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Abstract

The amplitude of the signal collected from the PbWOQO4 crystals of the CMS electromagnetic calorime-
ter is reconstructed by a digital filtering technique. The amplitude reconstruction has been studied with
test beam data recorded from a fully equipped barrel supermodule. Issues specific to data taken in the
test beam are investigated, and the implementation of the method for CMS data taking is discussed.
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1 Introduction

The Compact Muon Solenoid (CMS) [1] detector is a general purpose detector to be installed at the 14 TeV
proton-proton collider, LHC, under construction at CERN and due to start operation in 2007. The Electromagnetic
Calorimeter (ECAL) [2] of the detector is a hermetic homogeneous calorimeter made of 61,200 scintillating lead
tungstate (PbWQy) crystals mounted in the central barrel part, closed by 7,324 crystals in each of the two end-
caps. The use of high density PbWO, crystals [3] has allowed the design of a calorimeter which is fast, has fine
granularity and is radiation resistant, all important characteristics in the LHC environment. Avalanche photodiodes
(APDs) are used as photodetectors in the barrel and vacuum phototriodes in the end-caps.

The electrical signal from the photodetectors is amplified and shaped by a multi-gain preamplifier (MGPA) before
digitization by ADCs at a frequency of 40 MHz [4]. For each channel three signals, resulting from amplification
with three different gains, are simultaneously digitized in three ADCs. Further logic chooses the highest non-
saturated digital value, allowing a dynamic range of about 5x 10# from the least significant bit of about 35 MeV to
saturation at 1.7 TeV in the barrel.

The data read out consists of a series of consecutive digitizations, corresponding to a sequence of samplings of the
signal at 40 MHz. It is envisaged that a time frame of 10 consecutive samplings will be read out in LHC operation.
The signal amplitude must be reconstructed using these samplings.

The complete process of signal amplification followed by signal digitization and amplitude reconstruction should
not degrade the energy resolution of the calorimeter other than by the inevitable introduction of noise. The simplest
method of reconstructing the amplitude is to take a sampling on the signal pulse maximum as the measurement.
Reading out a larger number of samples allows identification of out of time (other bunch crossing) pileup and
an event by event subtraction of the pedestal. It also allows more sophisticated digital processing of the signal
to improve the signal to noise, and a measurement of the signal timing. We report here on the performance of a
method which implements a digital filter.

Test beam data taken in the H4 beam line at CERN in October and November 2004 using electron beams with
a range of momenta between 20 and 250 GeV/c, have been used to investigate the method of amplitude recon-
struction. The barrel part of the ECAL consists of 36 supermodules, each covering half the barrel length and 20°
in azimuth and containing 1700 crystals together with the associated electronics channels. A supermodule was
installed on a movable table which allowed the beam to be directed at any part of it. Electrons were incident at an
angle of ~3° to the direction of the crystal axis in both transverse directions reproducing the average incident angle
of particles emerging from the collision region in LHC running. Plastic scintillator counters were used to trigger
the readout. The position of the incident electrons in the transverse directions was determined by four planes of
scintillating fibre hodoscopes.

The test beam provides data for the verification of the amplitude reconstruction method, but these data differ in an
important way with respect to those which will be taken in running at the LHC. In the test beam the scintillation
signals have a random timing with respect to the ADC clock, while during LHC operation the ADC clock will be
synchronous with the bunch crossing. It is necessary to identify and investigate effects which are specific to asyn-
chronous running before being able to achieve full performance with test beam data. The coefficients, or weights,
of the digital filter used to reconstruct the signal amplitude are optimized to minimize the noise contribution, but
reconstruction of the amplitude from the time frames read out in asynchronous running imposes additional require-
ments. If these are not met an error proportional to the signal amplitude is introduced, which becomes a constant
term in the energy resolution function (o g/ E).

In order to determine the phase between the signal peak and the sampling time, a TDC was used to measure the
delay between the trigger and the 40 MHz ADC digitization clock. Verification of the performance of amplitude
reconstruction as it is envisaged to be used in synchronous data taking at the LHC has been made by selecting test
beam events within a narrow window around a chosen phase.

In this note, the principle of the digital filter method is described first. The derivation of weights is described,
as well as an investigation of the impact of pileup events. The algorithm intended for use in CMS data taking
is discussed, and then issues specific to asynchronous operation in the test beam are identified and discussed.
Fuller details of the mathematical formalism used to determine the weights of the digital filter can be found in an
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appendix.
2 The weights method

The method used to reconstruct the amplitude from the digitized samples is based on a digital filtering technique.
The signal amplitude, A4, is computed from a linear combination of discrete time samples.

R N
= wi xS; 2.1
i=1

where w); are the weights, S; the time sample values in ADC counts and N is the number of samples used in the
filtering, with the index, i, running over the time samples. The weights w; are obtained by minimizing the variance
of A (see Appendix A). Requiring that the estimator of the amplitude, £ [./i], be not just proportional, but equal to
the amplitude, A, implies that:

N
> wifi=1 2.2

where f; is the value of the function, f(¢), describing the time development of the signal pulse in time, ¢, at the
time ¢; of sample 4. The function is normalized to have an amplitude of 1.

The question of how precisely the function, f(¢), needs to be matched to the shape and timing of each channel
to enable the derivation of a set of weights giving satisfactory amplitude reconstruction is one that we attempt to
answer in this paper.

A form of the function, f(#), that provides a good description of the electronics signal is a digital representation
(profile histogram) directly built from the test beam data. An example of such a representation, obtained using an
electron beam of 120 GeV, is shown in Fig. 1. The rise time is about 50 ns, which corresponds to the 10 ns decay
time of the crystal and the 40 ns shaping time of the MGPA. In the test beam the data was read out so that at least
three samples, which we refer to as presamples, were taken before the start of the signal.
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Figure 1: Profile of the signal pulse from a crystal of the supermodule using an electron beam of 120 GeV. The
peaking time Tax, the pedestal P and the amplitude of the signal A are shown.

The weights are extracted by minimization of the x2, which is given by:
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X2 =) (Si—Gi) x Cij* x (S; - G) (2.3)

%,J
where

e S; is the sample magnitude in ADC counts recorded at the time ¢;.

e The signal pulse is described by G; which is a function that depends on different parameters: G; =
Gi(A, P, T\ax) where A is the true amplitude, P is the pedestal and T,y is the peaking time (see Fig. 1).

e C is the covariance matrix representing the noise correlation between time samples ¢ and j, obtained from
data where no signal is present.

If there is no noise correlation between time samples (C = 1o2, where o is the single sample noise defined below)
and the pedestal and peaking time are known (so that G = G(A) = Af(t)), the optimal weights are given by the
formula:

N
wi = fil > f} (24)
j=1

The derivation of this formula is given in Appendix A.

These weights give the best estimation of the amplitude A. Since the samples contain information about the
peaking time and the pedestal also, two further sets of weights can be derived to measure these parameters.

3 Optimization
3.1 The samples considered

The reconstruction of the signal amplitude could use a single sample taken at the signal peak. In synchronous
running the pulse maximum time, represented by the parameter Tuax, can be adjusted so that the peak coincides
with one of the samplings. If the pedestal is determined independently and subtracted from the maximum, this
one sample gives the pulse amplitude. This technique has the advantage of being relatively insensitive to any
possible jitter on Thax (this will be discussed in Section 4). However using a larger number of samples allows
some reduction of the noise contribution.

When considering the weights obtained assuming no noise correlations between time samples, given by Equa-
tion 2.4, the square root of the variance, o A is:

oi=0/\/Y f? (3.1

where o is the noise present on a single digitization, the single sampling noise. Thus, an increase of the number
of samples will reduce the value of the noise in the reconstructed amplitude. Furthermore, better noise reduction
is achieved if samples near the peak, containing more signal, are used. The noise on the reconstructed amplitude
should be reduced from that of a single sampling by a factor \/)_ w?. Calculating weights from the functional
representation shown in Fig. 1, assuming no noise correlation between samples, it is found that the use of 5 samples
should give a noise reduction of ~0.6 (Fig. 2) with little improvement when more samples are used. The 1-sample
option takes the sampling on the peak, for the 2-sample option the sampling before the peak is added, for the 3-
sample option the next sampling after the peak is added, for 4-sample and higher options the remaining samplings
after the peak are added in consecutive order. The figure also shows the expected noise reduction if the noise
correlation seen in the test beam is assumed, and the weights are calculated using the measured covariance matrix
(see Section 3.2.2).

3.2 Noise reduction

The noise reduction expected from using many samples in a situation where there is no noise correlation between
samplings is not fully realized when the amplitude reconstruction algorithm is applied to real data. This is because
there is noise which is correlated between samples. This is partly due to pickup noise which is also, to some degree,
correlated between channels; it is at a much lower frequency than the 40 MHz sampling frequency and appears as

5
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Figure 2: Expected noise reduction (/) w?) as a function of the number of samples used for the reconstruction
in the case of no noise correlations between time samples (solid line) and in the case of the correlations found in
test beam data (dashed line).

a small event-to-event fluctuation in the level of the signal baseline or pedestal. The digital filter can be configured
to subtract the pedestal using the information present in the presamples. Such a digital filter effectively removes
the baseline fluctuation [5]. The noise performance of different implementations were compared using test beam
data.

3.2.1 Measurement of the noise

The method was implemented in two different forms:

e The “5-weights” implementation:

The 5-weights method uses 5 samples as defined in the previous section to reconstruct the signal amplitude.
The pedestal is determined independently and its value is subtracted from the samples before reconstruction.

e The “pedestal-subtracting weights” implementation:

The pedestal-subtracting weights method uses 3+5 weights applied to three samples before the signal pulse
(the three presamples) and five samples during the pulse. The weights are calculated by minimizing Equa-
tion 2.3 for the amplitude A and the pedestal P where G = G(A, P) = Af(t) + P. It may be noted that in
this situation ) w; = 0. Such a set of weights performs a subtraction of the pedestal on an event by event
basis.

For completeness, a 3+1 weights pedestal-subtracting implementation has been studied. The single weight
is applied to the sample on the peak. This allows the demonstration of the impact of dynamic baseline
subtraction in its simplest form.

The noise is the root mean square deviation of the reconstructed amplitude when no signal is input. Thus the ECAL
noise is measured by examining the variation of the reconstructed amplitude when random triggers, data taken with
no signal (often called “pedestal runs”), are reconstructed. Table 1 shows the noise measured when using these
implementations of the method for a single channel, and for sums of channels corresponding to matrices of 3x3
and 5x5 crystals (typical of ECAL shower reconstruction). Also shown, for comparison, is the single sampling
noise (as defined in Section 3.1). Results for sums of channels are given because energy is reconstructed in the

6



Table 1: Noise in ADC counts measured in a single channel and arrays of 3 x 3 and 5 x 5 channels for the 5-weights
and the pedestals subtracting weights implementations of the amplitude reconstruction method, and for a single
sampling.

Method Noise (ADC counts)
1x1 | 3x3 | 5x5
Single sampling 1.20+0.01 | 3.7+0.04 | 6.5+0.1
5-weights 1.11+0.02 | 3.8+0.1 | 6.7£0.1
3+1 Pedestal subtracting weights | 1.13+0.03 | 3.4+0.1 | 5.7£0.1
3+5 Pedestal subtracting weights | 1.07+0.02 | 3.2+0.1 | 5.4+£0.1

ECAL from such sums: the noise in the sums represents the noise seen when shower energy is measured. Noise
coherent between channels will increase the noise measured in such sums above the quadratic sum of the noise
measured in component channels. A total of 1200 events from 6 different runs were used and the mean values of
noise in 8 different locations across the supermodule are given. When using the 5-weights method, the pedestal
values for all the crystals were directly measured from the data by taking the average value, over a run, of the first
presample.

The results given in the table show that the lowest noise is achieved by the pedestal-subtracting weights. This
implies the presence of the low frequency noise, mentioned above, which is removed by the dynamic pedestal
subtraction.

Comparing the noise seen in a single channel with that seen in sums of 3x3 and 5x5 channels the magnitude of
the noise correlation between channels in a matrix of crystals can be seen. With the pedestal-subtracting weights
filter the total noise seen in a sum of 9 (25) channels is almost exactly 3 (5) times the noise seen in a single channel,
showing that the coherent noise between channels has been effectively removed. This noise is not suppressed when
the average pedestal values for each channel are subtracted for each event. The total noise in a sum of 25 channels
is reduced by 20% as compared to what is measured by reconstruction followed by pedestal subtraction using an
average pedestal. Dynamic subtraction of the pedestal also avoids effects from variation of the pedestal over time.

The table also allows comparison between the use of 3+5 and 3+1 pedestal- subtracting weights. Using 5 samples
in the signal, rather than 1, results in a slightly lower value of noise.

Using pedestal-subtracting weights the average value of the noise measured in 1000 channels of the supermodule
is roughly 40 MeV/channel (1 ADC count = 37 MeV). Nevertheless it can be seen from the table that this imple-
mentation of the weights method is not able to reduce the noise contribution by the factor of 0.6, expected when
there is no correlation of noise. Clearly there is noise correlation, so the covariance matrix might be used to derive
a more optimized set of weights. An investigation of the use of the covariance matrix is described in the next
subsection.

3.2.2 Use of the covariance matrix
The covariance matrix represents the correlation of the noise between time samples. It is defined as:
Cz'j =<n; Xn; > (3.2)

where n; = S; — P; is the difference between the sample value and its mean (the pedestal) for sample 4 in
the absence of a signal. The notation <> indicates an average over many events. Thus the diagonal elements
Ci,i = o? are the squared single sampling noise. This matrix can be built using a pedestal run and then used in the
determination of an optimized set of weights (Equation 2.3).

The same 6 pedestal runs previously used for the results in Table 1 were processed to extract the matrix coefficients.
An adequate number of events was used to limit the statistical error on these coefficients. Strong correlations are
present between samples which are close in time, as should be expected since the sampling period is shorter than
the electronics shaping time. The MGPA preamplifier noise in the highest gain range is dominated by parallel
noise from a feedback resistor and so the correlation between pairs of samples monotonically reduces as the time
interval between them increases, until it reaches a residual value which corresponds to the low frequency pickup
noise. The decrease of the correlation follows an exponential law whose time constant is related to the shaping
time of the electronics. The correlations, and the form of the covariance matrix, can be displayed by plotting the
values in the top row of the normalized covariance matrix, (C1,;/ 0?), (Fig. 3). These values are measurements of
the autocorrelation function at time intervals corresponding to multiples of the sampling time.
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Figure 3: Measurements of the autocorrelation function at intervals of 25 ns, obtained from the top row of the
normalized covariance matrix, averaged for six channels. The lines joining the points are intended to guide the
eye.

The optimization of the weights using the noise covariance matrix results in giving more weight to the sample on
the peak. The samples near the peak have less weight, and the weights applied to samples further away become
almost insignificant. The expected noise reduction from the single sampling noise is 0.94 (see Fig. 2) and not
0.6 as calculated for the case of no noise correlation. Pedestal subtracting weights can also be derived using the
covariance matrix.

Table 2: Noise in ADC counts measured in a single channel and arrays of 3 X 3 and 5 x 5 channels for the 5-
weights and 3+5 pedestals subtracting weights implementations of the amplitude reconstruction method using the
covariance matrix to derive the weights.

Method Noise (ADC counts)
I1x1 | 3x3 | 5x5
5-weights 1.05+0.02 | 3.3+0.1 | 5.9+£0.1
3+5 Pedestal subtracting weights | 1.05+0.02 | 3.0+0.1 | 5.2+0.1

Table 2 gives the noise measured when the covariance matrix is used to derive the weights. The results shown are
the mean values of the noise measured in 8§ different locations across the supermodule. Comparing the results in
the table with those shown in Table 1 it can be seen that the use of the covariance matrix allows a small decrease
in the contribution of noise, but the improvement over pedestal-subtracting weights without its use is marginal and
all further results in this paper have been obtain without its use.

4 Amplitude reconstruction for CMS running

An investigation of the amplitude reconstruction method required for use with CMS data taken in LHC, where the
sampling is synchronous with the signals, is described in this section.

4.1 Signal shape and timing

It has been observed in test beam data that the signal shapes and timing differ from crystal to crystal. The main
difference is in the parameter T\,x Which shows an rms dispersion of roughly 3 ns across the supermodule. Using
a representation of the signal with a T\, different from that of the actual signal to determine the weights changes
the reconstructed amplitude. Defining ATvax = Ty, — Twax, Where Tyh is the time of maximum of the
signal representation used to derive the weights, a timing difference of AT\, = 1 ns causes approximately 0.1%

8



bias on the reconstructed amplitude when using the 3+5 weights method (Fig. 4). The 3+1 weights method is less
sensitive to the timing because we have chosen to adjust the timing so that a sample is taken on the peak. The
signal samplings of the 3+5 weights are then mostly after the peak. The small bias caused by a timing difference,
if constant with time, will be absorbed into the intercalibration of the ECAL channels. However systematic drift
or variation of the time of the signal pulse maximum would result in a variation of the channel response with time.
To avoid such variation the parameter T\,x needs, in the future, to be carefully controlled and monitored. Thax
can be precisely measured during data taking (see Section 4.2) and adjusted for each front end card (25 channels)
with a 1 ns precision, by changing a parameter downloaded to the card.
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Figure 4: Reconstructed amplitude over true amplitude, E [/i] /A, as a function of timing difference ATyax. The
solid line shows the value obtained with 3+5 pedestal-subtracting weights, and the dashed line shows the value
obtained using 3+1 pedestal-subtracting weights.
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Figure 5: (Left) Energy resolution in a 3x3 matrix of crystals measured with a 120 GeV electron beam, as a
function of ATy,.. (Right) Energy resolution as a function of the contraction factor, C.

Figure 5 (left) shows the energy resolution as a function of the difference in timing between the signal represen-
tation used to determine the weights and the signal. The signal amplitude has been reconstructed using the 3+5
pedestal-subtracting weights. To simulate synchronous running, test beam data have been analyzed taking only
events in a single 1 ns bin of phase, where the sampling phase is such that the signal maximum coincides with the
274 signal sampling. Since the same set of events is used in each case the uncertainties on the individual results
are correlated. A range of +3 ns was used for the scan, corresponding to the rms dispersion of T, observed in
the supermodule. The resolution is on average better for ATy, < 0. However, this is a result of the large 0.65 ns
jitter on the phase measurement. When ATy, > 0 there is more sensitivity to timing as has been seen in Fig. 4.
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There is no strong dependence on ATy, as there is in the case of aynchronous reconstruction (shown later in
Fig. 13).

To study the sensitivity to differences between the pulse shape of the representation used to derive the weights and
that of the signal, a homothetic transformation characterized by a contraction factor, C, has been applied to the
time scale (t — t + C' X (t — Tmax)) of the representation used to derive the weights. Fits to the data indicate that
the channel to channel pulse shape variation within the supermodule tested corresponds to an rms dispersion of
0.05 for the parameter C. Figure 5 (right) shows that the resolution is unaffected by variations of C within a range
corresponding to a much larger dispersion in pulse shapes than observed in the supermodule. Other variations of
the pulse shape have been tried (varying independently the rise and fall times) and result in the same conclusion.

These results suggest that, in the case of synchronous running, the same reference signal representation can be
used to derive a single set of weights to be used for the signal amplitude reconstruction of all channels.

4.2 Time measurement

As already mentioned, the phase between pulse maximum and digitization clock can be adjusted for each front
end card (25 channels) to 1 ns precision. In the supermodule tested in 2004 it was observed that the additional
dispersion of the channels within each front end card was less than 1 ns. The measurement of the time of maximum
used for adjusting the front end cards, and then for monitoring the stability of the setting, can be made using
weights. The set of weights which is derived to do this is different from the set of weights used to determine
the amplitude (see Appendix A). They measure the time difference between the nominal time of maximum and
the actual time of maximum. As in Section 2, weights are obtained by minimizing a x2. Because of the linear
expansion used the time of maximum is obtained without bias only if the difference between the nominal time of
maximum and the actual time of maximum is small. The bias on the estimated time due to the linear expansion is
shown in Fig. 6 as a function of the time difference, §t, between the nominal time of maximum and the actual time
of maximum. The bias is less than 20 ps if |§t| < 1 ns.
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Figure 6: Time bias, t — E[dt], introduced by the linear approximation, as a function of §t.

The variance of the time measurement, V' (dt), can be parameterized by:

2

a 2
Zx(Ajor T @1

V(0t) ~
where a, b, ¢ are three parameters and o is the single sampling noise. Parameter ¢ = /V(A)/o2 ~ 0.94
becomes negligible when A >> ¢. Parameter a is related to 1/V (Adt)/o? and strongly depends on the position
of the nominal time of maximum with respect to the sampling time, i.e. the phase choice, because V(Adt) is
proportional to the sum of the derivatives of the signal as a function of time. Parameter b appears when the
functional representation does not exactly reproduce the true signal, and limits the precision of measurement for
large signals.
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During the 2004 test beam data taking it was not possible to directly measure the timing resolution as a function of
the signal amplitude because of an additional jitter introduced by measurement of the trigger time. However, the
achievable time resolution can be extracted by looking at the resolution of the measured time difference between
two channels. Figure 7 shows the resolution on the time difference between two channels as a function of the
quadratic sum of the individual channel time resolutions. Assuming that parameters a, b and ¢ are the same for
both channels the variance on the time difference between the channels, V (t; — t2), is:

o5
A2
A3

The value of the constant term, b = 0.11 ns, is obtained by fitting this function to the data points in Fig. 7.
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Figure 7: Resolution on time difference between two crystals 703 and 704 as a function of the sum of inverse
square amplitudes. The fit is made assuming that the parameters a and b of Equation 4.1 are the same for both
crystals.

In summary, it can be concluded that taking reconstructed pulses with A > 50 X o, i.e. energy > 2 GeV, T\ax can
be measured to a precision much better than 1 ns, allowing monitoring of peak position to the required precision
(see Section 4.1). The time resolution is dominated by the constant term for pulses with A > o ~ 500 x . In
the 2004 beam test the constant term was measured to be 0.11 ns.

4.3 Effect of pileup events

Shaped signals cover several bunch crossings. When using the multi-weights method described above, up to 8
time samples are used. Pileup noise will occur if additional particles reaching the calorimeter cause signals which
overlap these samples, and if sufficiently large may affect the set of optimum weights.

The magnitude of pileup noise expected at low luminosity (£ =2x 1033 cm~2s~!) was simulated and studied using
CMS reconstruction software. The single sampling electronics noise was set to 40 MeV per channel. Correlations
between time samples were simulated to reproduce the correlations observed in the supermodule tested in the
beam. Pileup noise was simulated using minimum bias events generated between -5 and +3 bunch crossings
before and after signal. The average number of minimum bias events used per bunch crossing was 3.5. Figure 8
shows the reconstructed amplitude observed with and without pileup in the absence of any signal (the signals from
the pileup are considered as noise). The figure shows that at low luminosity the pileup noise is small with respect
to electronics noise.

High energy pileup particles from different bunch crossings to the signal can be identified using cuts on x%;,,
(defined in Appendix A) as well as the variable A P which corresponds to the difference between the reconstructed
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Figure 8: Reconstructed amplitude in ECAL barrel channels in the absence of a signal, without pileup (dashed his-
togram) and with pileup (solid histogram). A Gaussian of width 40 MeV is superimposed on the dashed histogrm.

baseline and the expected one (evaluated from pedestal runs). Distributions of reconstructed signal pulses with and
without high energy (>200 MeV) pileup particles are shown in Fig. 9 as a function of x3%,,, and AP. The bands
shown in the scatter plot for events containing high energy pileup correspond to particles from different bunch
crossings. By applying cuts on the variables x4, and AP it is possible to remove out of time pileup signals that
deposit a significant amount of energy.

4.4 Amplitude reconstruction at high energy

At high energy, the data read out contains samples recorded with different gains. The pedestal value of the ADC
digitizing the lower gain signal is not the same as the pedestal value of the ADC digitizing the higher gain signal.
The 3 presamplings thus do not give a measure of the pedestal of the ADC used for the most significant samplings
of the signal (i.e. close to the peak). Thus a pedestal-subtracting weights method cannot be used. There is also
little to be gained from using many weights since noise is negligible at these energies (the gain range change takes
place at about 150 GeV for barrel channels). It is sufficient to measure the signal amplitude with a single sampling.
In synchronous running the sample recorded on the peak is pedestal subtracted and then multiplied by the gain
ratio (the relative calibration with respect to the highest gain range). The gain ratios must be determined precisely
to avoid a degradation of the resolution and the introduction of non-linearity.

5 Application to asynchronous test beam data

In the test beam the ADC clock and the signal are asynchronous, and the implementation of the amplitude recon-
struction needs to be elaborated to deal with this. The phase between the trigger (and thus the signal pulse) and the
40 MHz ADC clock was measured with a TDC. The data are sorted into 25 bins of 1 ns according to the measured
phase. A different set of weights is determined and used for each of the bins. This imposes an additional severe
requirement: the same amplitude must be reconstructed in all phase bins.

5.1 Effect of channel to channel differences in signal timing and shape

The effect of differences in signal timing and shape between the signal pulse and the signal representation is
dependent on the phase bin, and can be studied by comparing the results obtained using weights derived from an
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Figure 9: Distribution of AP versus x? in ECAL barrel, together the projections of these variable plotted as
histograms. Distributions are shown separately for pulses which include out of time pileup particles with an
energy greater than 200 MeV and those which do not. The bands in the scatter plot correspond to particles from
different bunch crossings.
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average representation of the signal pulse with those obtained using weights derived from a profile built using the
data collected from the channel being investigated. The average representation is obtained by fitting the data from
a large number of channels with an analytic formula and then taking the average of the fitted parameter values.
A comparison between the average representation and a particular profile is shown in Fig. 10. The shapes are
different in the rising edge, and the time of maximum also differs. Two collections of 25 sets of weights (one set
for each phase bin) are extracted, one for each representation, and used to reconstruct the amplitude.

Figure 11 shows the average reconstructed amplitude summed in a 3x3 matrix of crystals in each of the 25 1 ns
phase bins. The average reconstructed amplitude, obtained from a Gaussian fit to the peak of the reconstructed
amplitude distribution, is plotted as a function of the phase for both sets of weights. Using the weights derived from
the average representation results in a bias in the reconstructed amplitude which varies with phase and ultimately
degrades the energy resolution as can be seen in Fig. 12. When the weights are derived using the signal description
specific to each channel, the resolution is as good as the one obtained in a single 1 ns bin. The bias visible in
Fig. 11 when the weights used are those derived from the average representation, could also be corrected using the
fitted line which would lead to a comparable resolution.

6 7\\\\ TTTT TTTTTTTTT TTTTTTTTTITITT TTTT TTTT H\L % 1217\ T T T T T T T T T T T T \\\\7
9‘: 2500? ‘ 7] @,120.8} E
~ I 1T > E ]
® i 1 3120.6- ; =
© [ B — C [N ]
220 1 204 Y =
g ] 1202- . b3
Z 1500 ] S N T ]
I ] 1205t FRRRS R . — -

i ] Foae Pt ! i A

i . 119.8- : st 4
10001 . - P, N

- { 119.6- ., =

500~ ] 119.40 RN

i _ ] 119.2- =
07\\H‘\H\‘\H\‘HH‘\H\‘HH‘\\H‘HH‘HH‘H\F 119:\ Lo ‘ L Lo ‘ Ll Ll ‘ L Lo ‘ Lo \:
01 23 4586 7 8 910 0 5 10 15 20 25
Time (ADC clocks) Phase (1 bin = 1 ns)

Figure 10: Signal pulses for a 120 GeV electron Figure 11: Average reconstructed amplitude summed

beam: the solid line shows the profile of the signal ina 3 x 3 matrix of crystals as a function of the phase

in the channel under study, and the dotted line shows using weights obtained with the average representa-

the average representation of the signal. tion of the signal (squares) and the signal profile from
the channel under study (circles). The polynomial fit
and straight line are shown to guide the eye.

5.1.1 Relative importance of shape and timing

The relative importance of differences in signal timing and shape between the signal pulse and the signal represen-
tation used to derive the weights has been studied. As in Section 4.1 the signal in each channel is characterized by
its peaking time Ty and its width. Figure 13 shows the energy resolution measured when the weights used to
reconstruct the amplitude are derived from signal representations with peaking times and widths which differ from
those of the actual signal. The situation here differs from that shown in Fig. 5 in that here data in all 25 phase bins
are being reconstructed, using 25 sets of weights. This is reconstruction of the full asynchronous test beam data
set, whereas Fig. 5 was the reconstruction of data in a single phase bin, simulating synchronous data.

When the weights are derived using a signal representation that has a width contraction factor 0.05 (the rms
dispersion in a supermodule) different from the signal width the resolution is degraded from 0.45% to 0.52%. When
the weights are derived using a signal representation that has a Thax 3 ns (the rms dispersion in the supermodule)
different from that of the signal, the resolution is degraded from 0.45% to 0.70%. Thus the most significant cause
of the resolution degradation resulting from the use of an average signal pulse representation to derive the weights
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for reconstruction of asynchronous data is mismatch of signal timing. It should be possible, in the future test beam
data taking, to adjust the signal timing to within 1 ns. Alternatively, the mistimings could be categorized, and a
number of different sets of weights used.

5.2 Timing jitter

As described in Section 5, different sets of weights are used for events in different bins of phase. The TDC
measurement is used to decide which set of weights should be used. However an rms uncertainty of roughly
0.65 ns on the TDC phase measurement was observed. This results in an additional smearing of amplitudes which
degrades the energy resolution.

The derivation of the weights can be modified to account for small event-to-event variation of the pulse timing
relative to the clock, or jitter, and produce what we call “jitter-compensating” weights (see Appendix A). Figure 14
shows the results of a study using simulated signal pulses to determine the effect of jitter on the constant term as
a function of pulse maximum time for both standard amplitude reconstruction method and jitter-compensating
weights. The effect of jitter in the case of CMS running (~ 0.2 ns due to the bunch length) is also shown. The
results demonstrate that the effect of jitter will be negligible in CMS running, without the use of jitter-compensating
weights, especially if the sampling is performed on the peak.
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Figure 14: Amplitude measurement spread due to jit- Figure 15: Distribution of the reconstructed am-

ter as a function of pulse maximum time. Solid cir-
cles and open squares correspond to simulated events
with a timing jitter of 0.65 ns. The solid circles are
obtained when standard amplitude reconstruction is
used, whereas the open squares result from use of
jitter-compensating weights. The open triangles cor-
respond to standard amplitude reconstruction when
the jitter is equal to 0.2 ns as expected in CMS.

plitude summed in a 3 X 3 matrix of crystals
using pedestal-subtracting weights with (solid his-
togram, o/E= 0.43%) and without (dashed his-
togram, o/E= 0.45%) jitter compensation. (Asyn-
chronous data using all phase bins).

Figure 15 shows the distribution of reconstructed amplitude summed in a 3 X 3 matrix of crystals using pedestal
subtracting weights and pedestal-subtracting weights with jitter compensation. The improvement observed when
using jitter-compensating weights has motivated the choice of using these special sets of weights to extract perfor-
mance results from test beam data taken in 2004.

6 Conclusion

Reconstruction of the signal amplitude in the CMS ECAL can be performed using digital filtering techniques.
Using an implementation with dynamic pedestal subtraction, the measured noise in a single channel is 40 MeV,
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and coherent noise between channels is effectively removed so that the noise measured in a 3x3 (5x5) matrix of
crystals is about 120 MeV (200 MeV). Additional noise induced by pileup events was investigated with simulated
data and shown to be negligible at low luminosity.

Studies of the test beam data collected in 2004 with a fully equipped supermodule allowed investigation of the
importance of the shape and timing of the reference signal representation used to derive the weights, as well as
the effect of timing jitter on the resolution. The impact on the resolution of the shape and timing of the reference
signal representation used to derive the weights has been clearly demonstrated to be caused by the asynchronous
data taking mode in the test beam. The necessity to reconstruct the same amplitude for all values of the phase
imposes severe constraints on the tolerable variation of timing and pulse shape between channels. The poor time
resolution of the phase measurement used in the 2004 test beam data taking also requires use of more complex and
sophisticated techniques to avoid degradation of the resolution.

In synchronous running, as will be the case at LHC, a single set of weights can be used to reconstruct the amplitude
in all the ECAL channels and timing information can be provided using an additional set of weights. The time
measurement can be used to monitor possible shifts of the signal timing.

References
[1] CMS Collaboration, "The Compact Muon Solenoid Technical Proposal”, CERN/LHCC 94-38, 1994

[2] CMS Collaboration, "The Electromagnetic Calorimeter Technical Design Report”, CERN/LHCC 1997-033,
1997

[3] A.A. Annenkov, P. Lecoq and M. V. Korzhik, ”Lead Tungstate scintillation material”, Nucl. Instr. and Meth.
A490 (2002) 30

[4] Raymond, M. et al., "The MGPA Electromagnetic Calorimeter Readout Chip for CMS”, Proceedings of the
9th Workshop on Electronics for the LHC Experiments, CERN-LHCC-2003-055, 2003

[5] P. Paganini and I. van Vulpen, ”Pulse amplitude reconstruction in the CMS ECAL using the weights method”,
CMS Note 2004/025

17



A Appendix : Weights derivation

In order to derive optimal weights, a least squares method is used. The X2’ defined in Section 2, can be written in
matrix notation as:
X2 =(S—G(4,6t, P))TC (S — G(4,dt, P)) (A.1)

where S is a vector of the time samples S; with N elements, C is the covariance matrix of noise, and G(A, 6t, P)
is a vector describing the mean of the measurements and is modeled by:

G(ts; A, 0t, P) = Af(t; + 0t) + P (A2)

where A is the amplitude of the signal, f(¢) is the function which corresponds to the time development of the
signal pulse, dt is a possible timing jitter and P is the pedestal. When &t is small enough, Equation A.2 can be
linearized: d
G(ti; A,0t, P) ~ Af(t:) + (Aét)d—{(ti) +P (A3)
restricting the problem to the situation in which G (A4, §t, P) is a linear function of the free parameters:
x? = (S — AF — (Adt)F' — P1)TC71(S — AF — (46t)F' — P1) (A4)

where F is a vector of f(t;), and F' is a vector of Z—’; (t;) and 1 has all its vector elements equal to 1. Minimizing
x? with respect to A, Adt and P, a linear system of three equations is obtained:

FTCc-'r FTC-¥ FTCcM11 A FT
F'cr P'cF Ffc1 Ast | =| T | Cts (A.5)
1TCcr 17Cc ¢ 17C 11 P 17

Denoting the matrix on the left of Equation A.5 as M, the solution of the system can be expressed as:

A F?
Ast | =M1 | T | ClS=WS (A.6)
p 17

W is the matrix of weights.
The covariance matrix V between the estimators is equal to:

V = E[(WS — E[WS])(WS — E[WS))T] = WCWT =M~ (A7)
Replacing the parameters by the solutions of Equation A.6 in Equation A.4, the minimal 2 value can be computed:
Xauin=ST1-(F F 1 )W)C'1-(F F 1)W)S=8"M,-S (A.8)

M, = is a matrix which can be used to compute X37:n €vent by event without minimizing x?.
All simpler cases can be derived from Equations A.5 and A.6. Two common cases are:

1. Parameter A is the only free parameter. Simplifying Equation A.5 gives:

FTCc—1
In addition, if C = o21: ;
Wi = —5%—. (A.10)
x5 13

— 1 _ a2
= FTO=-1IF — SN 72-
FTC-TF ~ 3.V f

The variance of A is obtained from Equation A.7 : V(A)

2. Parameter A and P are free parameters and C = 1. Solving Equation A.5 gives two sets of weights used
to compute the two estimators

~

A 1 NFT — (FT1)17 B
( P ) - NFTF — (FT1)2 ( (FTF)17 — (FT1)FT )S =WS (A.11)
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The weights can also be written as:

_ fi—= X0 i W — Y- (Y )
Sy - ERINT T NN B )

2

Wa, (A.12)

Equation A.7 gives: V (4) = SV PSS /N
7 7 2

3. Jitter compensating weights can be obtained by leaving t as a free parameter. In the case A and 6t are the
only two free parameters and C = o%1, weights are computed as

A 1 F'TFHFT — (FTFF'T B
( A(Sf ) - (F'TF’)(FTF) _ (FTF[)Z ( (FTF)F/T _ (FTF/)FT S =WS, (A.13)

which gives
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