remnants (SNR). Its composition is mainly protons, but with significant amounts of He, C, N,
O, Si and Fe nuclei [10], there are still small amounts of nuclei heavier than Fe [9].

Between the knee and ankle (logE = 18.45), the flux becomes J(E) ∝ E−3.32 [13]. This value means that
in this region the number of particles reaching the earth decreases more rapidly with energy than for energies
below the knee. Apart from the change in flux between the knee and ankle, the composition will become
heavier with E, because the particles are no longer confined to galaxy.

A particle of charge q and mass m, on the action of a magnetic field B perpendicular to the particle

velocity v experiences a radial force given by F = |q|vB = γmv2

r , where r is the radius of the trajectory, and
can be written by

r =

√
E2 −m2c4

|q|B
∼=

E

|q|B
(2.2)
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Figure 2.1: Data of the cosmic ray flux assembled by Gaisser, figure adapted from [8].

where γ is γ = 1/
√

1− β2, β = v
c . we use p = γmv e E2 = p2c2 + m2c4, for E � mc2 and therefore

the maximum energy that particles can have before escaping the galaxy is about E ∝ Z, ie depend on the
rigidity E

|q| , as the proton has the smallest charge, it will be the first type of particle to escape from the

galaxy, followed by the other particles until they reach the iron. According to [8], the proton will fall near
3 � 1015 eV, and the other nucleons will drop at E ≈ 3Z � 1015 eV.

It is interesting to note that part of the spectrum measured directly overlaps in the right place with the
spectrum measured indirectly, figure 2.2a). Even if indirect measurements do not allow the full separation
of protons and other nuclei, the figure shows that with several models, we can predict a the various nuclei
fluxes, consistently with direct measures.

Following the line that represents the galactic cosmic rays (GCR) (see fig. 2.2b) with blue dashed line, we
see that there is an excess flux that is due to extragalactic cosmic rays (EGCR). There are several models for
the composition in this region, based on sources of mixed composition or only proton and both can equally
reproduce the data.[14].

Nevertheless, the determination of the composition by indirect techniques such as RMS(Xmax) and Xmax

(which will be seen in the following chapter 3) indicate that the region of the ankle is practically compound
of protons. Above the ankles there are many uncertainties, what is certain is that, at these energy, cosmic
rays are EGCR. The spectrum is again J(E) ∝ E−2.85 ∼ E−2.7 see [13], similar to the energies below the
knee. From around 1019.5 eV, we see a sharp decline resulting from the GZK limit.

2.2 Propagation

As indicated, for energies below ∼ 1017eV, cosmic rays are confined to the galaxy with a diffusion coefficient.
The galactic magnetic fields are the order of µG [19], the Larmor radius in more appropriate units is,

Rpc ≈ 1021 EeV
qeBG

(2.3)
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Figure 2.2: a: Cosmic Ray spectrum from [8], for energies below 1015eV , the data are obtain by directly
measurements techniques and above it, we have indirect measures with EAS. Above 1015eV we can’t know
the composition, so the various bands that’s appear comes from models and we can see that they coincide
with direct measures. b:we have the end of cosmic ray spectrum [14], the blue dashed line corresponds to the
inferred galactic cosmic ray (GCR) component, while the blue line, represents the extra galactic cosmic ray
(GCR) to fit the data

For protons with energy of 1019eV, and magnetic field 1µG have a Larmor radius of 10kpc, very wide in
comparison with the thickness of the galaxy. For energies of 1015 eV, the Larmor radius is about 1pc (much
smaller than the galaxy). In figure 2.3 from[15], The proton trajectories are represented for various energies,
considering magnetic fields close to nanogauss (typical intergalactic value) and areas with randomly oriented
field. For E = 1020eV , the trajectories are almost rectilinear and even with realistic magnetic fields, we can
do astronomy with cosmic rays.

Figure 2.3: Trajectories of 20 protons emanating from a point for several energies. The trajectories are follow
until 40Mpc (from [15]).
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2.2.1 GZK limit and losses

Above, it was considered that the propagation of the proton happen without energy losses, however, through-
out its propagation in space, there will be losses.

In 1966, A. Penzias and R. Wilson discovered a cosmic microwave background (CMB) in the universe. The
CMB is like a blackbody spectrum with TCMB ' 2.73K, which means photons with < λCMB >' 1.96mm,
which means with an energy < ECMB >= hc/ < λCMB >' 6.34 � 10−4 eV. This radiation resulting from the
Big Bang is isotropic through the universe, and may interact with cosmic rays. After the discovery of the
CMB, K. G. Greisen [16] and independently Zatsepin and V. Kuzmin [17], predicted that above a certain
energy, protons would interact with the CMB and produce pions, causing a big decrease in the CR flux
arriving the Earth (GZK cutoff). The main reactions involved are of type,

p+ γCMB

−→ p+ π0

−→ p+ π+ + π−

−→ p+ e− + e+
(2.4)

The threshold condition for the reaction occur is in the center of mass frame, s = (mp + mπ0)2. Being
pCMB =< ECMB > and pp = βpEp (where βp =

vp
c = vp in units of c) we can write,

s = (pCMB + pp)
µ(pCMB + pp)µ = (< ECMB > +Ep)

2− ( ~pCMB + ~pp)
2 = m2

p+ 2 < ECMB > Ep(1−βp cos θ)
(2.5)

where θ is the angle between the initial proton and CMB photon. Together with the threshold condition,
we obtain the GZK cutoff:

EGCKp =
m2
π0

+ 2mpmπ0

2 < ECMB > (1− βp cos θ)
(2.6)

For frontal collisions with θ = π, and βp ∼ 1, we get EGZKp ' 1.07 � 1020 eV. The energy in the center
of mass is

√
s = mp + mπ0 = 1073 MeV, which was already achieved by accelerator by the time of the

publication of the GZK [16][17], the cross section is σ(pγ → pπ0) ' 200µb = 2 � 1028cm2. According to [11],
the density of CMB photons is nCMB ' 411cm−3, we can use Lp = nCMB � σ(pγ → pπ0)−1 to calculate the
mean free path and we obtain Lp ' 1.22 � 1023m ≈ 4Mpc. This means that for each 4Mpc, protons with
energy close to the threshold will lose its power by a factor of 0.13, according to [16].

We can also calculate the threshold for the production of electron positron pairs EGZKp ' 4.8 · 1017 eV,
however, this effect is not so important, since the proton energy loss is negligible in this process. On the
other hand, for gamma rays to produce e+e− pairs the threshold is very low, about EGZKp ' 2.6 · 1014 eV
and there is a large energy attenuation(with no γ rays detected above this energy). In figure 2.4left depicts
the loss lengths for some of the most important reactions.

It should be noted that the spectrum of the CMB is a broader spectrum, so we have several threshold
for the numerous energies of CMB photons, but even so, it makes sense to consider an average value for the
energy of the CMB. Another source of loss is the expansion of the universe and other reactions such as the
resonance ∆+, p+ γCMB → ∆+ → p+ π0, but are not as important as the production of pions.

In figure 2.4 right, we can see the energy loss of several protons above the GZK limit, along their trajec-
tories. We conclude that the proton above the GZK cutoff can not travel more than about 100Mpc.

There is also a cosmic neutrino background with < Eνr >∼ 10−4 eV [18], which will interact with
high-energy neutrino by νr + ν → Z0, with a cutoff EGZKν ' 2.08 � 1025 eV.

Today have been detected cosmic rays above the GZK cutoff, however, there is no candidate for a source
at a distance less than 100Mpc. This means that either there are sources that we do not know, or that the
cosmic ray could have much more energy (since they leave from far away). In fact, neither for protons with
energies in the limit, we can easily find sources of production.

2.3 Acceleration mechanisms and cosmic ray sources

The mechanisms of acceleration of UHECR are a subject of controversy with still open questions, there are
two major types of acceleration, the bottom-up and top-down. The bottom-up mechanisms, assume that
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Figure 2.4: left:figure adapted from[15], the curves p + γCMB → e+e− + p andFe + γCMB → e+e− + p
represent the energy loss length for different energies, this length is the distance for which the proton,photon
or iron loses 1/e of its energy.The curve n→ peυ is for the mean decay length of a neutron, the dashed line
is the length for loses due to the red shift. The other curves represents the mean free path for the same
loses.Rigth:the mean energy of a proton moving through the universe with CMB, with 3 initial energies.[26]

the particles are accelerated directly from low to high energies. We can have acceleration by electric fields,
although it is easy to accelerate charged particles with electric fields, for these energies it would require a
high density of particles in order to produce the fields. This would cause large energy losses of the accelerated
particles, making it difficult to try to reproduce the spectrum [20], and today it is not very accepted. Another
bottom-up was proposed by Fermi [21] in 1949, which consisted in statistical acceleration, since the particles
could be accelerated each time they interact with magnetized plasma. The problem is that both models need
to get a spectrum index greater than that observed to contain the energy losses of particles.

2.3.1 Fermi acceleration mechanism

In [21], Fermi proposed a mechanism of statistical acceleration, in which cosmic rays were scattered by
magnetized plasma. In figure 2.5 right, is represented the diffusion of cosmic rays in a plasma. A particle
with energy Ei and pi in the laboratory reference frame S, enters in a magnetized zone. In the plasma
reference frame S′ the energy of the particle is,

E
′

i = γ(Ei − ~βpl � ~Pi) ' γEi(1− βpl cos θi) (2.7)

where βpl is the plasma velocity in relation to the frame S and θi is the angle between ~βpl and ~Pi. In

frame S’ we consider E
′

i = E
′

f .
When the particle leaves the magnetic zone, we have

Ef = γ(E
′

f + ~βpl � ~P
′
f ) ' γE

′

i(1 + βpl cos θ
′

f ) (2.8)

Putting equation 2.7 with equation 2.8, we get,

∆E

E
=
Ef − Ei
Ei

=
1− β cos θi + β cos θ

′

f − β2 cos θi cos θ
′

f

1− β2
− 1 (2.9)

As the particles are distributed randomly < cos θf >= 0, but θi depends on the speed between the cloud
and the particle. The probability P per solid angle Ω, having a collision at θi is dP

dΩ ∝ (a − β cos θi). So

< cos θf >=
−β
3

. With β � 1, we get

< ∆E >

E
=

1 + β2/3

1− β2
− 1 ≈ 4

3
β2 (2.10)
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This is the 2nd order Fermi mechanism, which has a very slow acceleration, and so, later have been
proposed a 1st order mechanism to present a greater acceleration efficiency [24]. According to [24], with
these methods, you can find an index of about 2, which taking into account the losses, which can fit more or
less the spectrum.

2.3.2 Hillas Diagram

For the above mechanisms, it is necessary that cosmic rays are confined within the area of acceleration, if
the region has a radius R, then the maximum energy obtained is,

Emax(EeV ) =
1

2
ZβB(µG)R(kpc) (2.11)

Where β is the speed of diffusion center, B in µG, R in parsec and E in EeV. Hillas made a diagram
using this equation and considering the existing structures in the universe, figure 2.5 left. As we can see,
it is possible to accelerate protons to 1020eV, but only considering the non realistic case of β = 1, ie, the
magnetized plasma with the speed of light. If we consider the more realistic value of β = 1/300 no known
cosmological structure could produce such energies.

Figure 2.5: left:we have an adapted Hillas diagram[19] from[23], astronomical objects that are bellow the
diagonal line can not accelerate the corresponding particle at the energy indicated. rigth: representation of
the 2nd order Fermi mechanism in a moving magnetized plasma, 1 is the index for arrival particles and 2 for
leaving particles (from [25])

2.3.3 Top-down models

Another type is the top-down model, whereby super-massive particles would decay producing UHECR. The
decay of these particles would produce leptons and hadrons, the pions in turn produce muons, electrons
photons and positrons. This would cause a spectrum dominated by photons at high energies. In addition
the initial particle would have energies far above 1020 and have a sufficient density to maintain the CR flux.
These particles could be relics of the early universe at GUTs energies (for details see [22]).

Another model is the Z-burst, where UHE neutrinos interact with cosmic neutrinos background producing
Z which in turn would decay into protons, neutrinos and photons. These neutrinos would come from even
more energetic particles, which is difficult to explain. Besides, the flux of photons and high energy neutrinos
would be very high, the current limits are major constraints in this scenario (see [22]).
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Chapter 3

Extensive Air Shower

In 1938, Pierre Auger and Roland Maze showed that cosmic rays (CRs) separated by more than 20m were
simultaneously detected, proving that they are originated from a single high energy cosmic ray. In 1939,
they already had proven the existence of particles to 1015eV [3]. At these energies, as we saw in the previous
chapter, the flux of CR is too low to be detected directly. Large areas were needed for detect them, which is
impossible in space.
The atmosphere acts as a calorimeter 1 where CR disintegrates forming an Extensive air shower (EAS). There
are several methods of studying EAS and that is what this chapter is about.

3.1 Physics of extensive air showers

The high energy CR will interact at the top of the atmosphere, producing particles, these, in turn have
sufficient energy to re-produce new particles and so on, producing a cascade called Extensive air shower
(EAS). These showers will depend on atmospheric conditions, which are now well vertically parametrized,
but this characteristics vary widely over time (such as pressure, temperature and others). It is then necessary,
a good control of the atmosphere. Since the CR may come from any angle and not necessarily in the vertical
direction, the altitude is not a good variable to measure the development of the shower. The number of
interactions that have occurred in the shower depends on the matter traversed and not the altitude. The
good variable is the slant depth X measured in gcm−2:

X(−→r0 ,
−→r ) =

∫ −→r
−→r0

ρ(
−→
r′ )d
−→
r′ (3.1)

Where ρ is the density of the atmosphere and −→r0 is the point where the particle made first contact with
the atmosphere. Generally the slant depth is defined by Xv and we have:

X ≈
∫∞
h
ρ(
−→
h )dh

cos θ
=

Xv

cos θ
(3.2)

Where θ is the angle from the vertical. For vertical showers at sea level, X ∼ 1000gcm−2 for horizontal
showers X ∼ 36000 g/cm−2.

In EAS, the primary particle produces secondaries particles, which in turn will have interactions and de-
cays producing more particles (and theirs energies will decrease). So the number of particles N(X) will
increase until it reaches a maximum, where the energy per particle is on average equal to the ionization en-
ergy. The number of particles produced is equal to the number lost by ionization. From the N(X) maximum,
particles are being absorbed and N(X) decreases.

1The atmosphere provides approximately a vertical thickness of 26 radiation length for electron and 15 interaction length
for a proton, very similar to the values for the CMS at LHC [27]
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Figure 3.1: a) Symbolic representation of the evolution of a Extensive air shower from an hadronic primary
particle [28] and b) from [71].

The EAS can be divided into three components: the hadronic; the muonic, and the electromagnetic
component. The hadronic component comes from the interaction of CRs or secondary particles with the
molecules of the atmosphere and are mostly mesons like pions and kaons. The muonic component contains
the muons and neutrinos, while the electromagnetic component have the electrons, positrons and photons.
According to [29], a vertical shower of a proton with 1019eV, at ground, has 1011 secondary particles with
energy above 90 keV and a shower core of ∼ 10km. About 99% are photons, electrons and positrons, with
90% of the primary particle energy being dissipated by the electromagnetic component.

3.1.1 Photon showers and Electromagnetic component

The CRs interacts with air molecules in the top of the atmosphere, and there produces secondary particles
and so on. If the particles produced are neutral pions, then they will decay by,

π0 → γ + γ (3.3)

This decay has 98.798% [30] branching ration and thus, it is the most common reaction. Then, can also
occur π0 → e+e−γ with 1.198%. This means, that the pions will produce mainly photons (and possibly a few
electrons). Photons will convert into e+e− pairs, these by their turn will radiate photons by bremsstrahlung
feeding the cycle in a chain reaction, while there is enough energy. So we get a cascade of particles composed
of electrons, positrons and photons. For each reaction, the energy per particle decreases, the minimum energy
required for pair production is 2me ' 1022keV . When the energy begins to be small, the main mechanism of
energy loss is through ionization and collisions, rather than by breemsstrahlung or pair production, then the
atmosphere will absorb the particles and the cascade begins to decrease. The critical energy for the absorption
of particles is roughly defined as the energy at which the ionization loss is equal to the breemsstrahlung loss,
from [29],

EC =
710MeV

Zeff + 0.92
≈ 86MeV (3.4)

Where is the Zeff is the effective atomic charge, with Zeff = 7.3 [31], which considers that the atmosphere
consists of 78.09% N2, 20.95% O2 and 0.96% other gases. The profile of particle number grows up until
the energy per particle is approximately EC and from there the number of particles decreases.
If the primary particle is a proton, it is considered that on average every hadronic interaction produces one
third of π0 from all particles(see next section). These will produce electromagnetic cascades of particles,
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feeding the electromagnetic component.
In the case of the primary particle being a photon, it is considered that it produces basically the electro-
magnetic component. The cross section of Bethe-Heitler [38], which corresponds to the cross section for
pair production and bremsstrahlung, for UHE 10EeV is about 500mb [32]. Moreover, the photonuclear cross
section for these energies on [30] is about 1mb, and extrapolations to other more exotic scenarios gives ∼ 10
mb (see [32] [40]), so the ratio of the photohadronic cross-section to the pair production cross-section will be,

Q =
σγ→hadrons
σγ→e+e−

' 1(10)

500
' 0.2%(2%) (3.5)

Where can we see that the hadronic interactions in γ are unlikely and photons produce mainly electro-
magnetic cascades. Now, if the first photon interaction is hadronic, the shower development will be more like
to the proton shower [32].
For UHE, there are two effects that change the cross section of photons. On the one hand, there is the Landau-
Pomeranchuk-Migdal effect, which suppresses the cross sections for pair production and bremsstrahlung above
roughly 10EeV. On the other hand, we have pair production and magnetic Bremsstrahlung (pre-showering)
effect, which make the photon produce the cascade before reaching the atmosphere (only interacting with
the magnetic field of the earth). (See for instance and [32] [29]).

3.1.2 Heitler model

The first models for the EAS were proposed by Rossi and Greissen in 1941. But most of the main features
of EAS may be deducted by the toy model due to Heitler [33]. I will follow the derivation by J. Mathews,
from [34].
Heitler’s model is a simple model, as shown by the figure 3.2. Here, the photon interacts after a set distance
d, producing e−e+ pairs, the two in turn after another distance d, will again be divided into two particles,
in this case e− → e− + γ and e+ → e+ + γ respectively. At each distance d, each particle splits into two
new particles. d is the distance at which the particle loses on average half the energy and is written as
d = λr ln 2, where λr is the radiation length. It is supposed that in the process of bremsstrahlung, the photon
and e−(e+) share the power of initial e−(e+), the cascade is one-dimensional and all splitting occur after the
same distance d.
After n splitting length, the cascade travel x = nλr ln 2 and the number of particles is N = 2n = ex/λr . The
condition of the maximum of EAS is that the particles have a critical energy ξec (how as been said before), so

E0 = ξecNmax (3.6)

Where E0 is the energy of primary particles, Nmax is the number maximum of particles through the
development of EAS and n is the number of splitting. Nmax is also obtained by Nmax = 2nc , where nc is the

number of radiation length until the maximum. Together with the equation 3.6, we get nc =
ln[E0/ξ

e
c ]

ln 2 . The
maximum depth is then

Xγ
max = ncλr ln 2 = λr ln[E0/ξ

e
c ] (3.7)

As shown in [34] the result of the model for Xγ
max is very similar to that obtained by simulation, however

we get an excess of particles, since in reality the particles begin to be absorbed before the maximum. The
model provides a photon ratio of 1/3, while 9/10 is more realistic, because during the bremsstrahlung are
emitted more than one photon.
It is now interesting to define the elongation rate Λ, which describes the increase of Xmax with E0:

Λ ≡ dXmax

d log10E0
(3.8)

With the equation 3.7 we have Λ = 2.3λr = 85 gcm−2 per decade of primary energy, which means that
we have the mean length of interaction ∼ 37 gcm−2 (for E0 < 1EeV ) and between 45 − 60 gcm−2 for
E0 > 1EeV [29]. With this we can obtain the cross section of the first interaction, which is not directly
available in detectors.
One of the most important contributions of the model is providing the maximum number of particles pro-
portional to ∝ E0 for photon showers and Xmax ∝ lnE0.
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Figure 3.2: Schematic representation two showers within Heitler model, for an electromagnetic shower,
initiated by a photon a) and an hadronic shower initiated by a proton.At each level n the particles interacts
producing more particle. The electromagnetic shower duplicate the number of particles at each n, while in
hadronic shower the multiplicity in each interaction is higher.[34]

3.1.3 Hadronic component

The hadronic component originates from the interaction of primary nuclei (such as protons and iron and very
rarely of photons) with atmospheric nuclei. These interactions are the major source of error in the analysis
of EAS, since the energies of the CR are several orders of magnitude above the data we currently have from
accelerator (this will be discussed in this chapter 4 ).
At this stage, we can consider that in hadronic interactions, part of the energy is converted to mesons and the
rest goes to a new nucleon that, after about an iteration length, will interact and produce a second generation
of mesons, and successively. These mesons in turn will also interact producing more mesons (up to a critical
energy, again). We consider the interaction of a proton with the atmosphere as

p+ p −→ p+ p+N(π0 + π+ + π−) (3.9)

And we can neglect the production ofK, Λ, η, Ω, Σ..., because they are small in quantity compared
to pions. We can see that in each generation, on average, the neutral pions carry one third of energy and
charged pions about 2/3.
Nor all pions will interact, some of them will simply decay. The interaction length for pion in air is X ∼
120gcm−2 for E < 1014eV [11](X is the slant depth, eq 3.2). Now, if the interaction length is larger than
the decay length, then the pion interacts, if it’s not the case the pion decays. The decay length depends on
the energy of the pion, since the pions have a mean life time (τ) in their’s reference frame. If it have a great
energy (or velocity in relation to another reference frame), then by Lorentz equations, we know that in the
other reference frame the pions will live more (time dilation). If they live more, then they can travel more
and the decay length is larger. The decay length is the mean free path travelled by the pions until it decay
and is given by (using Lorentz equations):

Ldecay = x = γ(x0 + v.t0) = γτc (3.10)

where Ldecay is the decay length (in laboratory reference frame),x0 and t0 are in the proper reference frame,
so x0 = 0 and t0 = τ . The velocity of the proper reference frame to the laboratory reference frame is v, and
we can use v ' c.
Since the interaction the length is about 120gcm−2, if we know the density of the atmosphere we know the
distance needed for pions to interact. In the figure 3.3a), we can see the density of the atmosphere provided
by the U.S. Standard atmosphere. At the altitude of 16km, the EAS has already gone through about 100gcm2

of depth, the average density between 16km and 11km is ρ = 2.55 � 10−04gcm−3, so it takes about 4698m to
cross ∼ 120gcm−2, ie the pions travel something like ∼ 4700m to interact. If we are between 0 and 1 km, the
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average density is ρ = 1.11gcm−2 and the distance will be ∼ 1km to interact. Now, we just need to compare
these, to the values of the decay length.

Figure 3.3: a) The atmospheric density as function of altitude with it’s corresponding slant depth crossed.
This plot comes from the US standard atmosphere data, from [12]. b) Example of longitudinal showers
profiles for iron (red) and proton (black) at 1019eV from [35].

The lifetime of the neutral pions is τπ0 = 8.4 � 10−17s, so at about ∼ 13km would require at least an
energy of E ∼ 2.5 � 1019eV for the neutral pion interact. This is a too extreme energy and we conclude that
it will not interact but decay into two photons. Even at 1km, would require an energy ∼ 5.4 � 1018eV , in
order to the pion cross ∼ 1000m, it is concluded that the π0 always decays.
For charged pions the case is different, since the average lifetime is τπ+/− = 2.6 � 10−8s, so at ∼ 13km, with
approximately E ∼ 8.4 � 1010eV , these pions can cross 4700 m. At ∼ 1km, the charged pions could cross
1000, with an energy of about ∼ 1.8 � 1010eV . If the pions have energy above a threshold that will be around
∼ 1010eV , then they can interact, producing again one third of π0 and two thirds of π+/−. If their energy is
below this limit, the charged pions will decay to produce muons in the reaction,

π+(π−) −→ µ+(µ−) + ν(ν̄) (3.11)

Due to the bust of hadron particle, the hadronic component remains very close to the axis of the cascade
in relation to e−, e+, photons and muons. You can also use an adapted Heitler model for Hadronic showers
(fig 3.2 [34]).

3.1.4 Muonic component

The muonic component, comes from the decay of charged pions with lower energies. The muon has a lifetime
larger than the charged pions, so few decays. However, they also have a very small cross section for radiation
and pair production. Thus, muons don’t produce cascades and are detected in the ground. The quantities of
muons depend heavily on hadronic models and the composition of the primary particle and can be used to
constrain models and composition. For the same energy, a solid prediction that can be obtained with simple
models is that the number of muons for iron as a primary particle is 80% higher than for proton [34].

3.2 Longitudinal profile

Today, instead of the Heitler model, the parametrization most used to describe the number of particles in
the longitudinal profile is the Gaisser-Hillas function (GH):

Ne(X;Nmax, Xmax, X0, λGH) = Nmax(
x−X0

Xmax −X0
)
Xmax−X0

λGH e
Xmax−X
λGH (3.12)
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Where Nmax is the maximum number of particles in the shower maximum at X = Xmax in depth.
X0 is associated with the first point of interaction, however, is not directly correlated, since after fitting the
Gaisser-Hillas, the value of X0 can be negative. Indeed, the value Xmax−X0 is associated to the composition
and cross sections. In the figure 3.3b), are represented EAS for some protons in red and iron in black at an
energy of E = 1019eV . As we can see, the proton showers present higher fluctuations than iron, as expected,
because iron is considered as being similar to 56 protons with an energy E/56, so we have 56 simultaneous
showers of protons reducing the fluctuations and as the effective energy is lower we will also have a smaller
Xmax for iron.

3.3 Lateral profile

The particles of EAS suffer multiple Coulomb Scattering in the nuclei of the atmosphere, this causes the parti-
cles to gain transverse momentum. The lateral development of the cascades was parametrized by Nishimura,
Kamata and Greisen [36][37] and takes the form for pure electromagnetic showers:

ρ(r) = c(s)
Ne
r2
0

(
r

r0
)s−2(1 +

r

r0
)s−45 (3.13)

Where c(s) = 0.366.s2(2.07 − s1.25), ρ(r) is the density of particles with respect do the distance r of
the axis shower. Ne is the total number of electrons, s is the age parameter and r0 is the Moliére radius
(r0 = λEs/Ec, where λ is the radiation length, Es = 21MeV and Ec is the critical energy). In such showers,
only about 10% of energy is contained in particles outside the cylinder with radius r0. Greisen [36] also
proposed a correction to the formula to parametrize Hadronic showers.

ρ(r) =
C1(s)Ne

2πr2
0

(
r

r0
)s−2(1 +

r

r0
)s−45(1 + C2(

r

r1
)δ) (3.14)

The Shower age parameter if given by s = 3
1+2XmaxX

.

3.4 EAS detection

The study of the EAS can be done through two types of detection techniques. On the one hand, we can detect
the particles that hits the ground with arrays in the grounds, on the other, we can detect the emission of light
during the development of cascades in the atmosphere (with light detectors). In figure 3.4, are represented
some of the possible detectors of EAS. As technical grounds arrays, we have the squares on the surface that
detect the particles in the electromagnetic component on the ground (usually also muons). The squares
inside the earth, only detect muons, the deeper the detector is, the greater is the energy of muons that have
managed to get there. The house represents the surface detectors for hadrons which eventually reach the
ground. On the right, the structure represents the detection of the light emitted by showers. With this we
can obtain the lateral and longitudinal profiles of EAS, the muons content and others to analyse the features
of EAS physics.

3.4.1 Light detection

We can not detect directly the particles of the EAS during their development in the atmosphere, so we use
indirect detection methods, based on the features of EAS. The development of the cascades, along the atmo-
sphere, produces fluorescence light and Cherenkov light that can be detected by optical detectors installed
in the ground. In addition, one can also detect the radio emissions of electrons from the cascades.
The light emissions are very dependent on the atmosphere and one still has to take into account the at-
tenuation of light emitted into the atmosphere. The attenuation depends heavily on the composition and
characteristics of the atmosphere, so it is strictly necessary, to manage day to day the atmospheric param-
eters. Currently, there is the U.S. standard atmosphere, a model of atmosphere in the U.S. region, which
parametrizes the atmosphere very well, but variations in clouds, dust and pollutants vary very quickly and
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Figure 3.4: Draft of a shower development and it’s detection with several types of detection techniques.
Adapted from [71]

need to be measured. Now, we have monthly models for weather at Auger, but the conditions still have many
variations. The biggest problem of attenuation of the emitted light stems from Rayleigh and Mie scattering.

3.4.1.1 Fluorescence light

During its journey, the majority of the EAS energy is dissipated into the atmosphere by exciting and ionization
of air molecules. Basically, the charged particles excite the molecules N2 and N+

2 , which after, return to their
ground state with the isotropic emission of photons in the ultraviolet and visible band. This process is actually
scintillation, and here the atmosphere acts as scintillation calorimeters (in CR field is called fluorescence).
Excited nitrogen molecules, will collide with other molecules in the atmosphere, or will emit fluorescence
light between 300nm and 400nm (see figure 3.5a). Actually, not all the energy will be dissipated to the
photons, so we need to know the yield of photons with respect to the energy dissipated. This efficiency is
called fluorescence yield yfγ and can be defined by,

yfγ =
Nγ
NeL

(3.15)

where Nγ is the number of photons, Ne is the number of electrons that crosses a distance L. The fluorescence
yield depends on the conditions of the atmosphere and therefore depends on the altitude, but always has a
value close to 4γ/e/m [39].
Another way to set the fluorescence yield is through the efficiency in relation to the energy deposited, which
can be defined as ([39] and [41]),

yfγ =
Nγ

(dE/dX)e
(3.16)

(dE/dX)e is all energy lost in atmospheres by electrons, in [41] we can see a parametrization of yfγ with

pressure, temperature and composition. We get a value of yfγ = 17.6 ± 2.3 photons per MeV (for various
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energies [41]). If we consider photons with 350nm, then E ∼ 44eV and therefore the fraction of energy
emitted is 44 · 17.6

106 ∼ 0.1%. This is very low, but as the energies of the CR is much larger than MeV, then
it is possible to have many photons. The method for the fluorescence light is thus more accurate for higher
energies. It should be noted that the emission of photons is isotropic, so it is still necessary to have the issue
of the 3D emittion and not the direct fluorescence yield.

Figure 3.5: a) Fluorescence spectrum of the atmospheric nitrogen from [71], measured by A. Ulrich. b)
Fraction of the missing energy (in %) in a EAS. With circles we have proton showers, in squares He, in dots
CNO and filled squares for Fe. [11]

3.4.1.2 Cherenkov radiation

The Cherenkov radiation is emitted when charged particles traverse a medium of refractive index n > 1, with
a higher speed than the speed of light in that medium vlight = c/n (where c is the speed of light in vacuum).
It works like shock waves in the sound, but in this case for electromagnetic waves. The minimum velocity
for the emission is,

βn > 1 → Ethr = m
√

1− 1/n2 (3.17)

m is the mass of the particle and β is the velocity. The radiation consists of photons emitted in a cone along
the direction of propagation with an angle given by,

cos θ =
1

βn
+ q (3.18)

where q is a quantum correction without much importance. The refractive index of air is about n = 1,00029
[42], so the Cherenkov angle is ∼ 1.4o. This is the maximum refractive index for the sea level, for higher
altitudes, the index decreases and the angle too. The threshold energy for electrons is about ∼ 21MeV .
Approximately ∼ 105 photons are emitted by the electron at sea level. This is a large intensity compared
to the intensity of fluorescence light. The Cherenkov radiation is only emitted very close to the axis of
propagation, with angles generally less than 25o (due to transverse momentum). These photons are also
attenuated by the Rayleigh scattering in the atmosphere. So even if the Cherenkov light is directional, light
can be scattered into other directions.

3.4.1.3 Rayleigh scattering

The photons are scattered by molecules of the atmosphere, if the size of the scattering centers are small
compared to the wavelength λ of photons, then we have the Rayleigh scattering, which is proportional to
λ−4. If we have dNγ photons undergoing a thickness dl of the atmosphere, the Rayleigh scattering is given
by,

dNγ
dl

= −ρNγ
XR

(
400nm

λ
)4 (3.19)
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where XR = 2974gcm−2 is the characteristic Rayleigh path length [44]. The radiation is scattered preferen-
tially in the forward an backward direction as shown by,

d2Nγ
dldΩ

=
3

16π
(1− cos2 θ)|dNγ

dl
| (3.20)

Using dX = ρdl (3.2) and integrating, we obtain Nγ(X2) = Nγ(X1)e
− |X1−X2|

XR
( 400nm

λ )4

, that in terms of
transmission coefficient is [43],

TR = e
− |X1−X2|

XR
( 400nm

λ )4

(3.21)

3.4.1.4 Mie scattering

If the wavelength of the photons is similar to the size of molecules, these will be spread by Mie scattering.
The particles that diffuse fluorescence photons by this process are pollutants and aerosols, clouds and dust.
The cross section is given by [44],

dNγ
dl

= − Nγ
LM

e−h/HM (3.22)

where h is the height and hM and LM are characteristics for the aerosol distributions. Taking into account
the angular distribution, we have

d2Nγ
dldΩ

= aM .e
θ/θM |dNγ

dl
| ≈ dNγ

dl
0.802−θ/θM (3.23)

θM = 26.7o, aM , θM , hM and LM , are parameters, and they correspond to mean values for aerosol condi-
tions. The diffusion is mainly driven forward. The coefficient of transmission [43] is,

TM = e
1

lM (λ)
|
∫ 2
1
e−h/hM dl|

(3.24)

Using the approach dl = dh/ cos θ′ (θ′ being the angle between the vertical and the path of photons) and we
get,

TM = e
hM

lM (λ) cos θ′ |e
−h1/hM−e−h2/hM |

(3.25)

We should note that aM , θM , hM and LM strongly depend on the composition of the atmosphere and
therefore is again needed a good control of the atmosphere. From [43], we have hM ' 1.2km and LM ' 14km
at λ = 360nm.

3.4.1.5 Attenuation

The fluorescent light that reaches the detector must be corrected by the geometry and the attenuation of the
diffusion of Mie and Rayleigh. Thus, I0 being the intensity of photon emission, we get a photon intensity at
the detectors given by,

I = I0.TR.TM .(1 + ε)
∆Ω

4π
(3.26)

where ∆Ω is the angular interval and ε corresponds to higher order correction due to multiple scatterings.

3.4.1.6 Cherenkov experiments

As mentioned, the Cherenkov radiation is emitted into the air in a cone with a very small angle of aperture
and it is delivered very close to the axis of the shower. Thus, the optical detectors must be aligned with
the showers in order to detect direct Cherenkov. If we are not oriented with the axis, we will only detect
fluorescence light and Mie and Rayleigh scattering light (if sensitive enough). The big advantage comes from
the high density of photons emitted, but is difficult to reconstruct the features of EAS and is necessary Monte
Carlo simulation to estimate the Xmax or primary energy.
Currently, this type of detectors (system of Imaging Atmospheric Cherenkov Telescopes) are used primarily to
detect gamma-rays and two examples are the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC),
in the island of La Palma, Canary Islands, Spain and the High Energy Stereoscopic System (HESS).
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3.4.1.7 Fluorescence technique

As the fluorescence intensity is lower than the Cherenkov radiation, then the detectors should not be placed
in the direction of showers. Since radiation is isotropic and the fluorescence yield with the attenuations, is
very low, it is only possible to detect very high energy EAS, usually for energies above 1017eV . The showers
may develop far from the detector, since the intensity of photons is sufficient. If 106 electrons pass by 700
m of atmosphere, at about 20km from the detector, it will produce 2.8 � 1012 photons [11], but as the area
of the ∼ 20km sphere is ∼ 5 � 1013cm2, then the density of photons in the detector will be ∼ 0.056γ/cm2.
Thus, we use mirrors to concentrate the amount of photons at an acceptable level. The concentrated light
is collected by a PMT camera that divides the image into pixels (fig 3.6) and record the density of photons.
We can thus obtain the longitudinal profile of the showers.

Figure 3.6: Schematic representation of the image of a detection of a shower in a FD telescope. [11]

The detector sees the shower as a point moving at the speed of light in the atmosphere. In order to take
the longitudinal profile, it is necessary to reconstruct the geometry of the event. The first step is to define
the shower-detector plane (SDP). If two detectors observe the event, we have a stereoscopic reconstruction
of the EAS and the axis corresponds to the intersection of the SDP of both detectors. If only one detector
has observed the event, then it is more complicated to determine the geometry, but knowing the SDP and
the time of arrival is possible to recover the trajectory of showers along the SDP. For example, at 20km, the
EAS takes about 2.3µs to cross about 700m ( ∼ 2o in the chamber), if the shower is 10km takes half the
time for that route.
After knowing the geometry, as fluorescence emission is isotropic, then we know the amount of photons that
passes through the atmosphere towards the detector, in addition we also account for the Rayleigh and Mie
attenuation for these photons, and also direct Cherenkov and indirect Cherenkov (Cherenkov diffused by
Rayleigh). All this is subtracted from the signal at a given the geometry. At this stage it is very important
to know exactly the conditions of the atmosphere. After the reconstruction, we know the longitudinal profile
in dE/dX and number of charge particles, the Nmax and Xmax.
To know the energy of primary particle, we have Ep = α

∫∞
0
Ne(X)dX, where the constant is α ∼ 2.2MeV/g/cm2

[11] and expresses the average ionization energy loss rate for the shower. The value of the constant is the
energy losses of the shower particles in atmosphere but it came mainly from electron, positrons and gammas
while hadrons, muons, neutrinos hardly excite the air producing fluorescence radiation. This mean that same
part of the primary energy will not excite the air and it continues in the hadronic and muonic component
until the ground. So the total energy integrated will be approximately 90% of the primaries energy, the
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remaining energy is called the missing energy. The missing energy is calculated by Monte Carlo simulation
and is therefore dependent on the model. Moreover,it still depends on the composition of the primary particle
(figure 3.5b). We can see that for higher energies the quantity of missing energy is less, this is due to fact
that the primary particle has more energy, then the pions also have more energy and therefore will interact
to create more electromagnetic component. If the energy of pions is lower, they would decay into muons and
neutrinos, which would leave more energy undetected. For larger nuclei than the proton occurs the same.
Another feature is that the energy per nucleon for iron for example is lower than for protons (considering
the same energy of primary particle), so iron shower will have more muons. This effect vanishes for higher
energies.

The biggest problem with this method is that only runs on moonless nights and good weather, which
leads to a duty cycle of ∼ 10%.
An experience of this type is the High Resolution Fly’s Eye detector (HiRes). Hires is located on hilltops
above the desert in Utah, USA and operated from 1981 to 1993. In the initial phase, the detector, consisted
of 67 spherical mirrors with ∼ 1.6m in diameter and between 12 to 14 PMTs each, with a total of 880 PMTs.
The PMTs have a time resolution of 25ns. With this system the detector covered the entire sky (each PMT
was 5o × 5o of the sky). Later in 1986, has installed a second detector with 36 mirrors at 3.4km away from
the original to make stereoscopic reconstructions. Until the Pierre Auger Observatory (PAO), this was the
most important experience of this type.

3.4.1.8 EAS detection in other frequencies

The EAS also can be study at radio frequencies. It is believed that radio waves have geosynchronous origin.
When the electron-positron pairs propagate in the atmosphere, they feel the Earth’s magnetic field, which
curve the trajectories in the opposite direction, this creates an electric dipole that propagates at the speed of
light and generate radio waves with ∼ 100MHz. The atmosphere is very clean for these frequencies and the
detectors can be very effective in detection, even so we can not use them for themselves but as a complement
to other methods. Electric storms may overlap measurements. One example is the Low-Frequency Array
(LOFAR) in Nederland.
Another area which is currently being study for possible detection, is in the microwave. These come from
the plasma in the atmosphere created by the passage of EAS (is not seen yet).

3.4.2 Ground array

The experiences of the ground arrays type, measure the particles of the EAS that reach the ground, where
the system is installed. The altitude where these detectors are installed, depend on energy to be measured.
If we want to measure energies of 1015eV , we can not put detectors at sea level since they would detect
very few particles. If the altitude was high, we could be above Xmax development of the EAS of UHECR
and therefore we would not be sensitive to these showers. Typically, the detectors are scintillators and/or
Cherenkov tank that allow us to detect photons, electrons, muons and hadrons and are spread at regular
distances in a region.
In figure 3.7, is represented a possible event where each number expresses the density of particles detected
by each of the detectors. The circles joins detectors with the same density and x represents the core of the
shower. If the event is vertical, we can fit the lateral profile with the equation 3.14, however, for events oblique
need to know the geometry of events, because the lateral profiles are perpendicular to the propagation.

To obtain the geometry, at fisrt, we can consider that the EAS propagates as a front of particles with the
shape of a flat disc, relatively thin. Thus, the detection time difference between consecutive detectors would
give us the geometry. If this was so simple we would need only three detectors to determine the direction.
But, as shown in the figure 3.7, the front of the EAS is curved instead of flat and its thickness increases
with distance from the axis of the event. Fluctuations in the tanks further away from the core will increase
and there is still the background from particle simultaneously detected with the EAS. Each experiment uses
different parametrizations for these effects in reconstruction and they depend on the installed structure. To
find the geometry, we fit the parametrizations for all points and we ignore the points with worse χ2 until the
solution stabilizes. Do not forget that there are no completely analytical models for the distributions and so
it is necessary to use Monte Carlo to predict the results.
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Figure 3.7: In left we have a scheme of a ground array with a detected event. The numbers are the intensity
of the signal in each detector, which circles equals density and since the signal fluctuate with Gaussian
distribution, some detectors are not triggered. In right, we have a scheme of a plane front in dashed line, in
the grey shadow we have a realistic front and in the black line curved front.[11]

With the geometry established we obtain a lateral profile, and then we can estimate the energy of primary
particle and composition, it will be related to the relative abundance between electrons and muons. Although
it is not possible to recover the longitudinal profile, currently, we study the muon distribution profile taking
into account the arrival time of muons.
This method is also dependent on hadronic models in Monte Carlo, as in the case of fluorescence methods.
The advantage of this method compared to previous ones is that does not depend on the parameters of the
atmosphere or background light, having a duty cycle of 100%.
One of the most important experiences of this type was the Akeno Giant Air Shower Array (AGASA),
operated by the Institute for Cosmic Ray Research, University of Tokyo at the Akeno Observatory, in Japan.
It covered an area of 100km2 and consisted of 111 surface detectors for electrons and 27 detectors under
absorbers for muon. The detectors were spaced with 1 km and as HiRes, it allowed the study of the end of
the CR spectrum.
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Chapter 4

Hadronic models

The ultra-energetic cosmic rays (UHECR) are mainly hadrons that interact with the atmosphere. Thus,
the hadronic interactions are very important being the first to occur in the development of a cascade, they
may alter considerably the shape of the longitudinal and lateral shower distribution of particles. The biggest
problem is that the shower develops forward, ie in the regime of forward physics, which the theory can not
describe and accelerators can’t give us data. To make it even more difficult, the energies that occur in cosmic
rays are several orders of magnitude higher than in accelerators, ie well above the available data. The models
of these interactions, have to make extrapolations and cosmic rays results are sometimes contradictory.
In this section we’ll talk a little about the models used in Monte Carlo simulations to describe the hadronic
interactions. I’ll start to see the hadronic interactions in terms of perturbative (QCD), and then talk about
some of the foundations of phenomenology of the models and compare the results in comic rays with various
models.

4.1 Introduction

A very important process in the study of QCD is the Deep Inelastic Scattering (DIS). This consists of
scattering of a lepton by a hadron. In figure 4.1a), the DIS is represented and we should set the following
variables:

q = k − k′; Q2 = −q2; ν =
p.q

M
; x =

Q2

2p.q
; (4.1)

where, Q2 is the momentum transferred in the reaction and x is the momentum fraction of the parton (inside
the hadron) that interacts. We can distinguish different regimes depending on the value of Q2. At very
low Q2, the photon exchanged at DIS has a resolution too small (1/Q2 is too big) and hadrons are seen as
point particles. In this regime, Mott equations works. With increasing Q2, the resolution 1/Q2 increases
(the Mott cross section is less true) and the hadrons appear as particles with finite size. In this context,
most interactions are elastic, but now we can study some features of hadrons through the Rosenbluth cross
section (see [45]). The most interesting thing occurs when the energy increases further. In this regime, with
(p + q)2 = −Q2 + 2ν + M2 � M2 the resolution allows studying the internal constitution of hadrons, the
cross section is dominated by inelastic interactions (with the destruction of the initial hadrons). The great
importance of that process, is that we only need the energy of initial and final lepton and the mass of the
hadron to know all variables in Eq 4.1. To study the cross section of this process we need to calculate the
amplitude of the process,as we do not know the structure of hadrons (in figure 4.1a as a circle) then we
parametrize it by the most general symmetric tensor Wµν . The amplitude is given by:

|M̄ |2 =
e4

q4
LµνW

µν (4.2)

Lµν is the leptonic tensor of QED. Then, with the generalization Wµν = −W1g
µν + W2

M2 p
µpν + W3

M2 q
µqν +

W4

M2 (pµqν + qµpν), we can simplify the cross section in term of Wi (see [45]). One of the most important DIS
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experiment was held at SLAC [66] in the 60s, which gives them the Nobel Prize at 1990 (see fig. 4.2a). Here
they found the Bjorken scaling, where the form factors (F1(x) and F2(x))don’t depend on Q2 but only on x.
The form factors comes from the contraction of the previous amplitude and it contains the information about
the structure of the proton. By the time, Bjorken and Feynman created the parton model which serve as
the basis for QCD, and we have F2(x) = 2xF1(x) = νW2(x) = Σif

h
i (x)e2

ix, where fhi (x) is the distribution
function of the parton i with charge ei. In this model, the proton was constituted by partons (fermions with
electric charge that interacts with strong force). Since partons are point-like particle and loosely bound, it is
easy to obtain Bjorken scaling, however the DIS experiments say that these partons only carry ∼ 54% of the
total energy. The QCD solved this problem with the gluon vector boson. The gluons are exchanged between
the quarks (previously partons) mediating the strong force. The gluons can also fluctuate producing quark
anti-quark pairs (called the sea quarks). Since they can have arbitrary moment, therefore it can be created
quarks of any family but they exists in very small time scales. So ∼ 46% of the energy is in the sea quarks
more gluons, and the previous ∼ 54% are the valence quarks. Each hadron has 3 valence quarks and DIS
form factor can give us the parton distribution function (PDF) fhi (x) (for further detail see [45])

4.1.1 Asymptotic freedom and confinement

The Bjorken Scaling is easily obtained considering that quarks are loosely bound, but if the gluons exchanged
between them take about 46% of total moment (directly or indirectly), this suggests that the interactions
between quarks are really important.
The QED is also a quantum field theory like QCD. So if you think now in an electric charge in a vacuum, we
know from QED that the electron radiates photons constantly and they will produce electron-positron pairs.
The positrons are attracted towards the electron (opposite charges attract each other) and the electrons will
be repelled. This causes that the vacuum will be polarized around the electron as a dielectric, causing an
effect of screening. Basically, if we measure the charge, the effect of screening causes the increase of measured
charge as we approach the electron. If the charge increases then the coupling constant increases. Closer to
the electron the virtuality Q2 is higher and so the electromagnetic coupling constant increases with energy.
In the case of QCD, quarks will emit gluons which in turn emit q − q̄ pairs, in addition to these, the gluons
can also produce more gluons (increasing the effect). The big difference here is that the quarks with the same
color attract each other, it creates an anti-screening, ie if we measure the actual color of a quark, as we walk
away we would see an increasing amount of color. As the strong force is greater, then this effect dominates
and the coupling constant increases with distance, which is the same as decrease virtuality or energy. The
coupling constant αS of strong force with a loop is given by:

αS(µ2) =
4π

(11− 2
3nf )log µ2

Λ2
QCD

(4.3)

where nf is the number of quark flavours and Λ2
QCD is the scale bellow the coupling constant diverges.

Experimentally, ΛQCD ∼ 200MeV and tells us the typical time scale of strong interactions (using the
Heisenberg’s Uncertainty relation): TS ∼ 1

ΛQCD
. Most of the gluon virtualities will be of this order, with

many gluons inside the hadron, due to the intensity of the strong force. In DIS experiments, we are in a
regime of high virtualities (greater than GeV) and therefore the time scale of interaction between the virtual
photon and the quark is Tint ∼ 1/Q (Q is the virtuality of photon). If Tint � Ts, then the process of
scattering occurs at a time scale much smaller than the scale of the strong force and quarks can thus be
viewed as loosely bound partons (the initial assumption of the parton model is correct). This phenomenon
is called asymptotic freedom. We should note that if the virtualities were low, the coupling constant would
increase and diverge (for low Q2) and this is the big problem of QCD.
Finally, another interesting phenomenon is that if we have a quark pair (with the sum of colours equal to zero)
and try to separate the two quarks then the observed color in each one will increase (by the anti-screening
effect). If the color around quarks increases, the coupling constant also increases and hence the potential
energy grows very quickly. If we continue to increase the distance between the quarks we get to a point where
the potential energy is enough to produce real quarks. These new quarks bind to old quarks creating two
sets of diquarks without color. This make it impossible to have single free quarks or hadrons with color in
nature (they have never been detected). This is called confinement.
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Figure 4.1: a) Deep inelastic scattering within the parton model,b) hadron-hadron interaction in QCD.

Figure 4.2: a) first result from slac for DIS, the σ/σMott is proportional to the form factor, then we see the
Bjorken scaling with q2.[66]b) representation of the proton in the phase space (Q2, x) with the DGLAP and
BFKL evolutions, above Q = Qs(Y ) the size of the partons are bigger then the total size of the proton, and
then we need non-linear effects of superposition of parton wave function.

4.2 Hadronic Interaction

At high energies, what happens when a proton interacts with another proton in an accelerator or when a
cosmic ray interacts with atoms in the atmosphere is highly dependent on how they interact. The way to
study these interactions relies heavily on energy and impact parameter between hadrons and is not always
possible to directly use quantum chromodynamics. With QCD, we have the vertices of interaction, ie we
have probabilities of interaction and from DIS we have the distribution functions of partons in protons, so we
would expect that we can calculate cross sections and other quantities (this is the hard regime). However, it is
not possible to solve exactly the QCD equations, but it is possible to do perturbation theory as in QED, since
the coupling constant of the strong force is small we can neglect higher order terms. The problem happens
when Q2 ≈ Λ2

QCD → αS ≈ 1, in this case, we can not disregard the higher order terms, and therefore we can
not use pQCD. This is the soft regime, which is based on Gribov-Regge theory. The hard cases, should have
an impact parameter much smaller than the soft one.

4.2.1 Evolution Equations

In the previous section, we considered that the quarks were practically free in the DIS experiments, however,
despite the asymptotic freedom, the coupling constant only decreases logarithmically with increasing energy.
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The quarks are not completely free. This causes a violation of Bjorken scaling and there is a small dependence
of the structure functions with Q2. This variation can be predicted by pQCD and it is very important for
testing the theory.
In this context, the way we see a proton changes with transferred energy Q2 and the energy of the proton
relatively to the center mass frame. As we can see in figure 4.2b), for low Q2 and energy (still in the
perturbative regime) the proton is viewed as consisting of three quarks. Around this three quarks there are
very weak fluctuations (like in the vacuum) producing q − q̄ pairs and gluons. By enhancing the Q2, we
improve the resolution with which we look to the proton and so we start to see more and more of these
fluctuations, increasing the number of quarks. However, the density of partons decreases, since the size of
partons is falling faster than the increase in the number of quarks. The number of partons increases with
the Q2 logarithm, while the size decreases with 1/Q2. We can conclude that what was once a quark is now
a set of quarks that are very close. These type of evolution equations is obtained by DGLAP (Dokshitzer,
Gribov, Lipatov, Altarelli and Parisi).
If we increase the energy by keeping the value of Q2 constant, the number of partons grows very quickly, but
the resolution size remains the same and then the density of partons becomes ever greater. The equations
BFKL (Balitsky, Fadini, Kuraev and Lipatov) represent this evolution.
This growth was observed in HERA, however, due to the finite size of protons, the number of partons can not
grow indefinitely, then we will have a saturation level Qs. Above this scale we have overlap between partons
and recombination or multiple diffusion, so we need nonlinear effects that are far from being understood.
The formalism to describe this latest scheme is called Colour Glass Condensate.

4.2.2 Perturbative QCD

Perturbative QCD is based on the existence of asymptotic freedom, ie, because the coupling constant decreases
for small distances, we can use perturbation theory. We can use the theory in situations where we have large
energy transfers or in which the distances between partons are small. As mentioned, a large energy transfer
means that the time scale of interaction is very small and we can ignore the other spectator partons. The
cross section of two hadrons interacting (called inclusive cross section) can be factorized into several terms
(figure 4.1b)) and has the form:

σh1,h2

incl (P1, P2) = Σi,j,k

∫
dx1dx2f

h1
i (xi, µ

2)fh2
j (xj , µ

2)σ̂i,j(xiP1, xjP2, Q
2/µ2)Dk→hf (z, µ2) (4.4)

where fh1
i is the PDF for the hadron h1 with total momentum P1 in order to momentum fraction xi of

parton i that interacts. As we do not know exactly the quarks moment in question, we integrate over the all
distributions fhki (xk, µ

2), where µ2 is the factorization scale at which the PDFs are defined. This represents
the initial conditions considering that the partons inside one hadron are independent from the others hadron’s
parton. σ̂i,j is the short distance (perturbative) cross-section for the interaction between the two partons.
It depends on the momentum fraction of the parton xiPk and energy transferred between them. It can
be computed using the Feynman rules for QCD. Some processes occur at tree level, while others are only
possible at higher order of αS , just as in QED calculations. The question is that it can only be used in the
perturbative regime.
Finally, Dk→hf (z, µ2) represents the hadronization of a final parton k to a hadron h of the final state carrying
the fraction z of the parton momentum k, at the energy scale of Q2. This is described by fragmentations
functions, however, we should note that this occurs in the non perturbative regime and is therefore not
possible to calculate from first principles, being obtained experimentally. The hadron-hadron interaction
(such as proton-proton) are very complex, so hadronization is usually studied through the process of e+e−

annihilation with the production of q− q̄ pairs. Since it is a purely non-perturbative process that happens at
the Q0 scale and for which there are only models. Several models exists, of which the most successful ones
are the (Lund) String model and the Cluster model based on which Monte Carlo simulation programs were
build.
Despite the possible calculations, at high energies (

√
s � 10GeV ) the inclusive cross section in proton-

(anti)proton scattering exceeds the total one. This is due to the multiple scattering reactions and to include
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this multiple reaction, we need an eikonalization of the form [46]:

σh1,h2

inel (s) =

∫
d2b{1− exp(−A(b)σh1,h2

incl (s))} = Σσh1,h2
m (s) (4.5)

with σh1,h2
m (s) being the cross section for m scatterings, A(b) the proton-proton overlap function of the two

profiles and:

σh1,h2
m (s) =

∫
d2b

(A(b)σh1,h2

incl (s))m

m!
exp(−A(b)σh1,h2

incl (s)) (4.6)

This picture, can recover the data results but we don’t have any clue how to proceed for nucleos-nucleos
collisions.

4.2.3 Soft interaction

In the regime where perturbation theory can not be used, we utilize phenomenological hadronic models based
on the Gribov-Regge theory (GRT)[46][47]. The soft interactions with low Q2 are the interactions with a
large impact parameter, far from pQCD. Thus, we can not have interactions according to the vertices of
QCD (can not have an exchange of gluons or partons), since the confinement will not allow that a gluon or
a parton could leave the first hadron to the second (it won’t have enough energy). But is an interaction,
something has to be exchanged, so it’s considered that it exchanges pomerons, imaginary particles that have
the vacuum quantum numbers (basically no color), like pions or glueballs.
According to the optical theorem we have σtot = 1

2s2ImT (s, t) where s and t are the Mandelstam variables
and T is the elastic amplitude parametrize by (ref. [46]):

T (s, t) ∼ isα0+α′t (4.7)

with few parameters, where α0 is the intersect and α′ is the slope of regge trajectory. The inelastic cross
section is:

σh1h2

inel =

∫
d2b{1− exp(−G(s, b))} (4.8)

G(s, b) is the eikonal proportional to the Fourier transform of T (s, t).
Interactions with soft pomerons are also known as diffractive processes. We have to refer that to include the
jet production we need to include equation 4.4 in the GRT approach called GRT+minijets. However, the
eikonalized parton model and GRT+minijets in the end are almost the same thing but with different starting
point.
The models have introduced semi-hard interactions, since in an interaction viewed as a ladder or a cascade
(see next section) some part of the cascade can develop in low virtualities parametrized by the soft pomeron
and partly develops at high virtuality region (with pQCD). In this way, we can consider that ladder/cascade
as one pomeron.

4.2.4 Parton ladder and multi-scattering

As we can only use pQCD above a threshold in Q2, then the hadronic models treat these interactions as the
exchange of hadrons parton ladder (figure 4.3a). These diagrams represent the perturbative interaction or
hard. In newer models, it is considered that the parton ladder corresponds to an hard component and a soft
component (b and c). This is due to the fact that even in high energy we can have peripheral interactions
that have low virtualities.
The partons interact and leave behind remnant particles from the original two hadrons (figure 4.3a and
4.4a). Thus we have three types of origin of the particles, they may come from the target or projectile (outer
Contributions), and they may originate from the ladders (inner Contributions). In figure 4.4 b, is depicts the
two contributions in various experiments.
One can also consider the splitting of the ladder. The ladder will be re-scattered with the hadrons. This
process can be elastic or inelastic (figure 4.3). The elastic part will make a screening effect decreasing the cross
section, while the inelastic will greatly increase the number of particles produced. The ladder can be closed,
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ie it is as if there were two ladders, with opposite effect, not altering the constitution of original hadrons.
This ladder is very important because it makes a major contribution to effective elastic cross section. In the
calculations of cross sections, for the same number of inelastic scattering, we must account any number of
elastic multi-scattering, which leave the same final result.
The effects of multi scattering are present in the above description but not consistently because the energy
shared between many pomerons is taken into account, but the energy conservations is not taken care in a
consistent way in the cross section calculations.

Figure 4.3: a)representation of an elementary interaction (in EPOS), we can see closed parton ladders
(providing screening) and open parton ladders [48], b) multiscattering in EPOS, above one inelastic interaction
(cut pomeron) with various numbers os inelastic interactions (uncut pomeron), in EPOS, for each cut pomeron
we have to sum all terms with different uncut pomerons that have the same final result [49]. In QGSJET-II
we have re-scattering of the pomeron, and we can have a triple pomeron vertex represented in c), with the
contributions of soft and semi-hard pomerons [50].

Figure 4.4: a) representation of the origin of produced particles. Some particles come from the projectile and
target (outer contribution), and from the ladder (inner contribution). b) The inner and outer contribution
(full and dashed lines respectively) for several experiments, the inner part grows with energy (since pQCD
is more important and mini-jet cross-section can be used) [52]. c) particle production representation within
string model [53].
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4.2.5 String model

After having calculated the interactions, the ladder and pomerons will break up producing particles, and the
partons spectators too. The model most used in the hadronic codes for hadronic interactions calculation is
the model of the strings[49] (and see detail in [51]). Basically, different quarks that are moving create a color
field between each other called string. If these quarks move apart, then the potential energy of the string
will increase. This is due to the confinement effect. With increasing distances between quarks, the potential
energy increases and then we could have energy to create new quarks, which will move apart again until
new production. We can create pairs quark-antiquark or diquark-anti diquark, producing meson or barions
respectively. In figure 4.4c) are represented string breaks in e−e+ annihilation in virtual photon, that decay
into q − q̄ pair.

4.2.6 Glauber formalism

One way to extrapolate data from accelerators is through the Glauber formalism [54] (figure 4.5). He noted
that the scattering amplitude as a function of impact parameter and energy in the center of mass can be
viewed similarly to a diffraction in optics, using a change phase relation:

a(s, b) = 1− eiχ(s,b) (4.9)

where a(s,b) is the Fourier transformation of the elastic amplitude (previously denoted in eq.4.7 by T (s, t)), s
is the energy in the center of mass, b the impact parameter and χ the eikonal function (like previously seen).
For multi-scattering (hadron-nucleus A) we have:

ahA(s, b) =
= 1− eiχmult(s,b)
= 1− eiΣjχj(s,b) = 1−Πje

iχj(s,b) = 1−Πj(1− aj(s, bj))
(4.10)

where χmult is the sum of each phase sifts χj(s, b) for each scattering nucleon, so that j is the sum over all
nucleons A. The total cross section is then:

σhAtot = 2Re

∫
ΓhA(~b)d2b (4.11)

and ΓhA(~b) = 1−ΠA
j [1−

∫
aj(~b− ~bj)ρj(~rj)d

3rj ], where we consider that the nucleons was not correlated so

ψ ∗ (~r1, ..., ~rA)ψ(~r1, ..., ~rA) = ΠA
j ρj(~rj). ψ is the wave function of nucleons and ~rj is the position of nucleon

j and
∫
ρj(~rj)d

3rj = 1. In the picture 4.8b) we see the proton-air cross section with a few data points of
accelerators and their extrapolation to higher energies by Glauber and extrapolations of various models. The
shadow in blue, represents the uncertainty of extrapolations.

Figure 4.5: a) the picture represents a target hitting a nucleus with impact parameter b and we also have
the relative impact parameter for each of the nucleons, most of the models consider individual separated
nucleons in the interactions [54]. b) the general pomeron in QGSJET-II consists of a soft and a semi-hard
pomeron [57].
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4.3 Hadronic models

In this section, I will speak of the main hadron model in simulation of cosmic rays, as QGSJET-II, SIBYLL
and EPOS. These models use the accelerators data to extrapolate to much higher energies, based on some
physical assumptions. There are some problems in doing that. In accelerator, the physics studied have
basically large transverse moments, while in cosmic ray the forward physics is very important (and little
studied). In addition there are the problems of diffractive processes, where we do not have any true theory,
which implies that the assumptions used in phenomenological models may not be the most certain. And
finally we must extrapolate the data to several orders of magnitude higher.
One way to extrapolate data from accelerators is through the formalism of Glauber, see the previous section.

4.3.1 QGSJET

The QGSJET model [55] [56] [50] appeared in the 90s based on the Quark-Gluon-String model (QGS model).
The QGS model is a model based on GRT formalism and the eikonal of the probability of interaction between
a hadron i and j is:

χPij(s, b) =
γiγj
R2
ij

exp(∆y − b2

4R2
ij

) (4.12)

Where s is the energy of center of mass, b the impact parameter, ∆ = αp(0) − 1, y = ln s and R2
ij =

R2
i + R2

j + α′p(0)y. ∆ and α′p(0) are parameters of the pomeron trajectory, while y and R are parameters

to describe the vertices hadron-pomeron. The χPij is the G(s, b) in equation 4.8, and parametrizes the soft
interactions. These values are determined from experimental results.
The QGS had difficulty implementing minijets and then, the QGSJET (Quark-gluon string model with jets)
was created to solve the problem. The QGSJET considers, in addition to the soft component (pomeron),
one semi-hard component. In the model, for Q2 < Q2

0, it is used the non perturbative theory for pomerons.
If Q2 > Q2

0 is considered perturbative theory. The value is Q2
0 = 2GeV . The eikonal approximation is now

(see pomeron in figure 4.5b):

σij(s, b) = χsoftij (s, b) + χhardij (s, b) (4.13)

where χsoftij (s, b) is the soft part given by the formula above and χhardij (s, b) is the part of semi-hard. In the
regime of the second term we have a cascade that partially develops with low virtuality and partly with high
virtuality, then we have:

χhardij (s, b) = r2

∫
dy1

∫
dy2χ

soft
ij (eyi+yj , b)

1

2
σhard(e

y−y1−y2 , Q0) (4.14)

y is the rapidity, y1 and y2 represent the extreme rapidity of the pomeron, σhard is the hard cross section
and r2 is a fitting parameter related to the partons density. Therefore we get χsoftij for Q2 < Q2

0 and χij for

Q2 > Q2
0. The total cross section is given by:

σ
(tot)
ij (s) =

1

Cij

∫
d2b{1− exp[−Cij(χsoftij (s, b) + χhardij (s, b))]} (4.15)

Cij is the shower enhancement coefficient and takes the value Cpp = 1.5. We can also write the cross section
in function of the number of n pomerons and m semihard block exchange in the interaction as:

σ
(n,m)
ij (s) =

1

Cij

∫
d2b{

(2Cijχ
soft
ij (s, b))n

n!
×

(2Cijχ
hard
ij (s, b))m

m!
×exp[−2Cij(χ

soft
ij (s, b)+χhardij (s, b))]} (4.16)

The production of particles is obtained through the model of the strings.
The QGSJET was made with the assumption that the exchange of a parton ladders and pomerons occur
independently. However, in the regime of high energies and small impact parameters there are many partons
and therefore there are also many scattering processes, leading to the overlap and interaction of ladders and
pomerons . These types of interactions are shown in figure 4.3c).
To introduce this nonlinear effects in QGSJET comes the QGSJET-II. Although it was considered that these
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nonlinear effects occur mainly at low virtualities (ie Q2 < Q2
0). This new model also includes parameteri-

zations of realistic nuclear density of each nucleus and the parameters were updated with the latest results
from HERA [56].
In references [56] and [58] we see the comparison between the latest and older version of QGSJET model.
Since in this version there is interaction between pomerons, then the inelasticity will be lower because it is
more likely to have elastic scattering (see fig. 4.6a). And as we do not have individual pomerons producing
particles but rather the result of interaction between them, then we now have lower multiplicities. With
lower multiplicities and inelasticities, particles with more energy will be produced. Thus are produced π−π+

with more energy, so they are more likely to interact (because they live longer). If these pions interact, they
will produce neutral and charged pions. The neutral pions (with a very short life) will decay into photons
which in turn produce electrons. Thus, the showers produced with QGSJET-II will present a larger electronic
component and a smaller muonic component than the version QGSJET-I.

4.3.2 SYBILL

The SYBILL model[59][60] is a model based on the Dual Parton Model (DPM) with minijet production
superimposed. The current version is 2.1 which replaces the 1.7 version that could not reproduce many of
the recent data. The 1.7 version had p-p cross sections with a larger increase than measured and for example
on average the multiplicities are too low at high energies.
The DPM considers that nucleons consist of a quark and a diquark and thus, in a pp interaction, there
is a gluon exchange between these two constituents (with the reorganization of color). With this, the
quark/diquark combines with the quark/diquark of the other proton forming a string. Each string will
then split up according to the string model, producing particles. The distribution of the quark in the nucleon
as a function of the momentum fraction x is:

fq(x) =
(1− x)α

(x2 − µ2/s)1/4
(4.17)

Where α = 3.0 and µ = 0.35GeV is the effective mass of quark. The distribution of the diquark will be
fqq(x) = 1− fq(x).
This was more or less the simplified model of DPM, however already in accelerators with energy in the center
of mass around 100GeV, the model was not able to reproduce the high multiplicity, the increase of transverse
momentum, the increase in transverse jets and increase in the central rapidity with energy. In order to solve
these problems in the hard regime, the model is improved based on minijets with the cross section given by
equation 4.4. The version 2.1 now uses the distributions results from HERA.
This cross section can not rise indefinitely with energy, because of the size of the proton. Thus, when the
number of gluons/quarks multiplied by the resolution of the interaction (∼ 1/pT ) is approximately equal to
the size of the proton, we can not neglect the nonlinear effects and therefore in the model is considered that
the cross section stops being valid. The minimum pT where you can use the previous equations grows with
energy. The 1.7 version used a cutoff pminT =

√
5GeV , where above this value we could use the minijet model.

This cutoff independent of energy does not help to reproduce the data. So the new version has the cutoff:

pminT (s) = p0
T + Λ exp(c

√
ln(s/GeV 2)) (4.18)

p0
T = 1GeV , Λ = 0.0065GeV and c = 0.9. This cut comes from geometric arguments based on the condition:

αs(p
2
T )

p2
T

.xg(x, p2
T ) ≤ πR2

p (4.19)

αs is the strong force coupling, g(x, p2
T ) is the guon density and Rp is the proton radius. The g value is

obtain by Hera results, g(x) ∼ 1/x0.4 (the previous version uses ∼ 1/x). The minijet cross section (as was
told before) quickly rises exceeding the total one, so the model consider that it is formed more than one
minijet at a collision. The number of hard interaction is then nhard(b, s) = A(b)σQCD(s) like we see in
section 4.2.2, A(b) is the profile function. The cross section is then given by:

σtot = 2π
∫
db2(1− e−χ(b,s))

σine = π
∫
db2(1− e−2χ(b,s))

(4.20)
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where the iekonal has the form:
χ(b, s) = χhard(b, s) + χsoft(b, s) (4.21)

The hard iekonal is chihard(b, s) = 1
2nhard(b, s). In version 1.7, the soft part was χsoft(b) = 1

2CA(b) (C is a
parameter). In new version, to account for energy dependence, we have χsoft(b, s) = 1

2A(b)σsoft(s), and:

σsoft(s) = X(
s

s0
)∆eff + Y (

s

s0
)−ε (4.22)

ε is a parameter for reggeon exchange and ∆eff parametrize in some way the subdivision of pomeron term
into soft and hard component. All those parameters are fitted to the data. See fig. 4.6b) for compare the
version 1.7 with 2.1. The nucleus-nucleus interaction still does not have the Glauber formalism completely
implemented and needs to be improved.

Figure 4.6: a) inelastic h−1 4N cross-section for QGSJET-II, QGSJET and SYBILL (full, dashed, and dotted
curves correspondingly).[58] b)The total and inelastic cross section of p-air and p-p for SYBILL, in red and
dotted line if the version 2.1 and 1.7, and with dashed line the minijet cross section(which diverges).[60]

4.3.3 EPOS

Figure 4.7: a) interaction between two nucleus with cut and uncut pomerons [49], b)Inelastic and elastic
splitting of a parton ladder, i.e. a re-scattering of a parton from parton ladder with a second extra parton
from the target [61].

EPOS [48][52] is a model founded on the parton based Gribov-Regge theory[46]. An elementary inter-
actions is given by a parton ladder exchange. This parton ladder is a cascade of particles like in figure 4.3.
At moderate energies, this ladder was considered to contain two parts: the hard part, where the cascade
develops following pQCD, and the soft part where they follow the GRT. Like in the previous models, the soft
amplitude is parametrized, and has the form:

Tsoft(s, t) = 8πs0ηγ
2
part(s/s0)αsoft(0) exp(λ

(2)
soft(s/s0)t) (4.23)
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with λ
(n)
soft = nR2

part+α
′
soft ln z. αsoft(0) and α′soft are the intercept and the slope of the pomeron trajectory,

γ2
part and R2

part are the vertex value and the slope for the pomeron-parton coupling, and s0 ' 1GeV like
previous is the hadronic mass scale. The hard contribution follows the equation 4.4
The interesting feature of EPOS approach is the way it deals with multi-scattering. One of the problems of
hadronic models is to treat consistently the energy conservation in interaction (principally in more than one).
So EPOS has tried to consider energy conservation in each individual interaction, contrary to QGSJET that
accounts for it in the end of the multi-scatter calculation, so there are no energy conservation between each
interaction but only in the final result. This is due to the fact that, EPOS consider the interactions between
partons whereas QGSJET considers the interactions between hadrons.
If we have an inelastic interaction (the cut pomeron at figure 4.7a) in dashed line) we have to sum the
contribution of one elastic scattering (the uncut pomeron), two elastic scattering and so on, because the
elastic interaction does not change the final state, but corrects the cross-section. If we had two or more
inelastic interaction we follow the same thing. In this context, we define m as the number of inelastic
interaction and for m=1 we have x+

1 and x−1 that is the traditional x, but referring to the two partons that
interact from each hadron.
For nucleus-nucleus interaction we still have the m inelastic interaction, but now we have also the multi
interaction coming from the various nucleus. Consider the nucleous A and B, we have X− = {x−k,µ} and

X+ = {x+
k,µ}, where we have k nucleons and µ is the number of inelastic interaction in each nucleon (see fig.

4.7). In this way the inelastic cross section is:

σinel(s) = Σm

∫
db2Ω

(s,b)
AB (m,X+, X−) (4.24)

Here m is a vector like X± and is m = mk, where mk is the number of inelastic interaction for each nucleon.
Therefore in cross section we have to sum over all possible m inelastic interactions (with different final state).

If we want a partial cross section we don’t sum and Ω
(s,b)
AB (m,X+, X−) is the probability of that reaction.

Ω
(s,b)
AB (m,X+, X−) = ΠAB

k=1{
1

mk!
Πmk
µ=1G(x+

k,µ, x
−
k,µ, s, bk)}ΦAB(xproj , xtarg, s, b) (4.25)

where ΦAB represents the sum over all elastic interactions (uncut pomerons, see ref. [46]).
When two parton interacts, we can have third parton very close so the parton ladder between the fisrt
tow parton will split and interacts with the third one (figure 4.7). This efect increases with the mass of
hadron/nucleus involved, since there will be a bigger chance to have some parton very close to the parton
ladder. These ladders can be again elastic or inelastic (closed or open), the addition of closed ladder, in
the spliting of the first ladder of in the ladder re-scattering will decreases the partial cross section. In
hadronization we have to care that since one parton of the ladder is close to a parton of the splitting, and the
splitting is attached to the original ladder, then we have to do a collective hadronization. Particle production
are made within the string model approach.

4.3.4 Comparison between models

In this part, we will compare the models at the level of multiplicities, inelastic and cross sections, and the
results obtained from air shower simulations. The models compared are QGSJET-II, Sybill 2.1 and EPOS
1.9.

4.3.4.1 Cross section

In the figure 4.8, we can see the inelastic cross section and total one for several models compared with some
data. In the total one, it is represented the uncertainty of the extrapolation of σp−air from accelerators
within the Glauber formalism. The cross section is very important and can change many observables in CR.
It’s is interesting to note, that the cross section for EPOS 1.6 is much higher than the version 1.9. This
fact is due to the introduction of the non linear effect in the last version, i.e. the last version considers the
re-scattering and multi-scattering with closed and open ladder. The closed ladder will decrease the partial
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Figure 4.8: a) Inelastic cross section p−Air from [62]. b) Uncertainty of the extrapolation of p−Air cross
section from accelerator to CR energies [54].

cross section and than the inelastic one decreases too. The QGSJET-II is lower too, since it also have the
non-linear effects (due to saturation). The SIBYLL is a more simple model and is more dependent on minijet
cross section, so it presents higher values that comes from the higher growth of the minijet cross section.

4.3.4.2 Inelasticity and Multiplicity

Figure 4.9: a) Multiplicity of the interactions from [62], b) inelasticity k.

The inelasticity (k) is defined as k = 1 − EL
Ep

, with EL being the energy of the most energetic particle

(leading particle) produced in the reaction and Ep the energy of the primary particle. If the inelasticity
is small, it means that the leading particle carries much energy, and can leave the shower to develop more
deeply.
We can see the inelasticity for the three models in the figure 4.9b). The results are very close, but the
QGSJET has the larger changes. In the graphic at low energy it has the smallest inelasticity, and at higher
energies it has the higher inelasticity. This change is due to the non-linear screening corrections introduced
in version II. In ref. [58], we can see the QGSJET version II compared with version I, and at smaller energies
non-linear corrections will decrease the interaction iekonal reducing the inelasticity. At higher energy this
effect is less important compared with a steeper parton momentum distribution.
The multiplicity is the number of particles produced in one interaction. If the inelasticity is high, the leading
particle carries less energy and then the multiplicity should be high, but it is not completely necessary. In
figure 4.9a), we can see that the QGSJET-II have a much higher multiplicity than the others models and so,
the leading is less energetic (is energy has to be distributed for more particles). The new version of EPOS has
a much lower multiplicity than the previous version and even the other models because the re-scattering with
closed ladder decreases the production of particles, and so the leading can have high energy. The interesting
case in SIBYLL is that it produces more particles than EPOS, but the leading particle is more energetic
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than in EPOS. This is due to the fact that SIBYLL like many other models treats the first scattering much
different from the subsequent process. First it makes the first interaction alone, and after that it makes the
following scatters. We became with a less democratic distribution of energy in the produced particles, since
many of them could go to the first scatter.

4.3.4.3 Shower maximum

Figure 4.10: a) Xmax for a wide energy range [63], b) Xmax predictions from recent hadronic model at ultra
high energy [62].

The results commented before, are the main variable that control the shower development. They give
us if the shower develops quickly or slowly, and so more or less deeper, for example. In figure 4.10, we s
thhow the average shower maximum Xmax obtained with the several hadronic models and compared to data.
In left, we see the evolution of 〈Xmax〉 from 1014eV to 1020eV , like we said in section 2.1, the composition
goes from light to heavier composition until ankle energy. After that, the composition becames again lighter.
From the result from simulation, we can see that the shower maximum is deeper for protons than iron at
same energy, this is due to the fact that an iron CR with the same energy will divide that energy over it’s
nucleons, so each nucleon will have less energy and will travel less through atmosphere. Moreover, the iron
with many nucleons, will produce a big number of particle, and then the shower develops quickly.
If we look at proton predictions, we can see that the EPOS 1.9 shower develops more deeply than version
1.6, it have a big 〈Xmax〉. Since 1.9 EPOS has lower multiplicity, than the produced particles will have more
energy, living more and travelling more into the atmosphere.
The QGSJET model has the higher multiplicities and inelasticities, then it produces many low energy par-
ticles, causing a quick shower development and as a result, it have the smallest Xmax. For the same reason
the EPOS have the bigger Xmax.

4.3.5 Muon and electron numbers

The muon number predicted by hadronic models is very important, since the energy reconstruction is based
on the total energy deposit in atmosphere by the electromagnetic component and the muons practically do
not deposit energy. If the muon number is higher, then total energy deposit will be smaller then the CR
energy.
In the figure 4.11 a), we see that the number of muon is very different between the models. The EPOS is the
model that produces more muons, it even produces more muons with a proton primary then the others two
models for an iron primary. If this high value is correct it can change the results, from energy reconstruction
to lateral profile studies. It’s interesting to note that PAO claims a possible lack of muons in air showers
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Figure 4.11: a)number of muon over energy for several models [62], b) ratio of π0 number over number of
charge particles [61], c)total CR energy over energy deposit in atmosphere for several models [64].

simulated with the current hadronic interaction [61] (so EPOS could go in the good way).
The EPOS produces more muons because especially in π−Air interactions, it creates less π0 then the other
models, since π0 feed the electromagnetic cascade, then EPOS makes a more important muonic component
(from charge pions decay) then other models (see figure 4.11b)).
The EPOS muonic component is bigger and so the the fraction of CR energy that can be deposit in atmosphere
will be smaller. In figure 4.11 c) is plotted the fraction between the total and the deposit energy as a function
of energy. At 1017eV EPOS predicts that the original CR proton will have ∼ 17% more energy then the
total energy deposit, while QGSJET and SIBYLL have ∼ 13% more. At energy higher this differences get
less important (less then 10%), but it’s crucial to have a good estimate of the missing energy into muonic
component to make accurate energies reconstructions. With more muons, we could have higher energy
reconstruction.

Figure 4.12: a) lateral profile for γ, e± and µ± [65], b) prediction of Cherenkov density in the tank for 1019eV
vertical proton in function of distance [64].

Concerning the lateral profile (fig. 4.12) we see that γ and e± have very similar result for the models, the
only different more prominent is the number of muons as was been said. The density of muons at 1km shows
an excess of about 30 to 40% from EPOS compared with QGSJET. This excess from EPOS could decrease
the energy reconstructed from lateral densities.
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Chapter 5

The Pierre Auger Observatory

The Pierre Auger Observatory (PAO), is the largest cosmic ray experiment at the present. The project was
presented to the scientific community in 1992 by James Cronin and Alan Watson. The name of the observatory
came from the French Physicist that discovered the EAS (chapter 1). It consists in two different zones, one
in southern Argentina (The Southern Observatory) and another in USA (The Northern Observatory). In
this chapter, we describe the Observatory and the current state of the results of ultra high energy cosmic ray
(UHECR).
There was many reasons to built this experiment. For example, the results for the end of the spectrum were
not consistent. In AGASA [67], there was an overflow, while in HiRes there was a smaller flux consistent
with the GZK effect [69]. But the error bars could accept both values, since for very high energies there is a
very low statistics. It was also not possible to do a statistical analysis for other matters as the composition,
sources and study of anisotropy and intergalactic magnetic fields. With this experiment, it was expected
about 30 events per year at energies of 1020eV .
The Southern Observatory is located on Pampa Amarilla, next to Mallargue, Province of Mendoza, Argentina
(35o South). While the Northern is to be located at Lamar, Colorado, USA (38o North). With these two
locations, we can cover the full sky. PAO, uses a hybrid technique, where we incorporate the two most
successful past techniques, the fluorescence detector (FD) and the surface detector (SD).
The Southern consists of an array of water Cherenkov detectors, covering about 3000km2 with 1600 detectors
spaced by 1.5 kilometres in a triangular grid. They are located at an altitude of around 1400m (875 gcm−2

in atmospheric depth), with differences between them of ∼ 1%. The ground array is similar to the one
in Haverah Park. On the border of the ground array, we have four fluorescence detectors, each with six
telescopes. In the figure 5.1, we can see a representation of the observatory.
The Northern site has not yet been built, but the Southern part was completed in May 2008 and began to
record data since January 2004, with the parts of experiment that were already operational.

5.0.5.1 Hybrib tecnique

This is the most important feature of the project. Here we detect events in both SD and FD. Both techniques
are well developed, and measure completely different variables. FD observes the longitudinal profile, while the
SD sees the lateral profile. Using the two techniques is possible to do a inter-calibration between the methods
(unlike AGASA and HiRes, which could gives their’s differences), then we calibrate the measurements of
energy, and use the variables of both together to determine the composition. This is very important, since
the reconstruction of energy through fluorescence is much more independent of the models than the SD.
However, we still have 100% duty cycle for SD and 10% duty cycle where we can use hybrid techniques.
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Figure 5.1: Configuration of the Pierre Auger Observatory southern detector from [68].

5.1 Southern Observatory

5.1.1 Surface detector

As noted before, the SD has 1600 detector spacing of 1.5km in a triangular grid, covering an area of 300km2.
The grid spacing was chosen to maximize the efficiency of events to ∼ 1019eV (trigered with five tanks).
There is a wireless local area network (LAN) which is used to communicate the tanks with four antennas at
each fluorescence site. After that, the data are sent through a high capacity microwave link to the Central
Data Acquisition System (CDAS). The synchronization and position is provided by the standard GPS system.
The CDAS is located in the Central Campus, in Malargue.
Each detector is a ground Cherenkov tank, a cylinder with a diameter of 3.6m (10m2 base) and 1.2m high,
filled with approximately 12m3 of purified water. The Cherenkov light is collected by three PMTs of 9 inches,
placed on top of the tank and in steps of 120o (see figure 5.2). In addition, the inner surface of the tank,
in tyvek, has a large reflectivity to increase the light collected. Each tank also has a solar panel, two 12V
batteries (powered by solar panel), a GPS to control the time and location and a GSM, which is a wireless
communications unit [70].
The Auger Collaboration has chosen Cherenkov tanks, since this allows to study very inclined showers, they
are still much cheaper compared with other techniques, for the same performance and are expected to have
a duration of 20 years, holding out the extreme weather of the zone. On average, we expect the possibility
of distinguishing between the muonic and electromagnetic components.
When the muons and electrons or positrons pass through the tanks, they emit Cherenkov radiation which
is detected. Photons will interact in the water producing pairs that will emit Cherenkov. The radiation of
photons is ∼ 37g/cm2 length, the tank has 1gcm−3 ∗ 120cm = 120gcm2, then there are about 3 radiation
lengths and photons interact.
The Cherenkov light is detected and analysed in terms of Vertical Equivalent Muon (VEM), which is defined
as the average charge deposited by a vertical down-going muon. In cumulative data, is possible to distinguish
between muons and electrons, because muons interact less, will have an higher energy and will have a larger
signal in the tank. But in event-by-event, we only know that in tanks very far from the core, the particle
will be mainly muons.

5.1.2 Fluorescence detector

The fluorescence detector (FD) consists in facilities at the top of small hills on the edge of the SD array:
Los Leones, Los Morados, Loma Amarilla and Coihueco (see fig. 5.1). The FD was built with the aim of
measuring the energy of the shower (since this method is practically independent of Hadronic models) and to
have a resolution of 20gcm−2, since the difference between Xmax in iron and protons in the models is about
100g/cm2 (and thus would be possible to distinguish between the two).
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Figure 5.2: Left: a photograph of one of the tanks in the Pierre Auger surface array. Right: the representation
of the water Cherenkov detector used in PAO from [71].

The FD consists of four stations called ”eyes”. Each eye has a field of view of 180o × 30o [71] and is divided
in six telescopes, each with 30o × 28.6o field of view, and has an inclination of 16 degrees to the horizontal.
In figure 5.3, is depicted the layout of an eye, the building is a semicircle with 14m, each telescope pointing
radially, with a window of 3m(w) by 2.5m(h). Each eye has an antenna that communicates with part of the
SD array and sends the data from the SD and FD for the CDAS.

Figure 5.3: a) Layout of an FD eye building with 6 telescopes from [72]. b) Schematic representation of a
telescope from [71].

5.1.2.1 Optics

The telescopes use Schmidt optics [73] to eliminate coma aberration. In figure 5.3, is represented the schema
of each telescope. As we can see, outside each telescope, there is a shutter to protect the system from rain,
wind and adverse external conditions.
After the shutter, we have the aperture box, here we have a ultraviolet (UV) filter on the outer side of the
diaphragm, with 80cm × 40cm. The filter serves to reduce the intensity of the dark night background in
relation to the fluorescence light. The filter sheets are MUG6glass with 3.25mm thick, having a transmission
of 85% for wavelength of 350nm and decreases to 20% at 300nm and 400nm (in the area of fluorescent
emissions see 3.5).
Still in the box aperture, UV radiation not absorbed will pass through a diaphragm with 0.85m radius, which
eliminates the coma aberration and ensures a nearly uniform spot of about 0.5o. Around the diaphragm there
is an adjustment ring between 0.85m and 1.10m. This ring increases the effective aperture of the telescope
by a factor of 2 and is divided into 24 sectors with the appropriate spherical profile to compensate for the
aberration and not increase the size of the spot.
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The light is collected by a 3.5m by 3.5m spherical mirror, with a radius of 3.4m. Due to the large size of the
mirror, this is divided into several smaller segments, overlapping with hexagonal shapes and squared-shape
to improve the light collection. There are 49 segments of mirrors made of aluminum with AlMgSi in backing
and coverage with a protective SiO2 layer. The final average reflectivity is approximately 90% in the band
300-400nm [70].
Between the mirror and the aperture box, we have the PMT camera. This camera has 440PMT (20columns×
22rows) with 6cm × 94cm(w) × 86cm(h). It is in the focal plane with spherical shape and concentric with
the mirror, having a radius of 1.743 m (see figures 5.3b and 5.4a).

Figure 5.4: a) a photograph of PMT camera and aperture box and mirrors [75]. b) top left is represented six
Mercedes stars positioned in order to form a the hexagonal pixel, down left is a photograph of some part of
the camera with four PMTs and two Mercedes stars mounted together, the big holes is to mount the PMTs
and the small one to mount Mercedes, in right is represented the dimension in degrees of a PMT and a
Mercedes star, the hexagon is a PMT and the region between the parallel lines is for Mercedes, the point in
the center represents the size of the spot [74] [72].

Each photomultiplier has a hexagonal shape to better cover the camera. It is needed some space between
the PMT for a safe mechanical packing. So for better efficiency of light collection and to have a smooth
transition of efficiency between the pixels, each PMT is surrounded by a simplified version of the classical
”Winston cones”, which is called the Mercedes star (see figure 5.4b). These reflective surfaces are inclined,
to reflect about 90% of the light into the PMT.
To analyze the data, we use a coordinate system (β, α) where the camera is rectangular and pixels are regular
[76]. These new coordinates are obtained from the spherical coordinates (θ, φ)(see figure 5.5) by:

β = arcsin(φt − φ) sin(θ)α = αc − αm + arcsin(
cos θ

cosβ
) (5.1)

where φt is the azimute of the telescope center, αm = 16o is the telescope elevation angle with respect to

horizontal axis and αc =
√

3o

2 is the offset angle between the camera center and the telescope axis. In these

coordinates, each pixel is a regular hexagon with radius rpix =
√

3o

2 , with sides length of lpix =
√

3o

2 and a
width between the sides dpix = 1.5o. The position of 440 pixels is given by:

βij =

{
1.5o.(10− i), if j is odd

1.5o.(10− i) + 0.75o, if j is even

αij = 1.5o
√

3o

2 .(j − 11)

(5.2)

Where i ∈ [1, 20] is the number of column and j ∈ [1, 22] is the number of rows. The β ranges from
-15.75o to 15o and α ranges from -13.86o to 15.16o. The camera has a field of view of 30.75◦ × 29.01o in β
and α respectively. Also, we can define the pixels sorted from 1 to 440 with Npix = 22.(i − 1) + j (in the
figure 5.5 is depicted the camera in these coordinates).
The spot indicated above is the circle of least confusion, ie, due to aberrations, photons entering the telescope
can be seen in the camera with an displacement from the original position and so the spot is a circle where
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a photon can be detected with center being the original direction. The Schmidt optics was chosen in order
to maintain this constant distance. The spot has an angular size of 0.5o (0.25o radius) which corresponds to
about one third of the pixels of the opening angle of 1.5 ◦. This means that the effects of aberrations are not
very significant, taking into account the size of these pixels.

Figure 5.5: a: (β, α) coordinates in relation to the coordinates (θ, φ) from [76]; b: representation of the
camera with 440 pixels in the coordinates (β, α).

5.1.3 Atmospheric monitoring

As previously stated, the fluorescence technique is very sensitive to conditions of the atmosphere (because
the atmosphere acts as a calorimeter) and thus the experiments requires a good control of their parameters.
As noted in the equation 3.26, the intensity of photons reaching the detector depends on Rayleigh and Mie
scattering, then is needed an accurate characterization of aerosols, clouds, dust, smoke, temperature, density
and pressure of the atmosphere. These weather conditions varies on a small time scale requiring monitoring
routines.
For most realistic atmospheric models of the site, there were campaigns of meteorological radio soundings
with helium balloons equipped with radiosondes to measure temperature, pressure and humidity as a func-
tion of altitude for several seasons. In [77], we can see the of measurements of the atmosphere in PAO in
comparison with the U.S. standard amosphere.
In [77] [78], we can see the influences of the parameters of the atmosphere in some measurements, such as
energy and the reconstructed Xmax value.
Basically, in Auger, the atmospheric monitoring systems include LIDARs, cloud monitors, Horizontal At-
tenuation Length Monitor, phase function monitors, meteorological stations, and radiosondes [79] and I will
describe that.

5.1.3.1 LIDAR stations

The LIDAR (Light Detection And Ranging) is a device designed to study the aerosols in the atmosphere
through the backscattered light signal. The LIDAR consists of a 355nm laser and a telescope with three
mirrors, each with a gated, high-speed photon detector [80] and there is a system in each eye. After the laser
is fired, the telescope sees the elastic backscattered light signal (measuring light intensity and position), so we
can measure the aerosol optical depth towards the firing direction [81]. The LIDAR can operate continuously
(regularly pointing to directions covering all sky) or in ”shoot the shower, when the laser pulses are triggered
by FD events, so we know the composition of aerosols for a given shower. Raman LIDAR (in LIDAR stations
too) detects the backscattered light by Raman scattering, this allows a higher accuracy in measurements and
identification of the constitution of the atmosphere, however, requires very intense lasers that would affect
the FD (operate few times).
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5.1.3.2 Horizontal Attenuation Length Monitor

This system serves to measure the aerosol attenuation length in horizontal path between FD sites, it measures
several wavelengths near the acceptance of the Fluorescence detectors. The system has a DC light as a light
source and a camera sensitive to UV. The measurements are made with a 365nm, 405nm, 436nm and 542nm
filters. The total attenuation is then the ratio of the flux at large distances (∼ 50km) and the flux measured
at short distances (calibration point).

5.1.3.3 Aerosol Phase Function Monitor

This system measures the normalized aerosol differential scattering cross section as a function of the scattering
angle from the initial light direction [82], which means that we measure the Mie scattering cross section, which
allows to infer the Cherenkov light scattered.
Measurements are performed using a pulse of light directed through the horizontal field of view of one of the
FD eye. The system uses three xenon flash tube sources which emit 1µs light pulses covering the full range
of wavelengths of the FD sensitivity and the distance from the source to the FD eye is about 1.3 km, which
means that we have small atmospheric attenuation.

5.1.3.4 Cloud cameras and others

The clouds have a large optical depth and a very irregular shapes, causing unpredictable effects on scattering
and transmission properties. As the clouds emit infrared, it is possible to detect them on a much cleaner
background infrared. The cloud cameras are located in the FD eye and consist of digital cameras with
infrared spectrum between 7 and 14 µm. The cameras have a field of view 45◦ × 35◦.
In each of the FD eyes there are weather stations that measure temperature, humidity, pressure, direction
and wind speed. As mentioned above, meteorological radiosondes on balloons are sent to make measurements
of atmosphere with altitude and being able to better characterize the atmosphere.
There is also a very important system, the central laser facilities which I describe below.

5.1.4 Central Laser facilities

At the Pierre Auger observatory, there are two laser facilities (see figure 5.1): Central Laser Facility (CLF)
and Extreme Laser Facility (XLF). CLF is in the middle of the SD array at a distance of 26 to 39km to
the buildings FD and became operational in 2003 (see article [84]). The XLF is a second laser facility very
similar to the CLF and was built with the aim of improving the calibration of the CLF.
The CLF is based on the HiRes laser devices and is situated 26 km away from Los Leones, 30 km from Los
Morados and Coihueco and 40 km from Loma Amarilla. It is an independent unit controlled by wireless, has
his own weather station, to determine the temperature, pressure, humidity and wind. It is connected by a
optical fibber cable to the closest SD tank, Celeste, where we can inject a fraction of the laser light.
The CLF has a linearly polarized laser with 355 nm wavelength, which is ideal for fluorescence techniques
(there are a set of mirrors that reflect in 355nm to reduce the contributions of other frequencies). The laser
can be fired in pulses 7ns up to a maximum energy of 7mJ, values that mimic an EAS of 1020eV . Moreover,
we can direct the laser to an accuracy of 0.2◦.
The assembly of the CLF is very important and it was constructed with various purposes. With this facility,
we can monitor the atmosphere and measure the amounts of aerosols as a function of time through the
analysis of vertical track of laser beams seen by the FD. As we know the direction of the CLF laser with an
accuracy greater than the reconstruction, then we can use that information to confirm a correct alignment
of telescopes, useful for the geometrical reconstruction of the shower directions. We also know the number
of photons emitted by which we can study the atmosphere so we can compare the reconstruction of energy
with the real energy of the laser.
Another important objective is to study the synchronization of the four eyes and determine the time offset
between the SD and FD. From [83] we have 289 ± 45ns for Los Leones, 363 ± 43ns for Los Morados and
307± 49ns for Coihueco (in a sample), the SD being the last to record the event. Lastly, we can still study
the efficiency of the trigger, knowing the fraction of events that is or is not registered by the eyes.
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There are several redundant measurements among the atmospheric systems, however this is very impor-
tant for a better control of systematics. The PAO is therefore different from other experiments in the area
for a much better control of systematics.

5.2 Event reconstruction

5.2.1 SD reconstruction

Figure 5.6: a) Scheme of the geometry of the shower with the parameter settings, b) is represented the
signal as a function of the distance to the core compared with three LDF parametrizations of NKG type with
different β slope and can be seen that the signal is more robust at r ∼ 1000m (from [88])

The surface Detectors (SD) will always have a backgound for the equipment, to record the signals of
interest, it is necessary selection rules at the level of PMTs and stations, which are called triggers, the
triggers are explained in detail in [85]. These triggers are related to the total signal measured (in VEM) in a
typical shower. After detecting an EAS, it is necessary to recover the geometry of the event. As mentioned
in section 3.4, the simplest model considers a plane wave front and the geometry is obtained from the arrival
times when the wave front passes through the tank leaving SD signal. From figure 5.6, we observe easily that
the time ti, which tank i detects signal is given by:

t′i =
1

c
(ct0 − (~xi − ~xb).~a) (5.3)

Where ~xb is a first estimate of the point where the core of the shower hits the floor ( ~x0), t0 is the time
of arrival at x0 and ~a is the vector direction of the shower axis. To determine the geometry, we compare the
value of t′i obtained from 5.3 with the measured value ti, by minimizing the standard χ2:

χ2 = Σi[
ti − t′i
σti

] (5.4)

Where the variance was parameterized in [86], doing a fit with three parameters, two from ~a and t0. However,
the shower front is curved and we need a better descriptions of 5.3, thus assuming a radius of curvature RC
we have:

t′i =
1

c
(ct0 − (~xi − ~xb).~a+

r2
i

eRC
) (5.5)

where ri = |~a× (~xi− ~xb)|. And we minimize equation 5.4, but now with the definitions of 5.5. Other models
for the shower front can be used, for example in [89], where they use parabolic fronts, with that they obtain
an angular resolution less than 2o for events with signal in three tanks, less than 1.2 ◦ for events with signal
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in 4 or 5 tanks and less than 0.9 ◦ for larger tank multiplicities.
After determining the geometry, it is necessary to recover the size of the shower, or rather the energy of the
shower. With the tank’s signal, we can get the lateral profile of the shower (see section 3.3). This profile for
reconstruction purposes have the form:

S(r) = S1000fLDF (r) (5.6)

Where r is the distance to the axis shower, S1000 is the signal value at a distance of 1000m from the shower
core and fLDF (r) is the lateral distribution function, with fLDF (1000) = 1,and:

fLDF (r) =

{
( r
r1000

)β+γln(r/r1000), if r ≥ r300

( r
r1000

)β+γln(r300/r1000), if r < r300

(5.7)

r300 e r1000 are 300m and 1000m respectively, β and γ are parameters that depends on zenite angle θ. The
S1000 is the value used to estimate the energy and according to [88], given the spacing between the SDtanks
of about 1.5km, at a distance of 1000m the SD signal is considered to be robust and with few fluctuations
allowing an estimate of energy with greater accuracy. Despite the many variations that fLDF parametrization
may have, it is considered that the value of S1000 has a precision less than 5%.
The lateral distribution is usually a variation of the NKG formula (see equation 3.13) and frequently has the
form:

fLDF (r) = (
r

r1000
)β(

r − r700

r700 + r1000
)β+γ (5.8)

Where β and γ are parameters that depends on zenite angle θ and r700 = 700m. Then we just do a χ2

minimization to obtain the S1000, the energy is E = a(S1000)b from [85]. Hybrid reconstructions does not use
the S1000, but rather the parameter S38 which will be explained later.

5.2.2 FD reconstruction

Figure 5.7: a) Scheme of the geometry of the shower with the parameter definitions (from [90]), b) time of
arrival of the light at each pixel in relation to the angle between the pointing direction of that pixel and
the horizontal line. The color points came from FD data and the black squares from SD, we can see the
monocular (red line) and hybrid (blue line) reconstruction fits to equation 5.9 (from [72]).

In the reconstruction from the fluorescence detectors as in SD, first, we determine the geometry of the
shower, and after that we get the longitudinal profile. As mentioned on section 3.4 the geometry reconstruc-
tion in FD, begins by finding the shower detector plane (SDP), represented in figure 5.7. Each camera pixel
sees in a direction ri, so the shower plan will intersect the FD on the corresponding pixels that have been
triggered. The normal to the shower nSDP can be found by minimizing the amount χ2 = Σi(~ri. ~nSDP )wi [70],
we wi is a weight proportional to the signal. This method has been verified by reconstructed CLF events
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and obtain accuracies of ∼ 0.5◦[70], as seen previously.
Knowing the SDP, it is necessary to determine the axis of the shower in the SDP. If the event is monocular
(only seen by one FDeye) then based on arrival times we know the geometry. Considering that the shower
front propagates at speed of light, the expected time ti at which the pixel i is triggered is [70] [91]:

ti = t0 +
Rp
c

tan[(χ0 − χi)/2] (5.9)

Where t0 is the time where the shower is at the nearest FD distance Rp , χi is the direction that the pixel
sees and χ0 is the angle of the shower in the SDP (see figure 5.7). We can find the geometry minimizing
χ2 = Σiwi(ti − tth)2, with three degrees of freedom (t0, Rp and χ0). If the position of the shower to the
FD eye is such that it is only possible to detect one short track, then (χ0 − χi)/2 could be small and may
not be sensitive to the curvature of tg(χ0−χi

2 ). The values Rp and χ0 would cover a wide range and the
reconstruction would not be satisfactory. If the event is detected for more than one FDeye, then it is not
necessary to take into account time and we just need to intersect the various SDP (like in section 3.4).
With the geometry fixed, we can reconstruct the longitudinal profile. Firstly, it is necessary to convert
the ADC counts of PMTs into number of photons that pass through the diaphragm of the detector. From
[74], the conversion factor between ADC and the number of equivalent photons at 370 nm in the camera is
C370
pmt ' 5ADC−1 [70](determined in the calibration of the FD, with detector efficiency). Due to the size of

the spot, for a given time tk, we will not have all signal on the same pixel but in more than one pixel, and so

considering the background signal, we define dpmt = arccos( ~Rpmt. ~R(t)) < dcut, being dcut the distance that

maximizes the signal to noise ratio, ~Rpmt is the pixel pointing direction and ~R(t) points the direction of the
shower. We are only interested in the signal of the pixels that point close to the directions of the shower, i.e.
pixels that point less than dcut degree from the shower. The number of equivalent photons as a function of
time is:

nγ(tk) = Σinγ,ik = ΣiC
370
pmt.(nADC,i(tk)− nped,i) (5.10)

Where nADC,i is the number of ADC counts in the pixel i at time tk and nped,i = 100ADC is considered
the baseline for the background. Thus we get the reconstruction of the longitudinal profile. Nevertheless,
the profile will contain a direct mixture of fluorescence, Cherenkov and scattered Cherenkov light. In old
versions, we take all signal as fluorescence component, we uses Rayleigh and Mie processes and the geometry
to determine the real photon emission of the shower. After that, using the fluorescence yield we make the first
approximation of the longitudinal profile Ne for charged particles (mainly electrons and positrons). With
this approach and taking into account the geometry, we expect a particular component of direct Cherenkov
and with that, we again expect Rayleigh and Mie scattered Cherenkov (see figure 5.8). The three light
contamination is subtracted from the signal original, getting a new fluorescence profile. Next, we iterate
once more the new values until the results converge (up to four times). If Cherenkov is reduced this method
works, but if it is too high the Cherenkov method does not converge [74]. The previous description was the
old approach, nowadays we uses a more sophisticated one, which is suppose to accounts the same things.

To study the energy of primary particle, we are interested in knowing the energy that was deposited in
the atmosphere, so it’s helpful to know the dE

dX (X) instead of Ne, but the Cherenkov emission depends on

the profile of e+e− and we need to have Ne. So we must relate dE
dX (X) with Ne on the form ([87] and [92]):

dE

dX
(Xi) = Ne(Xi)αeff,i (5.11)

where αeff is the mean ionisation loss rate, from [93], αeff,i(si) = c1
(c2+si)c3

+ c4 + c5.siMeV/gcm−2, where

c1...c5 are parameter from [93], and si = 3
1+2Xmax/Xi

is the shower age parameter.

According to [87] and [92], we must bear in mind that at a given moment, the fluorescence light reaches
the pixels with some of Cherenkov light too, before that moment, no light arrives at any pixel (see equation
5.13). However, after this instant, fluorescent light stops reaching the pixel, but Cherenkov light still gets
there, from the development of the cascade in another location. Being x ≡ dE

dX (X), and y the light reaching
the diaphragm, it will only be necessary to reverse the equation:

y = Cx (5.12)
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Figure 5.8: Representation of direct fluorescence and Cherenkov light (a) and scattered Cherenkov light (b)
received at diaphragm. Isotropic fluorescence light in green, direct Cherenkov light in red, Rayleigh-scattered
Cherenkov light in blue and Mie-scattered Cherenkov light in magenta (taken from [87]).

where C is the matrix given by:

C =


0, if i < j

cdi + csii, if i = j

csij , if i > j

(5.13)

where cdi is the direct light contribution from fluorescence and Cherenkov at time slot i and csij is the scattered
Cherenkov due to Rayleigh and Mie scatterings detected at time slot i but emitted in slant depth Xj . The
dE
dX (X) is found by inverting the equation 5.12, with that we can fit the Gaisser-Hillas formula too, but
instead of being in particle number, it is in energy deposited.

The estimated power is calculated simply by integrating the profile of energy deposited:

E =

∫ inf

X0

dE

dX
(X)dX (5.14)

Instead of using equation 5.14 from dE
dX profile, we could estimate the energy from the Ne profile and we

have:

E ' 〈 dE
dX
〉
∫ inf

X0

Ne(X)dX (5.15)

where 〈 dEdX 〉 '
ε0
Xl
' 2.2 MeV

gcm−2 is the mean energy deposit. We should not forget that this energy is ∼ 90% of

the actual energy of an EAS due to missing energy (see section 3.4.1.7).

5.2.3 Hybrid reconstruction

The hybrid reconstruction is a technique that was used for the first time in the Pierre Auger Observatory.
This technique combines the detection in SD with the detection in FD and it is very important in order
to calibrate the reconstruction of energy in SD and improve the reconstructed geometry. To get hybrid
reconstruction beyond FD measurements, we just need one SD tank to be triggered. Given a monocular
event, we will use the equation 5.9 for the arrival time of shower front to find the geometry, if one SD tank
is triggered, we can constrain the parameter t0 through [90]:

t0 = tGND − ( ~RGND.Ŝ)/c (5.16)

here, RGND is the direction of SD tank from FDeye that was triggered at time tGND and Ŝ is the unit vector
of shower axis (see figure 5.7).
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Figure 5.9: a) profile of light at aperture with reconstructed component of direct and scattered Cherenkov
light from a simulated event with 1019eV (from [92]). b) fit to the curve CIC(θ), the values are relative to
the signal S1000 at zenite angle 38o (from [94]). c) fit to the curve CIC(θ) in order to cos2 θ (from [95]).

This constraint allows to improve considerably the reconstructed geometry of the shower. If many SD stations
are triggered, then the accuracy will improve even more, and may eventually constrain the position of the
core of the cascade. Now, instead of three parameters, we have only Rp and χ0 as parameters (equation
5.9). For example, in figure 5.7 we can see the fit to equation 5.9 for monocular and hybrid techniques. The
hybrid has more data points to fit, so the result is much better. The values for Rp in monocular have an error
of 2441.56m (precision of 5.3%, fig. 5.10), while in hybrid we have an error of 33,29m (precision of 1.0%),
values for this particular event. If we look for the absolute values, the two reconstruction have very different
results (but still inside error bar). With this, we can conclude that hybrid as a much better reconstruction
with equation 5.9.
The duty cycle of SD is 100% and almost all events of FD will be hybrids, we will have about 10% of SD
events which are hybrids. Interestingly, the hybrid technique, can detect events with lower energy than the
SD, since only one SD tank needs to be triggered. With this technique, we do not need to know the lateral
profile, not even the sign of the SD tank triggered, just need the time that the tank was triggered. As we
mentioned before, to test the reconstruction, we use the laser CLF (section 5.1.4). This laser beam has a
well known geometry position with 5m error in Rp and χ0 = 90o± 0.01o. The CLF is connected to a tank in
order to make hybrid reconstruction (see section ref). In figure 5.10, we can see the monocular and hybrid
reconstruction of the CLF laser [96]. It can be concluded that the resolution in Rp and χ0 is about 10
times better in hybrid than in monocular and hybrid practically shows no systematic shift. In this way, this
reconstruction is very good to carry out future studies of anisotropies.
The most important feature of the hybrid reconstruction is to be able to calibrate the energy of the SD.
Although the value S1000 be appropriate to estimate the energy of the shower [88], for a fixed energy, it varies
with the zenith angle (θ) of the shower. In PAO, the depth ranges from approximately 870g/cm2 at θ = 0o

up to 1740g/cm2 for θ = 60o. Since the signal S1000 change with increasing depth, this means that the S1000,
should be replaced by a variable with zenite dependence. As we can see in [97] [94] for the same energy, the
signal S1000 varies with the zenith angle and can be parameterized. The median zenith angle is ∼ 38o, so
we describe the signal at any angle in relation to signal at 38o (figure 5.9). The variation of S1000(θ) with θ
with respect to the value S1000 at 38o is given by CIC(θ) where CIC(38o) = 1 and then for any incidence
angle of a shower we have the new parameter S38 defined as:

S38o ≡ S1000/CIC(θ) (5.17)

The curve CIC is given by CIC(θ) = 1 + ax + bx2 that is a quadratic function of x = cos2 θ − cos2 38o

(a and b are parameters [97]). The uncertainty in S38 is estimated, by summing in quadrature the three
contributors: the uncertainty in the CIC curve, the uncertainty in the S1000 and the angular accuracy of the
event.
With the S38 parameter, we can calibrate the energy of the SD with the energy measured by the FD and we
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have a calibration of the form:
E = a Sb38o (5.18)

In section 5.3.1, we can see the latest results of the hybrid calibration. For angles above 60 ◦ [70] however, this
method is not appropriate because the shower particles will be deflected by Earth’s magnetic field, becoming
with an asymmetrical profile, which means it should depict a different dependency on the distance to the
shower axis. So the energy resolution of hybrid events is less than 6%, while in SD events is 15%.

Figure 5.10: In the left is plotted the difference between the real and the reconstructed distance from the
eye to the laser beam for monocular and hybrid techniques, the laser beam position is known with 5m error
(see text). In right, is the difference between the rela and the reconstructed direction of the laser beam for
monocular and hybrid techniques, the laser beam angle is known with 0.01o error (taken from [96]).

5.3 Recent results

5.3.1 Energy spectrum

To obtain the energy spectrum, first we have to calibrate the parameter S38 as a function of energy in the
hybrid reconstruction. In figure 5.11, are represented 795 hybrids selected events in the area of energy where
the detector is fully efficient for E > 3EeV . We can see the S38 parameter as a function of FD energy EFD
and fit to equation 5.18. The parameters obtained are [95]:

a = ((1.51± 0.06(stat)± 0.12(syst))× 1017eV
b = 1.07± 0.01(stat)± 0.04(syst)

(5.19)

with a reduced χ2 = 1.01. The accuracy of the calibration for higher energies is dependent on the number of
showers recorded (which means it becomes worst), the more energetic shower has an energy 6.1019eV . Total
systematic uncertainties are about 22% in the reconstruction of energy, in the hybrid method (to see the
factors discriminated see [98]).
Using this calibration, we can study the spectrum of the Pierre Auger Observatory. In figure 5.11, is shown
the energy spectrum with the data until the end of 2008. The exposure is then of 12790km2sr yr and again
uses only the data with a zenith angle less than 60o, with over 35000 events selected. In figure 5.12 left, we
have the CR fluxes with the hybrid data, in the right we have the SD data, which are consistent with one
another. To analyse the features, we do fits with a broken power law with the shape J(E) = const.E−γ and
get the indexes γ for each zone (figure 5.12). Instead of a simple power law, they also used a power law with
a smooth function of the form:

J(E;E > Eankle) ∝
E−γ

1 + exp(
log10 E−log10 E1/2

log10 Wc
)

(5.20)
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In figure 5.11 right, the combined spectrum of Auger is compared to the on from HiRes stereo instrument
measures. The flux of HiRes has a shift in relation to the Auger flux that may be due to systematic
uncertainties of one or both experiments. However, the ankle is much more defined in the Auger data than
in HiRes. It should be noted that from log10(EeV ) = 19.61 ± 0.03 there is a large suppression in the flux.
For example, a continuation of the power law above the ankles to higher energies can be rejected with 20σ
[99]. The suppression in flux is similar to what is expected from the GZK effect, but that does not exclude
the possibility of being related to the change of the shape of the average injection spectrum at the sources.

Figure 5.11: a) calibration between the parameter S38 and FD energy EFD with 785 hybrid events (from
[95]). b)The spectrum of HiRes and Auger, the Auger data are fit to a broken power law and to equation
5.20 (from [99]).

Figure 5.12: a) spectrum of hybrid events in Auger data and b) spectrum of SD events in Auger Data (from
[99]).

5.3.2 Sources and anisotropies

In section 2.2, we saw that considering the intergalactic magnetic fields in nanogauss, protons with an
energy of 100EeV have almost rectilinear trajectories and we can use them for astronomy. In figure 5.13, is
represented the sky map in galactic coordinates with the 69 most energetic events (with E > 55EeV ) from 1
January 2004 until 31 December 2009 [100]. Auger events are represented by black dots, the solid line is the
PAO field of view for zenith angles smaller than 60o. The Blue circles with 3.1o are center position of 318
AGNs from Véron-Cetty and Véron(VCV catalogue) that lie within 75 Mpc, or a redshift z < 0018. This
upgrade the previous results in [101][102]. We must not forget that about 90% of protons with 60EeV energy
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at a distance of 200Mpc are expected to fail to reach the Earth due to the GZK effect. That means we have
something similar to a GZK horizon for the sources that we associate with UHECR.
According to [101], we can see that we have more events in the line of the supergalatic plan than in other
areas. There are two overlapping events to less than 3◦ of Centaurus A. So it is likely that the UHECR are
protons.
It should be noted that the extragalactic magnetic fields are still unknown and the differences between
positions can be related to the existence of magnetic dipoles, quadrupoles, or other magnetic structures that
deflect the particles. Currently, attempts to infer various scenarios for the magnetic structures in the nearby
universe are doing based on deflections of the CR (see [103]).

Figure 5.13: a) The 69 PAO events with E ≥ 55EeV until 31 December 2009 are represented with black
dots, in the sky with galactic coordinates. The solid line is the PAO field of view for zenith angles smaller
than 60o. The Blue circles with 3.1o are center in the position of 318 AGNs from VCV catalogue, the blue
scale represents the relative exposure of AGN, the total AGN weighted exposures, covers a fraction of 21% of
the full exposure sky. The red arrow points Centaurus A. b) is represented the cumulative number of events
as function of the angle ΨA, with relation to the position of Centauros A. [100]

Since we have an excess of events around Centaurus A, we could try to study the the isotropy as function
of this location. So in the figure 5.13b), we have the number of CR with an arrival direction within an angle
ΨA from the Cen A location, compared with the expected for an isotropic distribution. As we see, the less
isotropic region is until 18o, where we detect 13 events, while 1.1 is expected for isotropic flux.
Apparently, the events seem to be anisotropic, but we need an analytical method to study the isotropy. To
do so, we minimizes the probability P that k or more events at a maximum angular distance φ with respect
to any collection of sources in N isotropic events are correlated by chance with the selected objects at the
chosen angular scale [104][102]:

P = ΣNj=k

(
N
j

)
pjiso(1− piso)

N−j (5.21)

where piso is the exposure-weighted fraction of sky available to the PAO, which is within the 3.1o degrees of
the selected potential sources. For an isotropic distribution has piso = 0.21 (with VCV catalogue). Another
method is likelihood ratio R, ie, basically is the ratio of the binomial probability of the correlation and the
binomial probability in the isotropic case. defined by:

R =

∫ 1

piso
pk(1− p)N−kdp

pkiso(1− piso)N−k+1
(5.22)

In figure 5.14, it appears that in an initial period the data were completely anisotropic, however, now the
directions of the events approach the isotropy hypothesis and stabilize in those very close values. The
correlation decreases from 69+11

−13% (in the first 13 events) to 38+7
−6%[100], with the 55 events. Given p=0.21

for isotropic flux, the cumulative binomial probability that the recent flux be isotropic is P = 0.003. We
should note that 9 of the 55 events comes from angle lower than 10o in relation to the galactic plane (none
has correlation within 3.1o). The VCV catalogue could be very incomplete in this region, because of the
obscuration by the Milky Way or the magnetic fields are bigger than what is expected, which could explain
this differences. If we neglect this 9 events, we get 46± 6% ( 24% in isotropic). Still, it is possible to reject
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the hypothesis of isotropy with 99% [105], which means that this distribution of directions could only be
isotropic with a probability of 1% (can not be update with the new statistics).
Since the VCV catalogue, could be incomplete and don’t have all possible sources, the analysis of the 69
events is repeated for the 2MASS Redshift Survey and Swift Burst Alert Telescope catalogue, but for now
the study is not sufficiently for better conclusion (see [100] for details).

Figure 5.14: a) the sequential analysis of the likelihood ratio of CR with energy greater than 55EeV after
27 May 2006, values outside the blue area have less than 1% chance to arise from an isotropic distribution
(with Piso = 0.21), b) the most likely value for the binomial parameter pdata = k/N , the current values is
pdata = 38+7

−6%, the coloured areas corresponds to 1σ and 2σ uncertainties. (from [105] and [100])

5.3.3 Elongation Rate

In Section 3.1.2, we wrote about the elongation rate, this is a method to infer the composition of cosmic rays.
Basically, Xmax (section 3.1.2) of the development of a cascade depends on the energy and type of particle
that initiate the cascade. If the CR is a proton, then the Xmax is larger than that of iron for the same energy.
Moreover, the Xmax also varies with energy and by definition, the elongation rate corresponds to the rate of
change of the average Xmax with energy. In figure 5.15, it it depicts the recent data of PAO and the lines
correspond to the predictions of various models for protons and iron. Up to energies of 1018eV , the data are
close to the lines of protons, and therefore the composition of the CR is becoming lighter. However, as shown
in the figure 5.15, from 1018eV on, the data is approaching iron and looking to the RMS of Xmax instead
of 〈Xmax〉, this behaviour is even more evident. We can conclude that the composition starts to get heavier
approaching the mass of iron. These results contradict the previous section of the anisotropy, where due to
correlations of the directions to the areas of AGN, it is expected to have lighter particles such as proton.
Indeed, the lines of the figure for proton and iron in the different models are not obtained analytically, because
it is still not possible, but they came from simulation. Because the models use data from accelerators at
energies far below the energies of the CR, extrapolations are needed (section 4) and we still know very little,
so we conclude that their predictions are not the most correct. Therefore, this opens up many possibilities
for particle physics.

5.3.4 Photon and neutrino fluxes

In section 3.1, it was shown that showers initiated by photons are really different from the started by heavy
nuclei. The development of a cascade initiated by a photon is even more slower than for protons, and so
the Xxmax is much deeper in photons than in nuclei. The signal of SD detector is also very different, it will
only comes from electron cascades since the photons have almost no hadronic or muonic component. Based
on these characteristics, we can study the fractions of events initiated by photons and it was found that no
photon has been detected. Thus, we define maximum limits for the primary flux of photons. In figure 5.16
on the left, these fluxes are represented in blue for hybrids data and in black there are the SD data. With
these results, we can already reject several models that predicted the production of UHE photons (see [108]).
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Figure 5.15: a) 〈Xmax〉 b) RMS (Xmax) from PAO data, from December 2004 until March 2009, compared
with simulation predictions (from [106] [107])

It is also possible to reject some models Top-down production of CR.
The neutrinos are a very different and since the PAO has a vertical depth less than 1000g/cm2, then there
isn’t enough matter for neutrinos to interact. However, if the neutrino arrives on horizontal direction, it
could cross Andes mountains, which will increase the depth crossed by about 20 times [107]. These events
will have a weak horizontal electromagnetic component, but the muonic component would be well defined
and could be detected by the SD detectors. A very interesting case is tau neutrino (and the others), they
could cross the Earth or the Andes interacting and producing showers oriented from ground to space. It still
not been detected such events and we may establish limits on the maximum flux (see figure 5.16right). The
PAO design is very clean for this events and the results are comparable to experiments dedicated only to
neutrinos.

Figure 5.16: a) Upper limits on the photon fraction in the integral cosmic-ray flux for different experiments,
the blue limits came from PAO hybrid data and black limits came from SD data, the shadow region is the
expected GZK photon fraction. The models considered are the decay or annihilation of primordial relics such
as topological defects (TD) or super heavy dark matter (THDM) and Z-burst scenarios (ZB). (taken from
[109]) b) Differential and integrated upper limits for the flux of down-going ν and up-going ντ , from [110]
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Chapter 6

How exotic are standard events

The standard events are expected to have a longitudinal profile like a Gaisser-Hillas (GH) function. However,
even though most of the showers are close to the GH, their shape could be really different (see fig. 6.1). The
shower could be more deep in atmosphere (higher X) or had developed sooner, and it can be higher and
thinner or lower and larger. These differences come from the statical fluctuations in the development of the
shower, i.e. it comes from the statistical behaviour of the decaying and interacting particles in the shower.
As a consequence, we can not have two equal showers and we measure a distribution of Xmax and other vari-
ables instead of a single value. These variations are expected to be restrained in the 4 degrees of freedom of
GH function. Using simulations with the hadronic models we can predict the fluctuations of these quantities
(which are expected to have a Gaussian statistical behaviour with respect to GH) that come from standard
physics.
Knowing those normal shapes, we can look for exotic physics by studding strange events that are not ac-
counted in the simulation or even expected from the simulation. For example, we can see some profile with
two peaks of Xmax instead of one (see next chapter). These are predicted in scenarios like a mini black-hole
formation or could be signatures of creation of a new undiscovered particle that decays deeper in atmosphere
causing a double-bang (and other scenarios). To know if we are dealing with exotic events we have to quan-
tify the background that comes from normal events. In this way, we need to study if we have shapes (from
standard physics) that differ from GH with gaussian fluctuations. We will try to find how many events have
more fluctuations than what was expected.
In this chapter, we make simulations of EAS with CONEX[111] program, and use a sample with 64000 events,
with 1019eV proton primaries. To increase the statistics we also use a new sample with 122000 events at
1018eV (which will be important in next chapter).

6.1 Universal Shower Profile

To study the cosmic rays, we can analyse the cascade development of the primary particle in atmosphere
by detecting the electromagnetic sub-showers in fluorescence detectors. We are interested in determining if
the primary CR spectrum consists in protons, irons or even a mixed composition, and usually we study the
longitudinal profile of electromagnetic component. However, the characteristic electromagnetic features of
the shower, could give us also access to some information and ”hidden” hadronic features about the first
interactions. As we have seen in section 4.3.4, different parametrizations of hadronic interaction in ultra
high energy regime would give different features in the shower development. So, in section 3.2 we saw that
the longitudinal profile can be parametrized by the Gaisser-Hillas function and I write it again in equation
6.1. To parametrize the electromagnetic component we need the shower maximum Xmax together with the
total number of particles Nmax at Xmax in depth, that can be easily obtain from data. Instead of using the
Nmax, we could use the dE/dXmax since they are proportional. Apart from these, we also need more two
parameters to describe the shower (eq. 6.1), the λ gives an indication about the interaction length and the
X0 is an effective first interaction length. The last two, must be extracted from data fitting the equations
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and are correlated.

Ne(X;Nmax, Xmax, X0, λGH) = Nmax(
X −X0

Xmax −X0
)
Xmax−X0

λGH e
Xmax−X
λGH (6.1)

Figure 6.1 shows some shower profiles for the same energy. They look very different from each other, since
some of them developed more or less quickly and have a bigger or smaller Xmax. They have different Nmax
too, since they only should have equal

∫
dE/dXmaxdX. This shapes can be very similar if we translate

the shower maximum and normalize the maximum. We can write the Universal Shower Profile (USP) as a
function of N ′ = N/Nmax and X ′ = X −Xmax (X ′0 = X0 −Xmax) with the form:

N ′ = (
X ′

X ′0
− 1)

X′0
λ exp(−X

′

λ
) (6.2)

In figure 6.1 we can see some events in USP profile and normal profile. In the USP, we see that most of
the showers presents the same characteristics and a few have different shapes (wider or thinner) and even
less have a very different behaviour. Is this chapter I’m concerned to analyse the strange behaviour of these
events.
The USP equation can be expanded around X ′ ∼ 0 (around the Xmax) and we have [113]:

N ′ ∼ exp(− X′2

2|X′0λ|
)Π∞n=3 exp( 1

n
X′0
λ (X

′

X′0
)n)

= exp(− 1
2 (X

′

L )2)Πinf
n=3 exp(R

n−2

n (−X
′

L )n)

N ′ = (1 + RX′

L )R
−2

exp(− X′

LR )

(6.3)

With the Taylor expansion, we get something like a gaussian with width L =
√
|X ′0|λ and distorted by

R =
√
λ/|X ′0|. So with these parameters less correlated (see ref. [113]), L will be something like the width

and R will be a rotation of the shower (see fig. 6.2).
The L parameter will be related with the electromagnetic interactions and it should not vary much either
with primary particle type or its energy. The energy deposited (dE/dX) along the shower is proportional to
the number of particles N , so the integral of the distribution is used to compute the electromagnetic shower
energy. The integral of a USP is:

E/ dEdXmax
= λAA exp(A)Γ(A+ 1)

E/ dEdXmax
∼ λ
√

2πA =
√

2πL

(6.4)

where A = R−2 and the approximation results in an small underestimation of the integral (by < 1% for
R < 0.35 and ∼ 9% for R = 1[113]). In the table A.1 we have the values for R and L in different energies.
This means that L can be calculated as a function of the total energy, and as we can see in figure A.3 the
distribution of L are very close and for the presented simulations have variation less than 2%. The L variable
has a smaller particle type dependence and small event-by-event fluctuation.
Nevertheless, the variable R, for the rotation of the shape is related with the rate at which the energy
is transferred from hadronic to the electromagnetic component. At same energy, a heavier nucleous will
interact sooner and more efficiently than a proton, so R will be bigger for iron which means that the hadronic
component transforms more quickly into electromagnetic component. The R presents around 15% (σ/mean
see table A.1) of variations. An interesting feature is that the R can be related with ∆0 = Xmax−X1, where
X1 is the the depth of the first interaction. So ∆0 decreases linearly as R increases (see [112]). R can be
used in a event-by-event basis to study the showers and the first interactions.

6.2 Tool to separate standard from exotic events

Consider that a standard event can be parametrized by a Gaisser-Hillas function, then we can see how good
this function fits to a sample of simulated events. In this section we use the sample with 64000 events at
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Figure 6.1: a) normal shower profile, b) universal shower profile normalized and translated with X ′ =
X −Xmax. In the two plots we have some events in other colours. The green one is a very deep shower, but
in b) we can see that is shape is quit normal, while the red one has two peaks and the pink is much larger
than the others. In ours samples, the profiles have bins of 10g/cm2

Figure 6.2: a) Geisser-Hillas profiles with L varying between 150g/cm2 (blue) to 350g/cm2 (Red), b) GH
profile with R varying between 0.01(blue) and 0.7(red). In green we have a GH with L = 232g/cm2 and
R = 0.15(mean values at 1019eV ), are used Xmax = 780g/cm2 for all GH. We can see that L is related with
the width and R is a rotation of the profile.

1019eV . In the figure 6.3, there is plotted a random event with it’s fit. This event have a χ2/ndf = 2162
(from now on χ2/ndf ≡ χ2), despite it’s high value, it looks that the fit if good, indeed, the the parameters
errors are very small. The main reason for the high χ2 is that the error considered in each bin (or point X)
is underestimated (and the fit can’t have those precision, see section 6.2.1).
In the figure 6.3, we have the χ2 distribution of the 64000 events. We obtain a mean value of 2162, and we
can see that the shape is not the normal χ2 distribution. It has two peaks, and a smooth peak in the right
tail. In addiction to the underestimate error, we should see from where comes the main error. In this way,
we plot the χ2

i = χ2(Xi) in the fig. 6.4 b) and c).

We can observe that a big χ2
i component comes from the right tail of the shower development and another

comes from the initial development. The initial development of a shower is unique for each shower and we
need a higher number of particles (or begin in a higher development stage of the shower) to have a GH.
Besides this region is more unstable and the two big term in Gaisser-Hillas equation 6.3 will diverge, so the
fit will be more difficult.
The decay of the shower present the biggest problem since the muonic component at some point will be higher
than the electromagnetic (see picture 6.4 a). Consequently , if during the shower evolution, the dE/dX from
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Figure 6.3: a) event 5479 with it’s fit to 1GH, we have the χ2 = 2357, Nmax = 1.6× 107, Xmax = 781g/cm2,
L = 230g/cm2 and R = 0.24, it is a nomrla events with a good fit, but have a very high χ2. b) the χ2

distribution are plotted and we have the various contribution in angle too. In red we have all events, in green
events with 20 < θ < 30, blue for 30 < θ < 40, yellow for 40 < θ < 50 and pink for 50 < θ < 60.

Figure 6.4: a)the number of charge particles in a longitudinal profile, most of the particles are electrons and
positron, but at the end of the development the number of muon is higher. b) is display the mean χ2

i as
function of X and X ′, the initial and final state of development have the major problems.

the muonic shower is negligible, in the end of the shower it becomes a big factor and we don’t have one GH,
but two GH functions (so the fit goes wrong). In the simulation, it was been consider the sea level as the
point where the shower development stops. So a shower will be longer in depth if it is a more horizontal
shower (with bigger zenite angle θ). If the shower is longer, it’s more probable that we reach the evolution
zone with an important muonic component. In the figure 6.3, we separate the χ2 with θ interval and we see
that the higher χ2 comes from bigger θ.
We have to note that the initial and final evolution of the shower can not be detected with fluorescence
techniques, since the luminosity in very small. Therefore, if the big problems comes from the birth and death
of the shower, we should simple cut these points in the fits.
We remove the points with X ≤ 100g/cm2 (10 first points in samples) and if we see the picture 6.4 c) and
compare with 6.1, we see that we can cut the point at which the development decreases bellow ∼ 30% of
the Nmax. The new result for the fits are expressed in the figure 6.5. Now our χ2 distribution have normal
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shape, but the mean value of the χ2 is 235.7. This value is still a big number, since the χ2 (over number of
degree of freedom) should be one.

Figure 6.5: a)χ2 distribution without the end and the initial state of the shower. b) mean χ2
i values in function

of X and X ′ for several sample, each sample is characterized by the inelasticity K of the first interaction.

6.2.1 Fluctuation in CONEX and χ2 definition

What is the reason behind the high values of χ2? To reduce the computation time, the simulation programs
like CONEX have some interesting features.
If we are at relatively low energies like 1GeV, it’s considered that we understand quite well the particle be-
haviours with standard physics. So, instead of continuing to follow each particle, with it’s interaction/decays
and subsequent multiple particles produced, we say that a particle development bellow some energy threshold
can be obtained analytically. If a produced hadron have an energy less than 1GeV, then we don’t follow it’s
development but we use the predicted analytical evolution.
In CONEX, the threshold used depends on the particle and on the energy, so we will have a ξpE as a threshold
for proton (protons with fraction ξp of the primary energy E) and so on for others particles. Suppose all
particle energies decrease at the same rate, so at a Xa depth, all of them cross the threshold. In this way
for X > Xa we will have N(X) = Na ∗ Nf (ξiE;X), the particles will not be followed, and each one gives
a contribution to the total profile given by Nf (ξiE;X). Since ξi depends on the particle type, we consider
that we have an effective Nf ∝ Eγf(X) (see chapter A.0.0.1, where we see N ∝ E). We can find this effect
on χ2 and in this approach, we have

χ2 = ΣX(
N(X)−GH√

N(X)
)2 = ΣX(

NaE
γf(X)−GH√
NaEγf(X)

)2 = ΣX(
Naf(X)−GH/

√
Eγ√

Naf(X)
)2Eγ ∝ Eγ (6.5)

In the figure 6.6, we see that χ2 is proportional to the energy.
This means that in Xa we have

√
(Na) fluctuations, than at higher X we will not have

√
(NX) but

√
(Na)×√

(Eγf(X)), so the precision
√

(N(X)) we consider for the fit is smaller than it should be with
√

(Na).
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Our result gives a χ2
mean = 233.5, but this distribution could be divided according to the figure 6.6 and

than we should have a mean value around one. This follows the approach given in CONEX, where we could
divide the chi-square over

√
Nmax ∝

√
E. Here instead, we make σ =

√
N(X) ×

√
χ2
norm, where χ2

norm is

a constant obtained from eq. A.7. We will get f(χ2) ' Σnkχ
2
k/
√
χ2
norm and obtain the distribution in the

figure 6.8, since χ2
norm ∝ Nmax ∝ (dE/dX)max it’s more or less the same thing done at CONEX.

We could note that the χ2 is not exactly proportional to the energy since at lower energies the previous
discussion is not so important. Above 1017eV we have a linear function, but at lower energies this features
begin to disappear.

Figure 6.6: a) mean Log10χ
2 values using all points, with linear fit. b) Log10 mean χ2 values without using

the initial and final points of the profile, with linear fit. see appendix A.0.0.6

6.2.2 Chi-square tests

The shower fluctuations are considered to come from the statistical behaviour of the shower development,
then if the GH function describes the cascade, we will have a normal χ2. On other hand, if there are some
physics that cause extra fluctuations, then we will see a bigger tail in χ2 (more events in that area than
expected). One way to study if the fluctuations are mainly statistical is the χ2 test.
Given a χ2 distribution, we can calculate the χ2 probability defined as P (χ2

k) ≡ P (χ2 ≥ χ2
k) =

∫∞
χ2
k
f(χ2)d(χ2),

for each event k with χ2
k (fig. 6.7), f(χ2) is the chi-square distribution function. If the considered χ2 are

obtained from gaussian fluctuations around a GH, they will follow a χ2 distribution function and P will be
flat (fig. 6.7). An excess of events with low probability, means we have extra events with high fluctuations
i.e., fluctuations are larger than the normal values for the χ2 distribution.
After having computed the f(χ2) with mean value around one, we can calculate the probability distribution.
Now, we should note that our χ2/ndf distribution is very good to compare events, but to calculate the
probability, this is not good. In the next figure, we can quickly see that the χ2 distribution change with the
number of degrees of freedom. In this way, we can not use the shape of fig. 6.7 left directly with one degree

of freedom, f(1df ;χ2
1df ) 6= f(NdfNdf ;

χ2
Ndf

Ndf ). Beside, each event has different degrees of freedom. To calculate

the probability, we should compare the χ2 of each event with the distribution of it’s corresponding number
of degrees of freedom (Ndf). We will have for each event P (χ2

k) = P (Ndf ; χ2
k ×Ndf).

Our probability distribution has not the expected flat behaviour (black line). As we can see, in the central
probabilities we have a flat distribution, but with much less events. At the ends of the probability we have
excess of events.
In one hand, at very high probabilities, we have high peak with a great excess of events, this means that we
have more events with a shape close to a GH than what is expected. Or, we can conclude that the error
considered is overestimated.
In the other hand, we have another excess of events in the peak at low probability. This events will have a
big χ2, so we have more events with shapes different from a normal GH than what is expected. Or the error
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is underestimated, contradicting the previous one.
So even with the possibility that the errors are overestimated, we will have much more events behaving
differently from a GH than that would be expected with gaussian fluctuations. We are interested, precisely
in this events of the extremely high tale of the χ2.

Figure 6.7: In left we have several χ2 distributions, if we calculate
∫∞
χ2
k
f(χ2)d(χ2) we have the χ2 probability,

which is a flat distribution as we see in the left.

6.3 Extreme fluctuations

Since we are interested in not normal events, we will estimate the rate of extra events with high fluctuations.
For that purpose, we plot a zoom of the P (χ2) distribution in the low probabilities area. In the figure 6.10,
we have the probability from 0 to 0.006, the black line is the expected density consider for the 64000 events.
We can see that we have a big excess of events in the peak around zero and if we make a zoom in this area
(fig. 6.10b), we obtain again, a peak around zero, which means that basically the peak has not structure. So
this events have χ2 well above to what it should be.
In the beginning of the left figure, we have an excess and in the final we have less events than what is expected.
The turning point where we move from an excess to a lack of events is P (χ2) ∼ 0.0034. The number of events
obtained with P (χ2) < 0.0034 is 8792, while we expect n(P (χ2) < 0.0034) = 221. Therefore, we have 8571
more events with high fluctuations (events in the χ2 tail), which amount for approximately ∼ 13.4% of the
total events as extra strange events compared with normal statistical fluctuations.
We can repeat for the 1018eV sample and we have 17228 events with P (χ2) < 0.0034 for n(P (χ2) < 0.0034) =
428 events expected. We have approximately 16800 extra event or ∼ 13, 8%.
We can also see how many events are extra good fitted. In the figure 6.8, we can see that the turning point
from lack to excess of event is approximately at P (χ2) > 0.985 and we have 41730 extra events (42957
counted events with 1227 expected events). At 1018eV we have 82575 extra events (84444 events counted
less 1869). So the extra good events with this error definition are ∼ 65% and ∼ 67% for 1019eV and 1018eV
respectively.

6.3.1 What are the extreme fluctuations

The event excess with low probability should have profiles with shapes very different from a GH function.
So in the figure 6.11a, we plot the mean profile for the events in each zone. In blue we have the events with
P (χ2) > 0.985, in red are the events with P (χ2) < 0.00345, in green are the events between the two areas.
In violet and light blue we have the very bad and very good GH shape events respectively. Since we are look
at mean profiles, we can not see much difference, but if we normalize all mean profiles to the mean profile of
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Figure 6.8: a) χ2 distribution for the sample with 1019eV , b) P (χ2) for the same events, the black line
represents the expected distribution for events with gaussian fluctuations.

Figure 6.9: a) χ2 distribution for the sample with 1018eV , b) P (χ2) for the same events, the black line
represents the expected distribution for events with gaussian fluctuations.

the P (χ2) > 0.985, in the figure 6.11b we can see some differences.
For example, events with central probabilities are wider than the considered good events (with P (χ2) >
0.985). The extreme event are even more wider than the normal events. In order to see exactly the differences
we can plot the density of all profile. In the figure 6.11c, we have the density of the profiles with low
probabilities in colour scale and with the black lines we have the density of the good events. The normal
events, besides being many more they are concentrated around the normal mean profiles. The extreme profile
have big variations between each other and strange profiles. For example, the red, light blue and pink profiles
in figure 6.1 are some of these profiles.
The extreme profiles are wider and sometimes even have two peak, which are called double bangs. The main
reason of this shapes in simulation is the production of particle in the first interactions with a big fraction of
the total energy. If this particle travels a big distance before interacts again, we will have shape as a sum of
two GH (one from the energetic particle produced and other from the remaining particles), see next chapter
for further detail.
In real data, besides this statistical feature, we could have another exotic scenarios that could produce such
different behaviour. For example, a production of a mini black hole with a big multiplicity in it’s evaporation,
or a production of new kinds of particle with that could interact more weakly.
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Figure 6.10: Zoom of the low χ2 probability zone for the sample of 1019eV . We see that even with a big
zoom (left) we still have a peak of events around the zero. The excess of events ar at about P . 0.035.

Figure 6.11: a) are plotted the mean profiles for several samples of the 1019eV sample. In blue the events
of the peak with high probability, in red the events with low probability and in green the events between
the two. In violet and light blue we have the events with very low and high probability respectively. b) we
present the mean profiles normalized to the profile for the peak with high probability (which are assumed
to be the good events). c) in colour we have the density of shower profiles for low probability and above in
black are the density for high probability.

6.4 Full Simulation

To really understand real events we have to simulate the detectors. With the Offline framework [114], we
can simulate the events, in the figure 6.12, we have the reconstruction of the red event in the figure 6.1. If
we look at the events in fig. 6.1a) we see that we need ∼ 1300g/cm2 slant depth (X) crossed to catch the
shape of the interesting events. The red one, has the second peak at ∼ 1250g/cm2, the change of the down
slope in the light blue event are notorious at ∼ 1300g/cm2 and to catch all pink event we need this big slant
depth too. So if Auger is at ∼ 1400m above the see level, in vertical showers we will cross ∼ 875g/cm2, this
it very far from the minimum slant depth we need. In this way, vertical shower will hide many information
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of the shower profiles and we need to read showers at higher angles, increasing X.
The minimum angle at which we could see the all interesting shape is ∼ 47 degrees. It’s obviously that we
could have more verticals showers that we can see the total shape but at this angle, we should see most of
the shower behaviour.

Figure 6.12: In gray we have the simulated event, in black is the reconstructed,in green is the fit to a GH and
in violet is the fit to two GH (sum of the red and the blue one). The characteristics of the reconstructions
are expressed bellow. The development of event a) was cut by the ground, so we are less sensitive to it’s
features, the events have E = 1019eV .

simulated event reconstructed event

Event a)

χ2
1GH 302.8 1.87

χ2
2GH 0.22 1.43

∆XRec(g/cm
2) 561.0 455.0

KRec 0.58 0.54

Event b)

χ2
1GH 51.8 1.40

χ2
2GH 0.56 1.36

∆XRec(g/cm
2) 311.3 334

KRec 0.49 0.64
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Chapter 7

Sensitivity to the leading particle

A most important result from the study of EAS are the indirect results about the interactions at very high
energies (well above accelerators energies). The Xmax and the muon number are values very important to
infer the characteristics of the first interactions (which are at UHE). The muon number is related with the
relative production between pions and baryons and their energies, while from the Xmax, we can obtain the
elongation rate, which is related to the interaction length (or cross section).
Despite this variables, in this chapter we will try to find a way to study the features of the first interaction
using two Gaisser-Hillas function. We use the same simulations samples of the previous chapter.

7.1 Two Gaisser-Hillas aproximation

The primary particle (cosmic ray) will interact in atmosphere producing particles, which in turn produce
more particles and then the cosmic ray develops into an air shower. The shower’s longitudinal shape is
described by a Gaisser-Hillas function (GH).
The primary particle interacts at the mean value X0 ≡ λ0 ∼ 43g/cm2 in slant depth (this is the first
interaction, see table 7.6). This particle will produce n particles (see multiplicity in section 4.3.4.2), in which
the most energetic particle is called the leading particle and it has in average ∼ 45% (fig. 4.9) of the primary
energy. So if the primary particle has 1019eV , than the leading could have ∼ 4.5×1018eV and the sum of the
other particles will be ∼ 5.5× 1018eV . This means that the leading particle has enough energy to produce a
big air shower. Since the leading has such high energy, it will have a long life, so it has to interact with the
atmosphere. This leading interacts at X1, see fig. 7.1. The distribution of the ∆XGen ≡ ∆X = X1 −X0 is
given by f(∆X) ∼ e−∆X/λ, where λ is the interaction length.
The particles produced by the development of the leading will slightly interact with the particles coming from
the development of the non-leading particles. However, since the energy of the leading development has higher
energy, then we can consider that the particles coming from the leading will be almost independent from
the rest, and then we can assume that the leading produces an air shower with energy E = E(leading) and
with approximately GH shape. The other particles, since they are also independent from leading’s evolution,
then they will develop another air shower with GH shape and energy of E = E(primary)−E(leading). The
result is that we don’t have one GH, but two GH.
We also can continue with this assumptions at higher order, and say that when the leading interacts at X2

(called second interaction), we will have again a second leading particle of the first leading particle, see figure
7.1.

Here we write again the GH shape, but in R and L variables (from 6.3) we have:

dE/dX(X) = (dE/dX)max(1 +
R(X −Xmax)

L
)R
−2

exp(−X −Xmax

LR
) (7.1)

where dE/dX(X) ∝ N(X). In this chapter, we will work with a longitudinal profile defined as (see figure
7.1 for an example)

dE/dX(X) = {dE/dX(X)}leading + {dE/dX(X)}rest (7.2)

61



Figure 7.1: a) draft of the initial development of an air shower, the primary particle interacts at X0 producing
multiple particles, in red we have the leading particle with ∼ 0.6 of the total energy (K ∼ 0.4), at X1 the
first leading interacts producing a second leading and so on (adapted from [117]). b) we have a scheme of a
sum of 2GH with ∆X = 500g/cm2 and K = 0.5.

Since the leading will travel a distance before developing, we consider that the second GH (with higher Xmax)
will be the leading GH. The (dE/dX)max of a GH is (dE/dX)max ∝ Eprimay (fig. A.2), so we considered
that {(dE/dX)max}leading ∝ Eleading and the same for the other GH. For now on the second GH will be the

leading ({dE/dX(X)}leading = {dE/dX(X)}2). Using the inelasticity, defined as k = 1 − Eleading
E , we can

say that:

KRec = 1− {(dE/dX)max}2
{(dE/dX)max}1 + {(dE/dX)max}2

(7.3)

Besides this value, we want to measure ∆XRec = (Xmax)2 − (Xmax)1. We have that Xmax,i = Xi + ∆i (see
fig. 7.1b), in this way, we want that ∆XRec ' ∆XGen and then:

∆XRec = (X1 + ∆2)− (X0 + ∆1) = X1 −X0 + (∆2−∆1) (7.4)

We need that ∆2 ' ∆1, to have ∆XRec ' ∆XGen.
In cosmic rays with 1019eV , we have a 〈Xmax〉 = 781.6g/cm2 and at 1018eV we have 〈Xmax〉 = 736.1g/cm2,
they have a difference of 45.5g/cm2 (∼ 6%). Now consider that the we have a leading particle with 90% or
10% of the total energy (1019eV ), and the leading interacts in approximately the same slant depth that the
first interaction, so in average value, the difference from the two Xmax will be < 45.5g/cm2.
In this way, even if the leading carry in average ∼ 50% of the energy (the others particle carries ∼ 50% too),
than in this condition the two Xmax will be almost equal. With those consideration, we have that ∆XRec is
equals to the interaction distance of the leading (∆XGen = X1 −X0 ∼ ∆XRec). So to simplify, we need to
have ∆1 = ∆2 in the figure 7.1 b), but the fluctuations will give us some extra error in the ∆XGen value.

7.1.1 Two Gaisser-Hillas approach test

To study the first interaction we proceed to fit the simulations to the equation 7.2. One GH function has 4
degrees of freedom, (dE/dX)max, Xmax, L and R. The two GH approximation will have 8 degrees of freedom,
with so much freedom it is very difficult that the fit converge and the fitting result could be unstable and
ambiguity.
In order to stabilize the fit, we will decrease the number of degrees of freedom, parametrizing one variable.
We are mainly interested in (dE/dX)max and Xmax, we only could parametrize L and/or R. As we can
see in appendix A, at 1019eV we have 〈L〉 = 232.8g/cm2 with RMS (root mean square) of 6.9g/cm2 and
〈R〉 = 0.253 with RMS of 0.019. The same behaviour can be observed until 1016eV , so L have much less
fluctuations than R and we should parametrize L and expect that R absorbs the L fluctuation.
Again in appendix A, we have the parameter values at several energies and we can find the L by the
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parametrization:

L = 5.734× log10((dE/dX)max) + 190.83 (7.5)

Without L parameter, we end up with 6 degrees of freedom in two GH approximation.
Consider that we could approximate the profile to two GH, we still have the problem of the convergence of
the fits or if the fit procedure is adequate to reconstruct the 6 parameters (specially the 4 parameters that
interest us). In this way, instead of using the simulations, in this section we sum two Gaisser-Hillas (with
known parameters), and apply the fitting procedure to see if we can recover the original parameter.
Therefore we sum two GH with ∆X ranging from 0 to 600g/cm2 (with interval of 50g/cm2), inelasticity k
from 0.1 to 0.9 in 0.1 steps. L and R have gaussian fluctuation around the values parametrized by equation
7.5 and A.5 respectively. For further explanation see appendix B. In the figure 7.2, we see two examples of
the fit with two GH and in the figure 7.3 are present the results for ∆X and K from the fits compared with
input. We divide the each results into two groups.

Figure 7.2: Two example of a 2GH fit to a sum of two known GH. a) original values of ∆XGen = 50g/cm2,
KGen = 0.6, R = 0.255 and 0.245 and L = 226.5 and 229.8g/cm2, for the reconstruction values of ∆XRec =
0.0g/cm2, KRec = 0.5, R = 0.25 and L = 230g/cm2. b) original values of ∆XGen = 600g/cm2, KGen = 0.6,
R = 0.272 and 0.300 and L = 231.2 and 227.1g/cm2, for the reconstruction values of ∆XRec = 601g/cm2,
KRec = 0.6, R = 0.273 and 0.286 and L = 230.6 and 229.3g/cm2. As we see, by parametrizing L we introduce
a little error in the results.

Figure 7.3: a)The ∆XRec in function of ∆XGen, b) KRec in function of KGen. We have better reconstruction
with ∆XGen > 200g/cm2 and 0.2 < KGen < 0.8, see appendix A.
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If the leading particle has very low energy compared with the primary, this means that the leading GH
will be a small contribution to the overall GH shape, if it has almost all energy, then the final GH shape will
come mainly from the leading GH, and the other GH will be a correction. Keeping this in mind, we make
two groups in the ∆X plot, in the figure 7.3 a) we can see that the events with 0.2 < KRec < 0.8 have a
better ∆X reconstruction (see the extra red points with bad reconstruction at ∆XGen > 200g/cm2).
Since we use a parametrization of L, if R and L input values for sum the two GH was a direct result from
parametrization, the fits will converge very well. However in the reality the R and L have fluctuations and
here we introduce some fluctuation too. In this way, since L has a distribution, by parametrizing L with
equations, we introduce an error. This is the reason why the blue points make a band and not a line for
∆XGen > 200g/cm2. The slight difference in Xmax carry some of the fluctuations in L.
For ∆XGen < 200g/cm2, we see that the results are very bad. We have to note that if we sum two GH with
the same parameters (Xmax equals too) and K = 0.5 (GH1 = GH2) we obtain a normal GH with the same
parameters and double (dE/dX)max, (GH = GH1 +GH2 = 2 ∗GH1). In this condition if K varies, we find
the same final result and the fit have difficulty to converge. Since we have fluctuation and L fixed, KRec and
∆XRec will absorb the fluctuations too, but here with worst consequences. We can say that the procedure
doesn’t have so small resolution. If we think that the GH have a width, then only when ∆XRec is bigger
than this width, we could have such resolution. As we told before, L is approximately the longitudinal width
of a GH, so the resolution will be something like ∆XRec > L ∼ 200g/cm2.
The events with different ∆X don’t have the same probability, being the probability given by f(∆X) =
1
λe
−∆X
λ . Since we want events with ∆X > ∆Xcut, than the total probability of this kind of event is P (∆X >

∆Xcut) =
∫∞

∆Xcut
1
λe
−∆X
λ d∆X = e

−∆Xcut
λ . In the figure 7.4 we see the rate of expected double bumps events

considering λ ∼ 45g/cm2. we can see that we would have a very low statistics with high ∆X.

Figure 7.4: a) Probability of having a shower with a given ∆Xmax ≡ ∆XGen taken from [117]. b) χ2
1GH and

χ2
2GH distributions of the 1019eV sample, 〈χ2

1GH〉 = 1.00, 〈χ2
1GH〉 = 0.75.

7.2 Two Gaisser-Hillas approach results

In this section we will analyse the result of the two GH fit to simulated events. Our sample has 64000 events
with energy 1019eV , it is the same used in chapter 6. In this sample, we cut only 20 events, because they
hit the Earth ground (in simulation it is the sea level), before reaching the shower maximum, or the 2GH fit
doesn’t converge.
Another feature is that we want to measure the interaction length, so for now we only consider the leading
particle that interacts, and don’t consider the particles that decay. In this way, we loose 12608+20 events
and we use only 51372 events. The fitting method is the same used in section 7.1.1, we fix L parameter with
equation 7.5.
The χ2 results of the fit with one and two GH, in our final sample, are plotted in figure 7.4. We obtain
the expected value of 〈χ2

1GH〉 = 1 for one GH fit, and for the two GH fit, we expect a lower mean value,
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since we have more degrees of freedom and the points can be better fitted. The value for two GH is now
〈χ2

2GH〉 = 0.75.

7.2.1 Selections

In section 7.1.1, we see that we can not use all range of the parameter to analyse the fit results, since for
example at small ∆X we don’t have resolution to really trust the results.
To see in what regions we should or not consider the results we make some plots of the fraction (∆XRec −
∆XGen)/∆XGen. In the figure 7.5a), we have (∆XRec−∆XGen)/∆XGen with the color scale, in function of
∆XRec and ∆XGen, in b) we plotted the number of events in the color scale. This plot is very trivial since
the events within the straight line (y = x) will be the optimums events. But we can also see that if we cut
the region with ∆XGen < 150g/cm2 and ∆XRec < 150g/cm2, we eliminate the most problematic events (but
we reduce considerably the statistics). This is the Selection 1 with 932 in 51376 event selected.
In the figure 7.6, at ∆XGen & 150g/cm2 we have good events, but at KGen & 0.9 and KGen . 0.1 the events
are worst, so as we told before we should cut on KGen.
We have to note that in the real data we don’t have access to the KGen or ∆XGen and we should see only
the reconstructed values. In the fig. 7.7 we plot this values obtaining a picture more difficult to interpret.
We should note that, the events with small ∆XRec are almost all distributed in the KRec ∼ 0.5 region. This
happens, because we should have one GH and not two, the two GH that are summed will have very similar
parameter to form one GH, so the value KRec doesn’t make much sense in this region (see section 7.1.1).
In figure 7.8, we plot the χ2 for one GH (χ2

1GH) and for two GH (χ2
2GH). It is interesting to note that we

have a very pronounced transition in this plot, where for χ2
1GH > χ2

2GH we have bad fits. This means that
if the events don’t behave like one GH, then it’s behave better like two GH. So we should include a security
cut rule with χ2

1GH > χ2
2GH .

To better understand the reconstruction behaviour of our selections we should study the distribution of
∆XRec/∆XGen and KRec/KGen, the selections we choose must have a pick at 1. In this way, we plotted the
pictures in fig. 7.9 for the selections considered.
The Selection 1 as already explained. The 2nd selection will be in the generator parameters and it should
be the golden cut, besides it can be used in real events. According to section 7.1.1, we only have good
resolution in ∆X & L and 0.2 < K < 0.8 and in fig. 7.7, we see that this selection could be open. So being
L ∼ 230g/cm2, from the figure, we can cut at ∆XGen . 200g/cm2 . In K we should keep our original cut
in 0.2 < KGen < 0.8, because we will not have shore of the results with higher or lower K and include the
security cut.
However, the important cuts will be in reconstruction parameters and selection 3 and 4 will be in this
parameters. Selection 3, has a trivial cut in K of 0.2 < KRec < 0.8, in ∆X, since we introduce some error
in the parametrization of L we should increase the cut to ∆XRec > 250g/cm2 > L (which is a little higher
than L). This selection has a cut in P (χ2

1GH) < 0.0035, based on previous chapter and even if an event has
an higher χ2

1GH (or lower P (χ2
1GH)), it still could have a bad fit to 2GH. So we cut in χ2

2GH < 2.5 to get rid
of the spread point in fig. 7.8 that have similar χ2

1GH and χ2
2GH .

Since the extreme events with very high χ2
1GH are supposed to be good, we make the selection 4 with

χ2
1GH > 15 and χ2

2GH < 2.5. The selections are written in table 7.1. The 4 selections rules are independent
from each other.
In the figure 7.9, we can see that the selection 2 have a very narrow peak around 1, how it should, since the
reconstruction is consider to be good in this region. The selection 3 for it’s hand, have a peak around 1 too,
with very few event with ∆XRec underestimated, but have many events with this value overestimated.
In figure 7.10 we plot KRec in function of KGen and ∆XRec in function of ∆XRec for the selection 3 in the left
and for selection 2 in the right. In left (selection 3), we see too many event with ∆XRec high, while ∆XGen

is very small. The blue points are the slope of the graphic points, from the point where the blue point is,
until the end of the graphic (or end of ∆XGen), the slope is multiplied by 200 in order to be seen. From
them, we conclude that we have approximately a linear relation between the two if ∆XGen > 200g/cm2. In
graphic for K, we see a very weak relation. We should note that we have big ∆XRec for small ∆XGen and
small χ2

2GH , so we should conclude that the first interaction don’t makes the two GH behaviour, but other
thing should do it.
On the other side, in selection 4 we see an almost perfect relations between generated values and reconstructed
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ones for ∆X and for K. The reconstruction seems to work at input parameters cut, but not in reconstructed
parameters cut. However, if the selection 3 only have good fits with small χ2

2GH , so why this seems to do not
work at selection 3? In section 7.3, we will see that. We also make this selections to the 1018eV sample.

Figure 7.5: a) (∆XRec −∆XGen)/∆XGen in colour scale and b) number of event in colour scale, in function
of ∆XRec and ∆XGen.

Figure 7.6: a) (∆XRec −∆XGen)/∆XGen in colour scale and b) number of event in colour scale, in function
of ∆XGen and KGen.

number of events

Selections (sample 1019eV ) (sample 1018eV )

All events with > 1 interactions saved 51376/64000 103084/122000

Selection 1 ∆XGen > 150 ∧∆XRec > 150 932 2570

Selection 2 ∆XGen > 200 ∧KGen > 0.2 ∧KGen < 0.8 261 830

∧χ2
1GH > χ2

2GH

Selection 3 ∆XRec > 250 ∧KRec > 0.2 ∧KRec < 0.8 174 625

∧χ2
1GH > χ2

2GH ∧ P (χ2
1GH) < 0.034 ∧ χ2

2GH > 2.5

Selection 4 χ2
1GH > 15 ∧ χ2

2GH < 2.5 101 391

Table 7.1: Number of events selected with the selection rules.

66



Figure 7.7: a) (∆XRec −∆XGen)/∆XGen in colour scale and b) number of event in colour scale, in function
of ∆XRec and KRec.

Figure 7.8: a) (∆XRec −∆XGen)/∆XGen in colour scale and b) number of event in colour scale, as function
of χ2

1GH and χ2
2GH .

Figure 7.9: a) ∆XRec/∆XGen distribution, b) KRec/KGen distribution for the 4 selection. The Selection 5
is Selection 1 + χ2

1GH < χ2
2GH , where we can see that we lost many events.
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Figure 7.10: a) and c) ∆XRec in function of ∆XGen, b) and d) KRec in function of KGen. a) and b) for
selection 3 and c) and d) for selection 2. The blue points are the slope of the points (in a) and b) multiplied
by 200), in red is the mean profile of the points, in green is the linear fit (a ∗ x + b) with all point. a)
a = 0.135 ± 0.002 b) a = 0.001 ± 2.10−5 c) a = 0.973 ± 0.003 and d) a = 1.141 ± 0.001. We have a good
response in selection 2, but in a) if ∆XRec & 250g/cm2 the slope is approximately 1.

Figure 7.11: ∆X distributions for a) all events and b) events of selection 3. In green and blue we have the
fit to equation conste−∆X/λ for ∆XRec and ∆Xgen respectively (blue fit it for X > 250g/cm2), green and
blue points are the λ values for X bigger than the X point.

7.2.2 Interaction length and Inelasticity

We assume that ∆XRec ∼ X1 −X0 and that KRec ∼ 1 − Eleading/Eprimary, so in the figure 7.11 and 7.12,
we plot their distribution.
In fig. 7.11 we have the distribution of ∆XRec (in red) and ∆XGen(in black). With black point and green
error bars, we have the λ for the generated values, each point is the λ corresponding to the points from where
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it’s plotted to the end of the distribution. The result for the generated values are very constant, but for
reconstructed ones they change with ∆X. In the reconstructed λ distribution, we see that it is unstable for
∆X < 200g/cm2 since as was been told, for small ∆X our fit doesn’t work well. However at high ∆X they
have a good behaviour with systematic higher ∆X than the generated one as we see in previous section.
In the figure, with black point and green error bars, we have the λ for the generated values, each point is
the λ corresponding to the points from where it’s plotted to the end of the distribution. The result for the
generated values are very constant, but for reconstructed ones they change with ∆X. In the reconstructed λ
distribution, we see that it is unstable for ∆X . 250g/cm2 ∼ L since as was been told, for small ∆X our fit
doesn’t work well. However at high ∆X they have a good behaviour with systematic higher ∆X than the
generated one and it looks like a exponential dislocated from the generated values.
In b) are the events of selection 3, as we see, the reconstructed distribution does not correspond to the
generated one, but without any doubt, we still have a good exponential from where we could extract an
interaction length (see table 7.5).
The inelasticity distribution is plotted at fig. 7.12. In a) we see a big peak at K = 0.5, we already talk about
these events in section 7.2.1, they are the event with very small ∆X, where the fits tends to make two similar
GH. We are not sensitive to the diffractive peak at K = 0 as we expected. In b) we see the distribution for
the selection 3 events, where the reconstructed values in mean have bigger K.

Figure 7.12: The inelasticity (K) distribution for a)all events and b) selection 3. In red is KRec and in black
is KGen.

7.3 Results interpretation

In this section, we try to study the real meaning of the reconstructed values.
In the previous section, we see that using the same cutting rules in the KRec and ∆XRec as in the generated
ones, we have some good events, but a great number of them have a much higher value of ∆XRec than ∆XGen

and since they have good fit with low χ2
2GH we shall conclude that in some cases we are not measuring the

∆XGen but other thing with the same effect. For example, in the figure 7.13 we see two event with low
∆XGen but high ∆XRec. The fits have a good χ2

2GH , so what’s the reason for such different ∆X?
The second event has ∆XRec = 446.7g/cm2 but ∆XGen = 14.1g/cm2. However, KGen = 3.2× 10−8 so this
is a diffractive interaction and we will not measure it, we will measure the second leading until the third
interaction. The second leading carries 0.26 of the total energy ( K = 0.74) and travels ∆X = 529.6−54.5 =
475.0± 10.24g/cm2 until the third interaction. This is exactly what we measure, and the KRec = 0.77± 0.04
which is very close to what is expected.
The first example is more difficult, we have ∆XRec = 440.7g/cm2, but ∆XGen = 155.1g/cm2. The first
leading carries 0.68 of the primary energy, while the second leading travels ∆XL2,Gen = X2 −X1 = 485.0−
188.5 = 296.6g/cm2 with 0.72 of the first leading energy.
The first leading travels 155g/cm2, this value is around the width of a GH, so we will have difficult to
distinguish the 32% energy of the 1GH from the 68% of the second. Moreover, since the second leading
carries much energy and travels a distance higher than the GH width, than those 2GH should have 19% of
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the energy. We can conclude that the first and second GH will be seen as only one GH with 19%+32% = 51%
and the second leading particle will produced a observable second GH with 68% ∗ 72% = 49% of the energy.
This is exactly what we see, with KRec = 0.59± 0.04.

Figure 7.13: Examples of two events from 1018eV sample. In green we have 1GH fit, in yellow the 2GH fit
(and sum of the blue and red GH).
a) χ2

1GH = 4.49 vs χ2
2GH = 0.04, ∆XRec = 440.7g/cm2 vs ∆XGen = 155.1g/cm2 and ∆XL2,Gen =

296.6g/cm2, KRec = 0.488 vs KGen = 0.324 and KL2,Gen = 0.280 (X0 = 33g/cm2, X1 = 188g/cm2 and
X2 = 485g/cm2).
b) χ2

1GH = 6.41 vs χ2
2GH = 0.01, ∆XRec = 446.7g/cm2 vs ∆XGen = 14.1g/cm2 and ∆XL2,Gen = 475.1g/cm2,

KRec = 0.771 vs KGen = 3.2 × 10−8 and KL2,Gen = 0.743 (X0 = 40g/cm2, X1 = 55g/cm2 and
X2 = 530g/cm2).

In the figure 7.12 we see the inelasticity distribution, we have a diffractive pick at K ∼ 0 with lots of
events, so if we have one of this events, we could have for example ∆XGen ∼ 50g/cm2 and ∆XGen ∼ 0.95.
In this case we will not be able to see the shower with 5% of the energy. But when the leading particle
with 95% of the energy interacts in a second interaction (at X1), we could produce a second leading, this
second leading will behave almost like the normal first leading. It can have K ∼ 0.5 and if it travels a great
distance before interacts again (in X2) we will have a shower that develops from X1 (with half energy) and
another that develops from X1 (with half energy too). In this way, instead of measuring the first leading
interaction length, we measure the second one in ∆XRec. These picture of measuring one leading or the
other is not completely independent. We could have a leading with 0.8 of the energy which travels 100g/cm2

and produces a second leading with 0.5 of the initial energy. If this second leading travels a big distance,
than we will see a ∆XRec as a convolution of the two distances. In our simulations sample we only have
access to the particles produced in the 1st interaction and the particles produced by the first leading in the
2nd interaction and so on. Besides that, for now, we don’t have access to information about the leadings
that don’t interact with the atmosphere. Therefore from our 64000 events at 1019eV we only can use 21493
which, with the selection cuts, gives very small statistics. We become with 95 events in selection 3. In order
to solve this problem, we use now the sample with 122000 events at 1018eV (see table 7.1).
With this new sample we have approximately 50000 events with 3 interaction saved. In this sub-sample,
we select 492 events (in selection 3), from these, we have 153 events that corresponds to the same ∆XGen

and KGen (see table 7.2). Part of the remaining events could come from the second leading, so we define
KL2 = 1 − Esecondleading/Eprimary, and ∆XL2,Gen = X2 − X1. If the events don’t pass the previous
selection in the first leading, than we are measure a more important contribution from the second leading
if ∆XL2,Gen > 200g/cm2 and 0.2 < KL2,Gen < 0.8. This selection B contribute with 129 events. But what
happens with the remaining 210 events?
We should not forget that in the first interaction there are produced more than one particle, so if one leading
interacts with very small ∆XGen, we still could have a second particle with a considerable amount of the
initial energy (with high limit of 0.5). If the leading carries 0.45 of the energy, than a second particle can
have until 0.45 of energy. So if this 2nd energetic particle in the 1st interaction travels a large distance, than
we will see it in the 2GH shape and not the leading. In the table 7.2 we see that we have 69 events in this
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conditions (selection C), which the second more energetic particle have K2,Gen < 0.8. But we don’t know
how many of then can pass trough the cut in ∆X2,Gen.
Besides this events, we still could have a a second most energetic particle in the second interaction. If the
first interaction is diffractive or at least almost diffractive, than this second more energetic particle could
again have an energy until 0.5 of the primary. We have 12 events in this conditions (selection D).
Probably we could have other term to explain the remaining events. In Appendix C, we plot the distribution
of some variables for the new selections of the table 7.2 and see that they are very similar between each other,
so if Selection 3C, looks like Selection 3A and Selection 3B, there no reason to think that the fit works for
this two, but not for the first one. The same applies to the selection 3E (with the remaining events). In this
way, probably, most of the 210 events really have some physical information.
Consequently we can use the selection 3 as a good selection rule, but we are not measuring the leading
properties, but instead, we are measure a complicates convolution of the first leading, second leading and
second particles with high energy and high ∆X. If we are measure something like ∆XGen + ∆X2L,Gen + ...
this means that we measure a distribution of λ > λ1leading. In this way we can give a upper limit for λ1leading.
Since we are not sensitive to the diffractive peak at 1st interaction, we will measure the second interaction.
As the 1st leading will have basically the primary energy, then we can see the 2nd interaction like it was the
first. Nevertheless, we will have extra events with high ∆X compared to what we would measure only with
one interaction, like in fig. 7.4 a). In the next table we plot the new selections of the sub-sample, selection 3.

number of events

Selections (sample 1018eV )

All events with > 1 interactions saved 49736/122000

Selection 3 ∆Rec > 250 ∧0.2 < KRec < 0.8 492

∧χ2
1GH > χ2

2GH ∧ χ2
1GH > 2.5 ∧ χ2

2GH > 2.5

Selection 3A Selection3 ∧∆Gen > 200 ∧0.2 < KGen < 0.8 153(426)

Selection 3B Selection3 ∧ !(Selection3A) 129 (219)

∧∆L2,Gen > 200 ∧0.2 < KL2,Gen < 0.8

Remains Selection3 ∧ !(Selection3A) ∧ !(Selection3B) 210

Selection 3C E2nd leading 1st interaction > 0.2 69

Selection 3D E2nd leading 2nd interaction > 0.2 12

Selection 3D remaining events 129

Table 7.2: Number of events of sub selections of selection 3, see text for further explanation. In selection A
and B, between parentheses is the number of event that pass the condition in K.

In the table 7.3, we separate the conditions of the selection 3 in several steps and plot the efficiency and
purity of each step. The efficiency if defined as:

εSelection = #selected events
#all events

εA(B) =
#A(B)selection in the selection step

#A(B)selection in all events

PA(B) =
#A(B)selection in the selection step

#all events

(7.6)

In this table we can see that the efficiency decreases as we add more cuts, but by it’s way, the purity have a
increase in each step, so our selection rules are good. The last selection(χ2

1GH > χ2
2GH ) have a very small

impact, but it is important to keep, because it prevent events with a behaviour between 1GH and 2GH, that
could be misleading.
In the end we can consider ∼ 57.3% as good events, ∼ 16% of events that are probably good and ∼ 26% of
events that could be background.
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Events with > 2 interactions saved

Selections # events εSelection εA εB PA PB

All events 49736 1.0000 1.000 1.000 0.010 0.017

P (χ2
1GH) < 0.034 7413 0.1490 0.722 0.569 0.050 0.064

∧χ2
2GH > 2.5 6391 0.1285 0.695 0.560 0.056 0.073

∧∆XRec > 250 1343 0.0270 0.359 0.226 0.138 0.140

∧KRec > 0.2 ∧KRec < 0.8 496 0.0100 0.299 0.156 0.310 0.262

∧χ2
1GH > χ2

2GH 492 0.0099 0.297 0.154 0.311 0.262

Table 7.3: The efficiency and purity of the several steps in selection 3.

7.4 Interaction length and Inelasticity

7.4.1 Interaction length

In the figure 7.11 in section 7.2.2, we plot the λ distribution and see that we reconstruct a ∆X with the
exponential shape:

f(∆X) = const× e−∆X/λ (7.7)

, from where we can extract the λ parameter, which is the interaction length. This figure is for the 1018eV
sample, the distribution of the other sample is more or less the same, but with less statistics.
In section 7.3 we see that we can measure a complicated convolution of the first leading, second leading and
second particles with high energy and high ∆X. So we can have an upper limit for the λ1leading < λ. In the
table 7.5, we write the λ values and in table 7.6 we write the λ for each type of particle and effective values.
We have to note that the ∆X distribution are made for all type of particle that the leading could have and
for all energies of those leading, which could vary from 5% to 100% of the total energy. As a result, the λ
will be an effective value. With our cutting rules, we should have a leading with energy approximately from
0.2 to 0.8 of the total energy.
We have an input value of λ = 52.4 ± 0.2g/cm2, while in the reconstructed, we have higher λ. As should
happen, the λ at 1019eV is lower than at 1018eV , since the cross-section is higher for the first one.

7.4.2 Cross section

With the interaction length λ, we can calculate the cross section σ using:

σ =
1

n · λ
(7.8)

n is the number of target particles per unit volume. Since we have λ in g/cm2, we could re-write it in m and
we could use n in [m−3]. Nevertheless the value of n and the density of atmosphere in g/cm2 change with
altitude(see figure 3.3). In this way, is better to use n as the number of particles per unit gram, which is the
same, but is independent of the altitude of the atmosphere. According to [31] and [115] the atmosphere have
78.09% N2, 20.95% O2 and 0.96% others compositions (we will consider to be mainly argon). The mass
numbers are A(N2) = 2 ∗ 14.01 = 28.02g/mol, A(O2) = 2 ∗ 16.00 = 32.00g/mol and A(Ar) = 39.95g/mol, so
the effective value will be Aeff = 28.97g/mol. In this way n will be:

n =
NA
Aeff

= 2.08× 1022 particles per gram [g−1] (7.9)

Where NA = 6.022× 1023mol−1 is the Avogadro constant.
In the table 7.5, we have the cross section results. This cross-section value is an effective value over the
different compositions and energy of the leadings. The value is higher for higher energy as it should be and
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we can obtain a lower limit for the cross section.
For the selection 3, we have λ3,eff = 56.8g/cm2 and 58.4g/cm2 at 1018eV and 1019eV respectively. If we
compare this result to the λeff,L1 (λeff of the 1st leading) with cut in K values, we see that we obtain a
value ∼ 14% higher than it should be (table 7.6 7th line), which is not a big problem since we have said
that we will get a upper limit to λ. Probably this value should be compared to the λeff,L1+L2, but this
value is much higher than ours (so we are not measuring a direct sum of the two exponential, λeff,L1 and
λeff,L2). In our selection 3A, we impose that the 1st leading has a big component, but we don’t say nothing
about the second leading, so we will have the sum of the two leadings. The result in this sub selection is
λeff,3A = 67.8± 5.4g/cm2 which is very close to the value of λeff,L1+L2 (with respective cuts, table 7.6 11th
line).
The selection 3B, have a 1st leading less important and thus, we see the second leading. Since the second
leading could also have a 3rd leading we should see some λ close to the value of selection 3 itself. We get
λeff,3B = 56.9± 5.2g/cm2. In next section we will see the type of the first leading.

7.4.3 Leading type

Since we have several types of leading, in the table 7.4 we write the number of leadings that are mesons and
baryons and in figure 7.14 we plot it’s distribution.
In figure, in blue we have the events that we save the 2nd interaction, for example, all γ leadings (with
number 1) will decay and we don’t consider them. With the cut in the leading inelasticity (K), we get ∼ 18%
of mesons and ∼ 82% baryons . The cut in inelasticity change the composition, since the mesons tend to
leave less energy than the baryons.

sample 1018eV sample 1019eV
# events fraction # events fraction

All events 103135 1.00 51386 1.00
mesons 37638 0.36 20135 0.39
pions 30993 0.30 16571 0.32
kaons 6645 0.06 3564 0.07

hadrons 65497 0.64 31251 0.61
protons 40461 0.40 19112 0.37

not protons 25036 0.24 12139 0.24
mesons/baryons - 0.57 - 0.64

with cut in K
All events 46733 1.00 21051 1.00

mesons 8602 0.18 3684 0.18
pions 6977 0.15 2985 0.15
kaons 6645 0.03 699 0.03

hadrons 38131 0.82 17367 0.82
protons 22737 0.49 10296 0.49

not protons 15394 0.33 7071 0.33
mesons/baryons - 0.23 - 0.21

Table 7.4: Leadings number per particle type.

7.4.4 Meson-Baryon fraction

Our effective λ should have the form λeff = fbaryonsλeff,baryons + fmesonsλeff,mesons, where fbaryons and
fmesons are the baryon and meson fraction. For the selection 3, we have λeff = 56.8g/cm2 (58.3g/cm2) at
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Figure 7.14: a)in black we have all events, in blue the event with 1st interaction saved. Definitions: 1- γ; 3-
e−; 7- π0; 8- π+; 9- π−; 10- K0

L; 11- K+; 12- K−; 13- n; 14- p; 15- p̄; 16- K0
S ; 18- Λ; 25- n̄; and 26:Λ̄ [115].

b) in black the ∆XGen and in red the ∆XGen + ∆XL2,Gen distributions, with green line the fit of eq. 7.7 to
∆XGen, blue line for the fit of eq. 7.7 to ∆XGen + ∆XL2,Gen (∆X > 200g/cm2) and light blue the fit of eq.
7.14 to ∆XGen + ∆XL2,Gen

Selections λ (g/cm2) σinf (barn)

sample 1018ev sample 1019eV sample 1018eV sample 1019eV

All events (reconstructed) 64.8 ± 0.6 55.6 ± 0.8 0.742 ± 0.007 0.865 ± 0.012

with ∆XRec > 250g/cm2

selection 3 (reconstructed) 56.8 ± 2.6 53.4 ± 6.1 0.846 ± 0.039 0.900 ± 0.103

effective energy (eV ) (0.62± 0.16) ∗ Ep (0.62± 0.16) ∗ Ep (0.63± 0.16) ∗ Ep (0.62± 0.15) ∗ Ep

Events 3A 67.8 ± 5.4 - 0.709 ± 0.056 -

Events 3B 56.9 ± 5.2 - 0.845 ± 0.077 -

effective energy (*Ep eV ) 0.61 - 0.61 -

Table 7.5: The λ and σ effective for the selections.

1018eV (1019eV ), this values are almost equal to the mesons λ, then we should have a big fraction of mesons.
Nevertheless, as we see in previous section, most of the particles are baryons and not mesons. The reason
behind this too high λeff comes from the fact that it’s exact form should be

λeff = fbaryonsλeff,baryons + fmesonsλeff,mesons + fL2λL2 (7.10)

, where λL2 is the effective λ for the 2nd leading and fL2 is it’s weight for the total lambda.
At first look, we can think that the λ of a distribution of ∆X = ∆XL1 + ∆XL2, should be λeff,L1+L2 =
λeff,L1 + λeff,L2, but in fact, if we look at λeff,L1+L2 we have the value 69.3g/cm2 which is different from
49.7 + 51.9g/cm2 (λeff,L1 + λeff,L2, tab. 7.6 11th, 7th and 9th line). In the figure 7.14 b) we see the
distribution of λeff,L1+L2. This result is quite obvious, since in the distribution we will not add two equals
λeff,L1 and λeff,L2, but we can add a small λeff,L1 and an higher λeff,L2 or vice-versa and the final λ will
increase with a weight fL2 less than 1.
In this way, we can get:

λeff > fbaryonsλeff,baryons + fmesonsλeff,mesons = fmesons(λeff,mesons − λeff,baryons) + λeff,baryons ⇔
⇔ fmesons <

λeff−λeff,baryons
λeff,mesons−λeff,baryons

(7.11)

74



We have a lower limit for baryon fraction and a upper limit to meson fraction. We get (fbaryons)lower limit =
0.11 ± 0.33 at 1018eV besides the high error, we are far from the real value, but as we said, this is a lower
limit. In next section we will upgrade this result.

Selections λ (g/cm2) σeff (barn)
sample 1018eV sample 1019eV sample 1018eV sample 1019eV

X0 proton 46.5 ± 0.1 42.8 ± 0.2 1.035 ± 0.003 1.124 ± 0.004
∆XGen mesons (cut K) 58.0 ± 0.6 49.9 ± 0.9 0.829 ± 0.009 0.963 ± 0.016

effective energy (*Ep eV) 0.30 ± 0.09 0.30 ± 0.09 0.30 ± 0.09 0.30 ± 0.09

∆XGen barions(cut K) 47.4 ± 0.2 44.2 ± 0.3 1.013 ± 0.005 1.087 ± 0.008
effective energy (*Ep eV) 0.42 ± 0.16 0.42 ± 0.16 0.42 ± 0.16 0.42 ± 0.16

∆XGen pions (cut K) 57.5 ± 0.7 49.3 ± 1.0 0.837 ± 0.010 0.976 ± 0.019
effective energy (*Ep eV) 0.30 ± 0.09 0.30 ± 0.09 0.30 ± 0.09 0.30 ± 0.09

∆XGen protons(cut K) 47.3 ± 0.3 43.7 ± 0.4 1.017 ± 0.006 1.099 ± 0.011
effective energy (*Ep eV) 0.43 ± 0.16 0.42 ± 0.16 0.43 ± 0.16 0.42 ± 0.16

∆XGen effective 52.4 ± 0.2 48.2 ± 0.2 0.917 ± 0.003 0.997 ± 0.005
effective energy (*Ep eV) 0.32 ± 0.26 0.27 ± 0.23 0.32 ± 0.26 0.27 ± 0.23

∆XGen effective (cut K) 49.7 ± 0.2 45.6 ± 0.3 0.968 ± 0.004 1.054 ± 0.007
effective energy (*Ep eV) 0.40 ± 0.16 0.40 ± 0.16 0.40 ± 0.16 0.40 ± 0.16

∆XL2,Gen effective 51.6 ± 0.3 45.7 ± 0.4 0.932 ± 0.005 1.052 ± 0.008
effective energy (*Ep eV) 0.16 ± 0.15 0.15 ± 0.15 0.16 ± 0.15 0.15 ± 0.15

∆XL2,Gen effective (cut K) 51.9 ± 0.3 46.5 ± 0.4 0.926 ± 0.005 1.033 ± 0.009
effective energy (*Ep eV) 0.19 ± 0.17 0.18 ± 0.16 0.19 ± 0.17 0.18 ± 0.16

∆XGen + ∆XL2,Geneffective 70.4 ± 0.4 62.5 ± 0.7 0.682 ± 0.004 0.769 ± 0.008

∆XGen + ∆XL2,Geneffective (cut K) 69.3 ± 0.7 62.5 ± 0.7 0.682 ± 0.004 0.769 ± 0.008

Table 7.6: Severals important λ and corresponding σ effective, from the input values.

7.4.5 Convolution of Leadings

In figure 7.14 b), we see that f(∆XL1 + ∆XL2) 6= const × e−(∆XL1+∆XL2)/λ, consequently we should find
another distribution to fit the results. Observing the previous distribution we can conclude that the rate of
double bangs will be much higher than what was initial thought in the figure 7.4 a).
If we have a distribution with the shape f(∆X) = C × e−∆X/λ, in a discrete plot we have f(∆Xk) = C ×
e−∆Xk/λ where k is the bin number (from 1 to n). This is the distribution for the 1st leading, the 2nd leading
alone will have the same shape. In bin 1 the first leading travels X1, adding the 2nd leading contribution
we will have fL1+L2(∆X1) ≡ f ′L1+L2(∆X1,∆X1) = A(X1) × fnormalized,L2(∆X1) = C1 · e−∆XL1,1/λ1 ×
Cnorm · e−∆XL2,1/λ2 , where the amplitude of distribution of the second leading will be constrained by the
number of 1st leading particles that have travel X1. The C1 constant comes from the number of particle, but
since fL1(∆X1) will be the amplitude of the second leading, then we need Cnorm,2 to normalize the second
distribution (basically, the second term will be a probability). In f ′L1+L2(∆Xj ,∆Xk), ∆Xj and ∆Xk is the
distance travels by 1st and 2nd leadings. From the 1st bin of 1st leading we will have more terms for others
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higher bins in 2nd leading in the form f ′L1+L2(∆X1,∆Xk).
The second bin of the total distribution will have a contribution from the 1st bin and 2nd bin of the first
leading and it will be fL1+L2(∆X2) ≡ f ′L1+L2(∆X1,∆X2) + f ′L1+L2(∆X2,∆X1), and so on. Bellow we can
see the construction scheme:

fL1+L2(∆X1) = f ′L1+L2(∆X1,∆X1) = C1 × e−∆XL1,1/λ1 × e−∆XL2,1/λ2

fL1+L2(∆X2)
= f ′L1+L2(∆X1,∆X2) + f ′L1+L2(∆X2,∆X1) =

= C1 × e−∆XL1,1/λ1 × e−∆XL2,2/λ2 + C2 × e−∆XL1,2/λ1 × e−∆XL2,1/λ2

...

fL1+L2(∆Xn) = Σnk=1f
′
L1+L2(∆Xk,∆Xn−k) = Σnk=1Ck × e−∆XL1,k/λ1 × e−∆XL2,n−k/λ2

(7.12)

where we define Ck = Ck×Cnorm. Now, we can do limitbins spacing→0Σnk=1 −→
∫Xn

0
. Therefore, for the new

distribution we get the shape:

fL1+L2(∆Xn) =

∫ ∆Xn

0

C × e−∆X/λ1 × e−(∆Xn−∆X)/λ2d∆X = C
e−∆∆Xn/λ1 − e−∆Xn/λ2

1/λ2 − 1/λ1
(7.13)

If λ2 = λ1, than we get:
fL1+L2(∆Xn) = Ce−∆Xn/λ ×∆Xn (7.14)

From equation const × e−x/λ, now we have const × e−x/λ.x. In light blue, at fig. 7.14b) we have the fit of
∆XL1+L2 distribution to equation 7.14. To keep the same number of parameters, we consider that λ1 ∼ λ2

(which is acceptable by table 7.6). We obtain here a λeff = 51.5 ± 0.4g/cm2, which is ∼ λeff,L1 ∼ λeff,L2

(cutting in K parameter). If we don’t cut in K we get λeff = 52.5 ± 0.3g/cm2. The χ2 = 97.0/85 using
equation 7.7 and is χ2 = 68.2/100 with eq. 7.14. With the new distribution we get a better fit and have a
interaction length very close to the input.
In figure 7.15, we repeat the ∆X distribution for all events (a) and selection 3 (b) with the fit to the new
function. The results for this new fit and posterior meson-baryon fraction calculation are in table 7.7.

Selections λ (g/cm2) σinf (barn)

sample 1018eV sample 1019eV sample 1018eV sample 1019eV

∆XGen + ∆XL2,Geneffective 52.6 ± 0.3 47.3 ± 0.4 0.914 ± 0.005 1.017 ± 0.010

∆XGen + ∆XL2,Geneffective 51.6 ± 0.4 46.4 ± 0.7 0.931 ± 0.008 1.035 ± 0.015

with cut in K

All events (reconstructed) 53.0 ± 0.4 46.3 ± 0.6 0.906 ± 0.007 1.038 ± 0.013

with ∆XRec > 250g/cm2

selection 3 (reconstructed) 48.8 ± 1.9 45.8 ± 4.6 0.984 ± 0.039 1.050 ± 0.104

effective energy (eV ) (0.62± 0.16) ∗ Ep (0.62± 0.16) ∗ Ep (0.63± 0.16) ∗ Ep (0.62± 0.15) ∗ Ep
meson fraction #meson/#baryon

All events (reconstructed) 0.42 ± 0.04 0.17 ± 0.07 0.74 ± 0.10 0.20 ± 0.10

with ∆XRec > 250g/cm2

selection 3 (reconstructed) 0.13 ± 0.18 0.28 ± 0.80 0.15 ± 0.20 0.38 ± 1.10

Table 7.7: The λ and corresponding σ effective for the new fitting equation (eq. 7.7) and corresponding
meson/baryon fraction.
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Figure 7.15: The new fit (of eq. 7.14) to the ∆X distributions of all reconstructed events (a) and selection
3(b).

We can see that if we compare the new values of the effective λ with the obtained from the same method
for ∆XGen + ∆XL2,Gen, they are very close and compatible within the errors. Comparing this values to
the values in table 7.6, the results are very accurate. For the selection 3 we have λeff,3 = 48.8 ± 1.9g/cm2

(tab. 7.7 4th line), while λeff,L1 = 49.7 ± 0.2g/cm2 at 1018eV (tab. 7.6 7th line). At 1019eV , we have
λeff,3 = 45.8± 4.6g/cm2 (∼ 10%), while λeff,L1 = 45.6± 0.3g/cm2. The values are close, but we have large
uncertainties. Here we can repeat the calculation for meson-baryon fraction. Compared with the table 7.4,
the results are not too good, beside being compatible with the errors. The error in this case are extremely
high since equation 7.11 is very sensitive to small changes.
The experiment of LHCf will detect something similar to this fraction, it will allow the measure of neutral
particle produced in the forward direction of ATLAS (see [118]). In the quote [119] we find a study of the
variation of the number of muons in EAS with percolation, which will be related with this value.
The interesting result of this thesis is that using this new fit or even the previous one (more conservative),
at least we can obtain a lower limit for cross section. This can be applied to data and be compared with the
preview by Monte Carlo models.

7.4.6 Inelasticity

Besides the ∆X, we have the information of K too. In the figure 7.12, is plotted the inelasticity distribution
for all events in a) and for selections 3 in b). The mean values are plotted in the table 7.8. Looking at the
figure, we see that in reconstruction we have smaller K than in KGen and as we told many times, we are
not sensitive to the diffractive peak. Our result is a complicated convolution of several leadings with several
energies. Consequently if we can not measure the first leading (because ∆XGen . L) but we measure the
2nd leading or other most energetic particle, we will decrease the energy of what we are measuring. In this
way, we tend so measure a lower value of K.
In the table we see that the mean K reconstructed is smaller than the input of 1st leading.

7.5 Real Events

In real events is more difficult to follow this procedure, since we could have reconstruction problems or even
atmospheric condition that deteriorate our FD signal. We could think that we are seeing some double bang
event, but we are actually seeing a normal event.
In the figure 7.16 a), we have a good example where we can fit 2GH. The χ2

1GH = 1.50 and χ2
2GH = 0.68

this shows that this event has a behaviour of two GH, and not 1GH. The event is a very good event since it
doesn’t have clouds, and the Mie, Rayleigh and Cherenkov component of the light that arrives at the FD is
very small.
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Selections Inelasticity K

sample 1018eV sample 1019eV

All events (generated values) 0.68 ± 0.26 0.70 ± 0.26

All events (reconstructed values) 0.53 ± 0.22 0.52 ± 0.20

for ∆X < 200g/cm2

selection 3 (reconstructed values) 0.61 ± 0.16 0.61 ± 0.16

effective energy(∗Ep eV ) 0.62± 0.16 0.62± 0.16

Table 7.8: Values of the effective inelasticity K.

In b), we have a normal event, where we don’t expect 2GH, so the χ2
1GH = 0.46 while χ2

2GH = 0.51. It’s
interesting to note that we obtain ∆XRec = 33.0g/cm2, and L and Xmax have very similar results, so the
two Nmax don’t mean anything, since it tries to have 1GH. If we have 1GH, as we told before, we can divide
it in two GH with similar parameter and the two Nmax can change almost in an arbitrary way, giving more
or less the same result.
In the figure 7.17, we have more two examples where we can fit 2GH better than 1GH. Nevertheless, this
new events are in very bad condition. In figure 7.18, we see that the 4th event has a cloud in half of the
development of the shower, which could cause the double bang shape. Meanwhile, the 3th and 4th events
have a big direct Cherenkov component which could compromise the good reconstruction of the longitudinal
profile.
In real events, in this way, is much more difficult to use the 2GH fit in order to obtain information about the
shower. In many of the events we will have two GH because of clouds, or problems of reconstruction, with
a second GH coming from Cherenkov and scatter light. In this context, a carefull pre-selection of the data
is needed, hence the PAO has a very good control of atmosphere conditions, we may achieve a clean data
selection.

Figure 7.16: a) EventId 7274947 (2009/02/21, Los Morados)
E = 2.93± 0.20 1018eV , χ2

1GH = 1.50, χ2
2GH = 0.68

∆X = 250.1g/cm2, K = 0.36
b)EventId 7274947 (2009/02/21,Coihueco)
E = 7.57± 0.35± 0.31 1017eV , χ2

1GH = 0.47, χ2
2GH = 0.51

∆X = 33.0g/cm2, K = 0.25
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Figure 7.17: a) EventId 7269175 (2009/02/20, Los Leones)
E = 2.39± 0.09± 0.15 1018eV , χ2

1GH = 2.34, χ2
2GH = 1.10

∆X = 603.2g/cm2, K = 0.83
b) EventId 7270194 (2009/02/20, Los Leones)
E = 4.46± 0.33± 0.22 1018eV , χ2

1GH = 1.55, χ2
2GH = 0.81

∆X = 222.4g/cm2, K = 0.68

Figure 7.18: a) EventId 7269175 (event a in fig. 7.17) b) EventId 7270194 (event b in fig. 7.17). Above we
have the camera pixels that were activated with the colour, the pixels in the shadow correspond to pixels
that were pointed at clouds during the event, bellow we have the detected light at the camera divided in
several components.
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Chapter 8

Conclusion and prospects

The main purpose of this thesis was to study the events with extreme fluctuations and apply a new method
to recover the interaction length of first interaction from the extensive air shower.
In the study of events with extreme fluctuations, we observed that there is a large excess of events with high
χ2, or we have a tail in the χ2 distribution of too large. This means that these events have more fluctuations
compared to the profile of a GH, than expected for Gaussian fluctuations. In order to understand the number
of events with more fluctuations than expected, we studied the probability of χ2. Based on the probability,
we found an excess of low probability events. Thus, we have at 1019eV about 13.4% of events with extra
fluctuations and at 1018eV we have about 13.8%. This sample of events is marked by, on average, be wider
than the events with good χ2. Besides being on average wider, in event by event we have enough distance,
we get a shape very different from a GH, and even we can get two maximums in the shower.
The events where we had troubles to adjust one GH to the points of the event, were the best events for
applying the new method. Basically, the method considers that one of the leading from first interactions,
carrying a large fraction of the energy might be developed separately from the other particles produced.
Thus, if the leading interacts very close to the point where it was produced, then its development in a GH
will be superimposed on the GH of the other particles. If the leading travels a large distance before interact,
it was found that both GH developments are spaced (double bang) and we can be sensitive enough to recover
its shape. If the event does not have a profile similar to 1GH, then it should be something similar to the sum
of two GH. The optimum zone is to use method for distances between GH(X) larger than the value of L (it
is approximately the width of 1GH) and leading that carries a fraction of energy between 0.2 and 0.8. The
distance between the two Xmax of the two GH, is corresponding to the distance travelled by the leading.
It was found that a major difficulty comes from the fact that, we not always measure the leading of the first
interaction, we have cases where the leading of the second interaction carries a larger fraction of the total
energy and travels a larger distance, or even have a 3rd leading particles or a high energy particle produced
in the interactions and are not the leading, but are under the above conditions. We can still be measuring
the sum of two leading. This means that we measure a fit of all those leadings obtaining a interaction length
that is higher than expected, we get λeff = λLeading1+λLeading2. With this upper limit, we can calculate
a lower limit for the cross section.
Using Monte Carlo simulation programs, at 1018eV we find an upper limit on the length of interaction of
56.8 pm2.6g/cm2, one would expect a value about 49.7g/cm2. It was noted that the distribution for the
interaction length with the accumulation of leadings was not exactly an exponential. On the approach of
two leadings with equal interaction length, we have a distribution with the shape conste−x/λ ∗ x. With
it was possible to find a value for λ that in principle was not supposed to be superior. For 1018eV get
48.8 pm1.9g/cm2, about 3.9% of uncertainty, the expected value of 49.7g/cm2 would be a difference of 1.8%,
so the results are compatible. For 1019eV , we have 45.8 pm4.6 to 45.7 pm0.3g/cm2. With the second shape
for the distribution it is possible to recover very close value.
For the calculation of the fraction of meson-baryons, it was found to be very sensitive to errors in the
interaction length, so although the results being compatible with expected values, due to large statistical
uncertainties, they are not very accurate.
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The main goal of this thesis was to find a distribution for the ∆Xmax compatible with an exponential and
that it corresponds to the distribution of a leading or/or overlapping of several. With this it appears that
the method can be accurate.
Finally it was found that there are real events which are candidates for double bang, however, extra care is
needed for the atmospheric conditions that can cause a similar effect.
In the future, we intend to initially apply the model to the reconstruction of simulated events and then apply
it to real data. This model could emerge as a way to strongly constrain hadronic models.
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Appendix A

Showers parametrizations

In this appendix, we present the mean shower characteristics for primary energy from 1016eV to 1019eV . We
use the hadronic model QGSJET-II3, since it was used for the simulations in chapter 6 and 7. If you want
to see some differences between models, you can look at chapter 4. To reduce computation time, here we use
samples of 1000 events for each energy considered (we have 5 samples with 1016eV , 1017eV , 1017.5eV , 1018eV
and 1019eV ). In table A.1, the results are displayed. The parameters are obtain by fitting the simulated
events to the Gaisser-Hillas equation with the shape of equation 6.1 and with 4 parameters (Nmax, Xmax, L
and R). Here we use all points of the profile to fit to one GH, and unlike in the final of section 6.2 or even
in chapter 7, where we cut the initial and final tail of the profiles. We use this parametrizations to improve
the 2 GH fit, so even if we cut the initial and final tail of the total profile, we will not cut the final tail of the
first GH and the initial tail of the second GH (that are summed, see fig. B.5), so it’s more correct to use the
parametrization with all points of the profiles.

A.0.0.1 Shower Nmax

In the figure A.1 a), we can see the that the Nmax has a very narrow distribution with σ varying from ∼ 2.7%
to ∼ 7.5% at 1019eV and 1016eV (see tableA.1 for detailed values). If we plot Log10Nmax in function of
Log10Energy, we see that they vary almost linearly. So we could parametrize Nmax in fig. A.1 b), by:

Log10Nmax =

(
0.9970
±0.0089

)
× Log10Energy +

(
−11.74
±0.16

)
(A.1)

Since we will parametrize the other parameters as function of energy, and in chapter 7 we will need L
parameter in function of Nmax, so we invert this equation and obtain:

Log10Energy =

(
1.0030
±0.0090

)
× Log10Nmax +

(
11.77
±0.27

)
(A.2)

A.0.0.2 Shower Xmax

The Xmax distribution have more fluctuations than Nmax, but we can still see an evolution with energy. This
is not so important since we are interested in the Xmax value event by event. We can parametrize it by:

X =

(
49.82
±27.04

)
× Log10Energy +

(
−162.7
±485.2

)
(A.3)
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Figure A.1: a) Nmax distribution for several energies, b) Nmax as a function of Energy, in red we have the
linear fit with χ2 = 0.0003.

Figure A.2: a) Xmax distribution for several energies, b) Xmax as a function of Energy, in red we have the
linear fit with χ2 = 0.008

A.0.0.3 Shower L parameter

The L parameter have fluctuations with sigma approximately between 3% and 7%. It can be parametrized
by (see fig. A.3):

L =

(
5.72
±4.17

)
× Log10Energy +

(
123.5
±80.1

)
(A.4)

A.0.0.4 Shower R parameter

The R parameter has more fluctuations than L, which are between ∼ 7% and ∼ 14%. It can be parametrized
by (see fig. A.4):

R =

(
−0.019
±0.013

)
× Log10Energy +

(
0.619
±0.227

)
(A.5)

A.0.0.5 Synthesis and conclusion

The mean values for the shower parameters are displayed in table A.1. The previous parametrizations are
used in the appendix B.
The two Gaisser-Hillas function method has 8 parameter, and obviously we can not parametrize the Nmax and
Xmax, since they are the values we want to extract (see appendix B). The L parameter has less fluctuation
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with respect to R so we can parametrize L parameter by equation A.4. In this way, the two GH method has
now 6 parameter, and it is easier to fit events.

Figure A.3: a) L distribution for several energies, b) L as a function of Energy, in red we have the linear fit
with χ2 = 0.03.

Figure A.4: a) R distribution for several energies, b) R as a function of Energy, in red we have the linear fit
with χ2 = 0.17.

Log10E Mean σ σ/Mean Log10E Mean σ σ/Mean
Value (%) Value (%)

Nmax 16 16227.3 1218.9 7.51 Xmax 16 630.5 72.2 11.44
(GeV/ 17 163503 8188 5.01 (g/cm2) 17 687.2 67.7 9.86
g/cm2) 17.5 518018 22184 4.28 17.5 709.4 61.1 8.62

18 1.62944× 106 59508 3.65 18 736.1 58.8 7.99
19 1.60629× 107 437761 2.73 19 781.6 53.6 6.86

L 16 216.6 15.7 2.97 R 16 0.321 0.046 7.42
(g/cm2) 17 220.8 11.3 3.92 17 0.288 0.029 8.34

17.5 222.8 9.7 4.36 17.5 0.275 0.026 9.46
18 225.8 8.9 5.13 18 0.265 0.022 9.94
19 232.8 6.9 7.24 19 0.253 0.019 14.43

Table A.1: Mean values for Shower Parameters
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A.0.0.6 χ2 evolution

Beyond the previous evolutions with energy, we still can see another interesting feature, the χ2 depends on
energy too. In figure A.5 we see that χ2 ∝ Eγ , in fact if we observe the points a little better, we see that the
exponent γ is higher at E = 1019eV and smaller at E = 1014eV . Here we use the same samples of previous
section, but we add two new samples with 1000 events with energy 1014eV and 1015eV . We don’t use them
for the other parametrizations, because they are out of the utility region of chapter 7. The linear fit gives
the result:

Log10χ
2 =

(
0.700
±0.158

)
× Log10Energy +

(
−10.5
±2.74

)
(A.6)

Figure A.5: a) log(χ2) distribution for several energies, b) 〈log(χ2)〉 as a function of Energy, in red we have
the linear fit with χ2 = 0.6.

All events in this appendix were fitted using all point of the distributions. Here we repeat the fits but
with the initial and final point of the profile cut like in chapter 7 and 6. Since now, we are only interested in
the χ2, we only plot this result in fig. A.6. The result of the linear fit is:

Log10χ
2 =

(
0.748
±0.237

)
× Log10Energy +

(
−11.9
±24.8

)
(A.7)

The main reason for this dependence can be seen in section 6.2.1.

Figure A.6: a) log(χ2) distribution for several energies, cutting the initial and final points of the profile, b)
log(〈χ2〉) as a function of Energy, in red we have the linear fit with χ2 = 0.0024, for this fit we only consider
the 4 points with higher energy. In green is a fit to a polynomial with degree 2.
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Appendix B

Two Gaisser-Hillas function fit test

In the section 7.1, we say that a air shower can be view as a sum of two Gaisser-Hillas, one corresponding to the
leading particle development, and the other corresponding to the set of the remaining particles development.
Considering that this approximation is valid, we should test if given a sum of two GH, we can extract it’s
original parameters. In this chapter, we sum two GH and fit equation 7.2. We use exactly the same approach
as in section 7.1.1, fixing the L parameter with equations A.2 and A.4.

B.0.0.7 Parameters fixed

Initially, we fit the profiles obtained from a GH, which are the sum of two GH. We calculate several GH
sums, with K varying in steps of 0.1, from 0.1 to 0.9 and for each K we have ∆X varying from 0 to
600g/cm2 (in steps of 50g/cm2). We have then, 117 different profiles (9× 12). K is the inelasticity defined

by K = 1− Eleading
Eprimary

≡ 1− Nmax2

Nmax1+Nmax2
and ∆X = Xmax2−Xmax1. To reproduce the simulations events we

parametrize the parameters with the functions in appendix A. Nmax1,2 follow K(with Nmax2 = (1−K)Nmax
and Nmax2 = K ·Nmax) and Xmax1,2 follow Xmax subtract and summing 25 in each step respectively. Since
we parametrize L in the reconstruction too, the results will be obviously almost perfect. In figure B.1, we
have the ∆X and K reconstructed in other to the original.
We can see that the reconstruction is very good, but even in this situation for very small ∆X we have
problems to recover the K. This is due to, if we sum two GH with ∆X = 0 with the same parameters,
the K can vary in all it’s range and we still have the same thing. The effect reduces by increasing ∆X.
Nevertheless, this is not very interesting since in simulation, the parameters have some distribution and will
not appear with theirs mean value.

B.0.0.8 Parameters with fluctuations

Since the L and R parameters have fluctuations in real/simulated events, than the previous section does not
make much sense and we should introduce some fluctuation in L and R in the sum of the two GH. Thus
we introduce some Gaussian random fluctuation in these parameters. We use the TRandom3 to obtain a
Gaussian random fluctuation with σ given in table A.1. Here we use the σ values for 1019eV .
We have fitted 1170 events, with ∆X varying in steps of 25g/cm2 from 0 to 600g/cm2, and K varying in
steps of 0.1 from 0.1 to 0.9, we repeat each configuration 10 times with different fluctuations (9× 12× 10).
In figure, B.2, we have the results for ∆X and K reconstructed.
The new results are a little shuffled, but if we look only at blue points they have much better results. In
∆X, the result became better for ∆X > 200g/cm2, since with low ∆X we can’t distinguish the two showers.
For one hand, in the region with small ∆X, K value can have a big range giving almost the same result.
On other hand, since we fixed L parameter, and now L parameter has fluctuations, this fluctuations will go
not only for R but also to Xmax. For example, if we have a big L, than the profile will have a big width
and since L was fixed, than we obtain a ∆X reconstructed bigger than what is expected. This effect reduces
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Figure B.1: a)∆XRec (reconstructed) as a function of ∆XGen (input value), b) KRec as a function of KGen.
These events are made using GH with parameters equals the typical mean values without fluctuations.

in higher ∆X. The blue points in ∆X picture, corresponds to middle K (from 0.2 to 0.8) where we have a
good reconstruction. If K is high (> 0.8) or small (< 0.2), one of the showers will be very small compared to
the other, and it will be a small correction to the overall shape. If K is really close to 1 or 0, than we have
almost one shower and the L fluctuation features become more important. Hence we haven’t sensitivity in
this region (red points in ∆X picture).
In K figure, we have the same behaviour, but now blue point corresponds to ∆X > 200g/cm2 and red points
to ∆X < 200g/cm2.

Figure B.2: a)∆XRec as a function of ∆XGen, b) KRec as a function of KGen. These events are made using
GH with parameters equals the typical mean values with gaussian fluctuations.

In order to see if we have a good reconstruction we can plot the distributions of ∆XRec/∆XGen and
KRec/KGen for different selections. In figure B.3, we present these distribution, the best selection is with
the previous comments, with 0.2 < KGen < 0.8 and ∆XGen > 200g/cm2. In this region we have a very
narrow distribution around 1. However, these cut is in the input values, which we have not access in the
real data, so it’s is not a good selection. We could make a translation to selection 0.2 < KRec < 0.8 and
∆XRec > 200g/cm2. With this new selection we still have a good reconstruction, but in Monte Carlo
simulated events we should have more contamination, since we have muons contributions and possibly a
second important leading that could change the shape.

Another interesting feature it so see the behaviour of the χ2 with the first selection rule. In the figure B.4
we see that the fit with one GH is better in the region that doesn’t interest us (0.2 > KGen

∧
KGen < 0.8 and

∆XGen < 200g/cm2) and it has very bad fits in our region. This means that in our region we don’t have the
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Figure B.3: a)∆XRec/∆XGen distribution, b) KRec/KGen distribution.

Figure B.4: a) χ2 distribution for one GH, we divided the event into a group with 0.2 < KRec < 0.8 and
∆XRec > 200g/cm2 in red an the rest in blue. the red event have very bad χ2 so they don’t behave like
1GH. b) We plot the χ2 in function of ∆XRec and divided into groups of K.

one GH behaviour but a two GH is more plausible. At b) in the above figure, we have the χ2
1GH evolution

with ∆XGen, as we see, the χ2
1GH has an exponential grows with ∆X, like it was expected. Nevertheless,

We expect that the biggest χ2
1GH should correspond to the K = 0.5 sample, and the evolution above and

below this value should be symmetric. However, we observe an asymmetric evolution with K and the biggest
value of χ2

1GH is for K = 0.4. In fact, this is caused b the asymmetry in the GH function. The raising side
of an GH have a bigger slope (in modulo) than the decreasing side. So if we make a change in the raising
side (lower K), then the GH will have more difficulty to fit a lower slope. If we add some new GH on the
right side of the original GH (higher K), since here the slope is lower, the change will have a smaller impact
on the total shape. With a little lower slope, the GH can fit this perturbation. So ours selections with the
cut in K, should be improved in the future to an asymmetric interval, less constrained in the low K, than in
higher K.
In the figure B.5 and B.6, we have plotted four events from our sample. The event a) in B.6 for example,
since it has a ∆XGen small, than the reconstruction can’t recover the right values, while event a) in B.5 is
almost perfect. Another feature is that the result for events with KGen > 0.8 are better reconstructed than
with KGen < 0.2.
The figure B.4 b),
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Figure B.5: Two examples of a two GH fit from the previous sample.
a) χ2

1GH = 984.4 vs χ2
2GH = 0.18, ∆XRec = 601.4g/cm2 vs ∆XGen = 600g/cm2, KRec = 0.6 vs KGen = 0.60,

RRec = 0.273 and 0.286 vs R = 0.272 and 0.300 and LRec = 230.6 and 229.3g/cm2 vs L = 231.2 and
227.1g/cm2.
b) χ2

1GH = 112.7 vs χ2
2GH = 0.26, ∆XRec = 595.3g/cm2 vs ∆XGen = 600g/cm2, KRec = 0.9 vs KGen = 0.90,

RRec = 0.245 and 0.320 vs R = 0.232 and 0.231 and LRec = 231.9 and 225.0g/cm2 vs L = 232.8 and
230.8g/cm2.
In b), since the second L are a little far from the L parametrization, the R values are different from the
input, because they carry L fluctuation.

Figure B.6: Two examples of a two GH fit from the previous sample.
a) χ2

1GH = 1172 vs χ2
2GH = 52.1, ∆XRec = 505.2g/cm2 vs ∆XGen = 600g/cm2, KRec = 0.6 vs KGen = 0.60,

RRec = 0.273 and 0.286 vs R = 0.272 and 0.300 and LRec = 230.6 and 229.3g/cm2 vs L = 231.2 and
227.1g/cm2.
b) χ2

1GH = 0.0037 vs χ2
2GH = 1.37, ∆XRec ∼ 0g/cm2 vs ∆XGen = 50g/cm2, KRec = 0.5 vs KGen = 0.6,

RRec = 0.250 and 0.250 vs R = 0.255 and 0.245 and LRec = 230.0 and 230.0g/cm2 vs L = 226.5 and
229.8g/cm2.
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Appendix C

Selection 3 analysis

In this appendix, we describe a caracterization of the parameters of the sub-sample of selection 3 of the table
7.2. We will plot the parameters ∆XRec, KRec, χ

21GH, χ22GH and Xmax, L and R parameter for both
GH in the 2GH fit, for the 1018eV sample. As we see in each plot, there no reason for consider some sample
rather than other, since the looks very similar. We should note that λ could change in each selection (fig.
C.1a), nevertheless, the selection E, which is supposed to be the worst sample, have the distribution with
lower χ2

2GH . This means that it shouldn’t be neglected.

Figure C.1: a)the ∆XRec distribution and b) the inelasticity K distribution for several sub selections.

Figure C.2: a)the χ2
1GH distribution and b) the χ2

2GH distribution for several sub selections.
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Figure C.3: a)the Xmax,1 distribution for two GH and b) the Xmax,2 distribution for two GH for several sub
selections.

Figure C.4: a)the L1 distribution for two GH and b) the L2 distribution for two GH for several sub selections.

Figure C.5: a)the R1 distribution for two GH and b) the R2 distribution for two GH for several sub selections.
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