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Abstract

This report presents the capabilities of the CMS experiment to explore the rich
heavy-ion physics programme offered by the CERN Large Hadron Collider
(LHC). The collisions of lead nuclei at energies /syy = 5.5 TeV, will probe
quark and gluon matter at unprecedented values of energy density. The
prime goal of this research is to study the fundamental theory of the strong
interaction — Quantum Chromodynamics (QCD) — in extreme conditions of
temperature, density and parton momentum fraction (low-x).

This report covers in detail the potential of CMS to carry out a series
of representative Pb-Pb measurements. These include “bulk” observables,
(charged hadron multiplicity, low pr inclusive hadron identified spectra and
elliptic flow) which provide information on the collective properties of the
system, as well as perturbative probes such as quarkonia, heavy-quarks, jets
and high pr hadrons which yield “tomographic” information of the hottest and
densest phases of the reaction.
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Structure of the Report

Chapter 1, the Introduction, presents the physics interest of heavy-ion collisions at LHC
energies to address important open questions on high-density QCD matter.

Chapters 2—4 describe the bulk observables — charged particle multiplicity, low pt
inclusive hadron identified spectra and elliptic flow — which provide information on the
collective properties of the system and which are accessible with a standard “minimum bias”
trigger in CMS. The PbPb level-1 trigger and the method to determine the reaction centrality
are also outlined.

Chapter 5 presents the hard probes physics reach and triggering capabilities. Hard probes
constitute privileged perturbative “tomographic” probes of the hottest and densest phases of
the reaction, and Chapters 6 and 7 detail the capabilities for the measurement of quarkonia,
heavy-quarks, jets and high pr hadrons.

Chapter 8 discusses the CMS capabilities for measuring photon-induced processes in
electromagnetic (ultraperipheral) nucleus-nucleus interactions which will allow us to study
the small-x gluon distribution in the nuclei in an unexplored domain. Finally, Chapter 9
outlines a few other observables which can certainly be measured in CMS but for which
no (fast or slow) simulation studies are available at the time of writing this report.
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Chapter 1. Introduction

This document updates and extends the first comprehensive studies carried out within the
CMS collaboration a few years ago, “Heavy-ion physics programme in CMS” [1]. A recent
description of the CMS detector configuration and performance — including track and jet
reconstruction in the high particle-multiplicity environment of nucleus-nucleus collisions —
has been presented in the CMS Physics Technical Design Report, Volume 1, [2]. In Volume
2 of the same report, [3], a benchmark heavy-ion physics probe, the measurement of the
charmonium (J/4, ¥') and bottomonium (Y, Y’, T”) resonances in Pb-Pb collisions at
5.5 TeV, was also described.

1.1. Physics motivation

The study of the fundamental theory of the strong interaction — Quantum Chromodynamics
(QCD) — in extreme conditions of temperature, density and parton momentum fraction
(low-x) has attracted an increasing experimental and theoretical interest during the last 20
years. Indeed, QCD is not only a quantum field theory with an extremely rich dynamical
content — such as asymptotic freedom, infrared slavery, (approximate) chiral symmetry, non-
trivial vacuum topology, strong CP violation problem, U4(1) axial-vector anomaly, colour
superconductivity, ...— but also the only sector of the Standard Model (SM) whose full
collective behaviour — phase diagram, phase transitions, thermalisation of fundamental fields
— is accessible to scrutiny in the laboratory. The study of the many-body dynamics of high-
density QCD covers a vast range of fundamental physics problems (figure 1.1).

Deconfinement and chiral symmetry restoration

Lattice QCD calculations [5] predict a new form of matter at energy densities (well) above a
critical value — ¢, = (6 £2) TC4 x lGeV/fm3 (figure 1.2), where 7, =~ 150-190 MeV [6, 7]
is the critical temperature — consisting of an extended volume of deconfined and current-
mass quarks and gluons: the Quark-Gluon Plasma (QGP) [8, 9]. The vanishing of the chiral
condensate at 7, and the sudden liberation of quark and gluon degrees of freedom are clearly
visible in figure 1.2. The scrutiny of this new state of matter — equation-of-state (EoS), order
of the phase transition, transport properties, etc. — promises to shed light on basic aspects of
the strong interaction such as the nature of confinement, the mechanism of mass generation
(chiral symmetry breaking, structure of the QCD vacuum) and hadronization, which still evade
a thorough theoretical description [11, 12] due to their highly non-perturbative nature.

Early universe cosmology

The quark-hadron phase transition took place some 10 us after the Big Bang and is believed
to have been the most important event in the Universe between the electroweak (or SUSY)
transition and Big Bang Nucleosynthesis (BBN), see figure 1.3. Depending on the order of
the transition*, several cosmological implications have been postulated [13] such as the for-
mation of strangelets and cold dark-matter (WIMP) clumps, relic magnetic fields, primordial
black holes, or baryon fluctuations leading to inhomogeneous nucleosynthesis. In any event,

49 The order itself is not exactly known: the transition — which is 1%-order in pure SU(3) gluodynamics and of a fast
cross-over type for Ny = 2+1 quarks [5] — is still sensitive to lattice extrapolations to the continuum limit.
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Figure 1.1. Many-body dynamics of QCD in different physics limits (adapted from [4]).
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Figure 1.2. Left: The light quark chiral condensate versus the temperature computed in lattice
QCD with various number of flavours and values of the u, d, s quark masses [10]. Right: The
energy density in QCD with 0, 2 and 3 degenerate quark flavours as well as with two light and one
heavier (strange) quarks. The horizontal arrow shows the value of the Stefan-Boltzmann limit for
an ideal quark-gluon gas [5].

the thermodynamics of the QCD transition epoch plays a background role in the determi-
nation of various hypothetical dark-matter relic densities (axion, WIMP, ... see figure 1.3,
bottom) [14, 15].

Parton structure and evolution at small-z

HERA results [15, 17] indicate that when probed at high energies, hadrons consist of
a very dense system of gluons with small (Bjorken) momentum X = Pparion/ Phadron- At
low x, the probability to emit an extra gluon is large, proportional to o In(1/x), and
gluon-gluon fusion processes will eventually dominate the parton evolution in the hadronic
wavefunctions. At high virtualities Q% and moderately low x, such evolution is described by
linear DGLAP [18-20] or BFKL [21-23] equations, suitable for a dilute parton regime. At
x <1072, and for Q values below an energy-dependent saturation momentum Q;, hadrons are
however more appropriately described as dense, saturated parton systems in the context of the
“Colour-Glass Condensate” (CGC) [24] effective theory with the corresponding non-linear
JIMWLK [25-27]] (or BK [28]) evolution equations (figure 1.4). Low-x gluons in nuclei
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Figure 1.3. Top: Effective number of degrees of freedom g.(7) =&(T)/ (7?2 /30 T4 predicted
by the Standard Model (the dashed line is a minimal supersymmetric extension of the SM) [13].
Bottom: Sequence of significant events in the early Universe until the Big Bang Nucleosynthesis

epoch: electroweak and QCD transitions, decoupling of several SM and hypothetical particles,

e* annihilation, etc. [13, 15].

overlap and, so, saturation effects are expected to set in earlier for ultrarelativistic heavy nuclei
(for which Q2 oc A'/3, with A the number of nucleons) than for free nucleons.

Gauge/String duality

Theoretical applications of the Anti-de Sitter/Conformal-Field-Theory (AdS/CFT) correspon-
dence [31, 32] provide results in strongly coupled (i.e. large ’t Hooft coupling A = g>N. > 1)
SU(N,) gauge theories in terms of a weakly-coupled dual gravity theory. Recent applications
of this formalism for QCD-like (N = 4 super Yang-Mills) theories have led to the deter-
mination of transport properties accessible to experimental study — such as the QGP viscos-
ity [33], the jet quenching parameter (g) [34], or the heavy-quark diffusion coefficient [35-37]
— from black hole thermodynamics calculations. Such results provide valuable insights on
dynamical properties of strongly-coupled QCD that cannot be easily treated by perturbative or
lattice methods, and open novel phenomenological and experimental directions in high-energy
heavy-ion physics.

Compact object astrophysics

At high baryon densities and not too high temperatures, the attractive force between
(colour antisymmetric) quarks can lead to the formation of bound (gq) condensates of
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Figure 1.4. QCD phase diagram in the 1/x, Q2 plane (each circle represents a parton with
transverse area ~ 1/Q? and fraction x of the hadron momentum). The different evolution regimes
(DGLAP, BFKL, saturation) are indicated, as well as the saturation scale and geometric scaling
curves between the dense and dilute domains [29, 30].

Cooper pairs. Cold and dense matter is thus expected to behave as a colour superconductor
with a non-trivial quark pairing structure due to the combination of the various quantum
numbers involved (spin, colour, flavour) [38]. This regime, currently beyond the direct reach
of accelerator-based research — except indirectly in the region of large baryon densities
around the QCD critical point, figure 1.5 — may be realised in the core of compact
stars (neutron, hybrid or other exotic stars) and, thus, open to study through astronomical
observation.

1.2. High-energy nucleus-nucleus collisions

The only experimental means available so far to investigate the (thermo)dynamics of a multi-
parton system involves colliding large atomic nuclei at ultrarelativistic energies. Figure 1.6
left, shows the total centre-of-mass energy available for particle production (i.e. subtracting
the rest mass of the colliding hadrons) at different accelerators as a function of the first
operation year (“Livingston plot”) [41]. The exponential increase in performance translates
into an energy doubling every 2 (3) years for the ion (p, p) beams. Head-on collisions of heavy
ions (AA) can produce extremely hot and dense QCD matter by concentrating a substantial
amount of energy — O (1 TeV) at mid-rapidity at the LHC, see figure 1.6-right — in an
extended cylindrical volume, V = 7 R4y &~ 150 fm® for a typical large nucleus with radius
R4 = 6.5 fm, at thermalisation times of 7o = 1 fm/c.

The hot and dense systems produced in high-energy AA collisions are not prepared
under controlled thermodynamical conditions but follow a dynamical trajectory along the
phase diagram shown in figure 1.5. After the collision, the system (with a temperature profile
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Figure 1.5. QCD phase diagram in the temperature vs. baryochemical potential (7', ) plane.
The arrows indicate the expected crossing through the deconfinement transition during the
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Figure 1.6. Left: “Livingston plot” for (anti)proton and ion accelerators in the period
1960-2008 (adapted from [41]). Right: Measured transverse energy per unit rapidity at n =0
and corresponding Bjorken energy density egj(to = 1fm/c) [42], in central heavy-ion collisions at
various c.m. energies [43, 44], fitted to a logarithmic parametrisation.

decreasing from the centre) expands with relativistic longitudinal (transverse) velocities

(B) =~ 1.0 (0.5) and cools as a function of time as T o< T~

1/ with n = 3 for a longitudinal-

only expansion [42]. When T reaches T, &~ 190 MeV, the quark matter undergoes a phase
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Figure 1.7. Parton kinematic range in the (x, M?) plane for PbPb at /Sy = 5.5 TeV, compared
to that of the highest RHIC and SPS energies [46].

transition into hadrons. The produced hadronic gas stops self-interacting collectively at
freeze-out times v ~ 10-20 fm/c [45]. At the initial stages of the reaction (1fm/c after
impact), the commonly used “Bjorken estimate” [42] gives energy densities attained at
mid-rapidity of eg; =dEr/dn|,—o/ (7 R% 79) ~ 5 and 10 GeV/fm3, at relativistic heavy-ion
collider (RHIC) and the LHC, respectively (figure 1.6 right). Although these values can only
be considered as a lower limit since they are obtained in a simple 1+1 D expansion scenario
ignoring any effects from longitudinal work, they are already about 5 and 10 times larger,
respectively, than the QCD critical energy density for deconfinement. High-energy heavy-
ion colliders provide therefore the appropriate conditions for the study of highly excited
quark-gluon matter.

At the LHC, the ion-ion centre of mass energies will exceed those at RHIC by nearly a
factor of 30, providing access to a completely uncharted regime. Our current understanding is
that this regime will be characterised by the following properties [46]:

1. An initial-state dominated by high-density (saturated) parton distributions. The relevant
range of parton momentum fraction x probed at LHC will be as low as 107 (figure 1.7)
and the characteristic saturation momentum, Qf. ~ 5-10 GeV? [51], will be a factor of
2-3 larger than at RHIC, accessing a novel perturbative regime where deviations from
the standard linear evolutions in Q% and x are expected. Important aspects of particle
production and the early time evolution of the system should be governed by classical
chromodynamics, as described in the Colour-Glass-Condensate framework.
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Table 1.1. The expected yield of several hard probes in 10® s PbPb and pPb LHC runs.

PbPb pPb
JSNN =5.5TeV SN = 8.8 TeV

L=5x10%cm2s"!" £=14x10¥cm 25!

Process Yield/10¢ s Ref. Yield/106s  Ref.
nl <24
jet (pT > 50 GeV/c) 2.2 x 107 [47] 1.5% 1010 [48]
jet (pr > 250GeV/c)  2.2x 103 [47] 52x10%  [48]
z0 3.2x10° [49] 6.8 x10°  [48]
w+ 5.0 x 10° [49] LIx107  [48]
w- 5.3 x10° [49] LIx107  [48]
all phase space

cc 9.0 x 1010 [46] 20x 102 [46]
bb 3.6 x 10° [46] 8.2x 100 [46]
J/o — putu~ 2.4 % 107 [50] 55x 108 [50]
Y - putp” 1.5% 10° [50] 3.5x10°  [50]
Y - ptp~ 3.7 x 10* [50] 8.4x10°  [50]
Y= ptu~ 2.2 x 10* [50] 52%x10°  [50]

2. Hard probes — such as jets, high- pr hadrons, heavy-quarks, heavy-quarkonia — will be
produced abundantly (Table 1.1). The cross sections for these processes can be calculated
using the perturbative QCD framework and their potential attenuation in the medium will
provide precise “tomographic” information about the hottest and densest phases of the
reaction.

3. Weakly-interacting perturbative probes (direct photons, dileptons, Z° and W* bosons)
unaffected by final-state interactions in the medium will be produced with large yields
(Table 1.1), providing direct information on the parton distributions of the colliding ions
and an undistorted reference when produced back-to-back with (quenched) jets.

4. Parton dynamics will dominate a significant fraction of the medium evolution. The initial
energy density, temperature, volume, and lifetime of the QGP state is expected to be much
larger than at RHIC. Partonic degrees of freedom will thus dominate the fireball expansion
and the collective features of the hadronic final state.

1.3. The CMS detector

The CMS experiment [52, 53] at the LHC is a general purpose detector designed to explore
the physics at the TeV energy scale. The primary goals of the experiment are to reveal the
electroweak (EWK) symmetry breaking mechanism and provide evidence of physics beyond
the SM in proton-proton collisions at /s = 14 TeV, as well as to study the properties of the
strongly interacting matter produced in PbPb collisions at the highest energy densities ever
reached in the laboratory. When running in the heavy-ion mode, the LHC will collide two
lead beams (as well as lighter ions in a second phase), circulating in opposite directions,
at an energy of 2.75TeV each (centre-of-mass energy ./syy =5.5TeV per nucleon pair).
Since the detector subsystems have been designed with a resolution and granularity adapted
to cope with the extremely high luminosities expected in the proton-proton running mode
(L~ 10*cm™2s~! at 14 TeV) with up to 25 simultaneous (pile-up) pp collisions per bunch
crossing, CMS can also deal with the large particle multiplicities (see figure 1.8) anticipated
for PbPb collisions at 5.5 TeV (where £ ~ 10>’ cm™2s~!).
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Figure 1.8. CMS event display of a simulated Y — u*u~ produced in a PbPb collision at
/sy = 5.5TeV with charged multiplicities at mid-rapidity d Ncy/dn|;=0 = 3500.

The CMS apparatus measures roughly 22 m in length, 15 m in diameter and 12500
metric tons in weight. A drawing of the detector can be seen in figure 1.9. Figure 1.10
shows schematic representations of the response to various types of particles superimposed
on a transverse slice through the detector. A detailed description of the construction and
performance of each detector system can be found in Ref. [54]. Its central feature is a
4T solenoid, 13 m in length and 6 m in diameter. Along with the central silicon pixel and
microstrip tracking detector, the electromagnetic (|n| < 3) and hadronic (|n| < 5) calorimeters
are contained within the solenoid coil. Muon detectors (|n| < 2.4) are embedded in the flux
return iron yoke of the magnet. Two other detectors cover the very forward hemisphere
(figure 1.11): CASTOR (5.3 < |5| < 6.6) and the Zero-Degree Calorimeters (ZDC, |n| > 8.3
for neutrals). The TOTEM experiment, which shares the interaction point with CMS, provides
two extra trackers at forward rapidities (T1 at 3.1 < || < 4.7 and T2 at 5.5 < |n| < 6.6).

The innermost tracking is accomplished with three layers of silicon pixel detectors (at
radii of 4.4, 7.3 and 10.2cm) with a total area of approximately 1m?, composed of 66
million 100 x 150 wm? area pixels. The remaining tracking layers are composed of 9.3 million
single- and double-sided silicon microstrip detectors covering a total of 200 m? of detectors,
organised in an inner barrel (TIB) with 4 layers within the 20-50 cm radius range, an outer
barrel (TOB) with 6 layers within the 55-120 cm radius range, and two endcap detectors (TEC
and TID).

The electromagnetic calorimeter consists of ~76 000 Lead-Tungstate crystals (~25 X,
with granularity An x A¢ =0.0174 x0.0174) read out by Avalanche Photodiodes,
plus ~6000 endcap silicon pre-shower detectors. Hadronic calorimetry is achieved with
scintillators embedded in a brass absorber (9072 readout channels for a granularity of
An x A¢ =0.087 x 0.087 at central rapidities and An x A¢ =0.175 x 0.175 at forward
rapidities), where the light is read out using Hybrid Photodiodes (HPD).
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Figure 1.10. A transverse slice through one segment of the CMS detector indicating the responses
of the various detecting systems to different types of particles.

The CMS muon system, covering the pseudorapidity window |n| < 2.4, is made of three
detector technologies: Drift Tubes (DT) are used in the CMS barrel, Cathode Strip Chambers
(CSC) in the endcaps, and Resistive Plate Chambers (RPC) are used in parallel with the other
detectors, both in the barrel and in the endcaps. In total, the muon system contains about
25000 m? of active detection planes, and nearly 1 million electronic channels.
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Figure 1.11. CMS acceptance of tracking, calorimetry, and muon identification in pseudorapidity
(n) and azimuth (¢). The size of a jet with cone R = 0.5 is also depicted for illustration.

The CASTOR and ZDC detectors are tungsten plus quartz sampling Cerenkov
calorimeters with hadronic and electromagnetic sections and a few hundred readout channels
in total.

1.4. Heavy-ion observables with CMS

The aim of this section is to give a concise experimental and phenomenological overview
of the heavy-ion observables that can be measured in CMS. Emphasis is put on those
measurements which can help clarify some of the current open issues at RHIC [55]. Chapters
2-8 describe in detail the analyses and physics reach for the sample of measurements
introduced here.

1.4.1. PbPb rapidity density: low-x gluon saturation

The charged-particle multiplicity per unit rapidity at mid-rapidity, dNe,/dn|,—o, is related
to the produced entropy density in the PbPb collision which fixes the global properties of
the produced medium. Before the start up of RHIC, extrapolations from SPS measurements
at /syy ~20GeV varied widely, mostly overestimating the result [56]. The bulk
hadron multiplicity measured in central AuAu at ,/syy =200GeV, dN/dn|,— = 700,
is comparatively lower than the dN,/dnl,—o ~ 1000 expectations of “minijet”-dominated
scenarios [57], soft Regge models [58] (without accounting for strong shadowing effects [59]),
or extrapolations from an incoherent sum of proton-proton collisions [56]. On the other
hand, Colour Glass Condensate (CGC) approaches [60, 61] which effectively take into
account a reduced initial number of scattering centres in the nuclear PDFs, f,/4(x, 0% <
A fun(x, Qz), can reproduce the RHIC data. In the saturation models, non-linear effects
(gluon-gluon fusion processes at low values of x) become important and saturate the parton
densities when the area occupied by the partons becomes similar to that of the hadronic
system, nRi. For a nucleus with A nucleons, radius R4 ~ A'/3 and total gluon distribution
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Figure 1.12. Left: Collision energy and centrality dependences of the charged particle multiplicity
at mid-rapidity, dNep /dnly=o0 (dNch/dnly—o is normalised by the number of participating nucleon
pairs, Npart/2, and the centrality is given in terms of Npar): the PHOBOS data [64] is compared to
the gluon saturation model prediction of Ref. [61]. Right: Model predictions for dN /dn in central
PbPb at /syy =5.5TeV [51,59].

xG 4(x, Q%) = Axg(x, Q%), where g(x, Q%) is the gluon density in a single nucleon, this
condition translates into the following “saturation momentum” [62, 63]:

02 (x) =~ as% xGa(x, QY ~ A3 x7* ~ AV (/s) ~ Al3eM, (1.1)
mR%

with A = 0.2-0.3 [60]. The mass number dependence implies that, at comparable energies,
non-linear effects will be A'/? &~ 6 times larger in a heavy nucleus (A ~ 200 for Au or Pb)
than in a proton. Based on the general expression (1.1), CGC-based models can reproduce the
centrality and c.m. energy dependences of the bulk AA hadron production (figure 1.12-left).
Compared to RHIC, the relevance of low-x QCD effects will certainly be enhanced at the
LHC due to the increased centre-of-mass energy and rapidity of the produced partons [30,
47]. The expected hadron multiplicities at midrapidity are of the order dN /dn|,—o ~ 2000
(figure 1.12-right), much lower than the dN /dn|,—o ~ 8000 predictions before RHIC results.

1.4.2. Soft spectra: baryochemical potential, freeze-out temperature

Measurements of hadron momentum spectra and ratios at low pr (pr < 2GeV/c) are an
important tool to determine the amount of collective radial flow generated and the thermal an
chemical conditions in the final (freeze-out) phase of the reaction. The measured single hadron
pr spectra at RHIC and SPS have an inverse slope parameter T.g larger than that measured
in pp collisions, increasing with reaction centrality and with hadron mass, as expected if
collective expansion blue-shifts the hadron spectra. Phenomenological fits of the spectra to
“blast wave” models (To & T + (Br)? m) yield transverse flow velocities (8r) ~ 0.6 [68].

Full hydrodynamical calculations which start with a partonic phase very shortly after
impact (1o < 1fm/c) develop the amount of collective radial flow needed to accurately
reproduce all the measured hadron spectra (figure 1.13).

Measurement of the bulk pion, kaon and (anti)proton spectra in PbPb at 5.5 TeV and
their comparison to the hydrodynamical predictions will provide the first estimates of the
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Figure 1.13. Transverse momentum spectra for pions, kaons, and (anti)protons measured at RHIC
below pr =~ 3GeV/c in 0-10% most central AuAu collisions at ,/syy =200GeV compared to
hydrodynamics calculations [65]. Above pt &~ 2 GeV /c the expected perturbative contributions of
hard scattering products [66, 67] (scaled as described in [65]) are also shown.

thermodynamical conditions characterising the initial- (thermalisation time, baryochemical
potential) and final- (freeze-out temperature) states of the produced medium. In particular,
the abundance of strange hadrons or the p/p ratio at mid-rapidity, determine the strangeness
undersaturation factor y, or the baryo-chemical potential, 5, respectively of the thermalized
fireball. At the LHC, the expected formation of a virtually baryon-free system with g close
to zero at mid-rapidity, will resultin a p/p ~ 1 at y = 0. In addition, the possibility to identify
various hadron species and measure their yield with respect to the reaction plane (see next
section) will more strongly constrain the equation of state and dynamical evolution of the
system.

1.4.3. Elliptic flow: thermalisation time, medium shear viscosity

The initial-state in nucleus-nucleus collisions with non-zero impact parameter is characterised
by an anisotropic distribution in coordinate-space given by the lenticular- or almond-like
shape of the overlapping zone (figure 1.14-left). If the produced system behaves collectively,
the initial spatial anisotropy translates into a final elliptical asymmetry in momentum-space
with respect to the reaction plane because the pressure gradient is larger for directions
parallel to the smallest dimension of the lens. As a result, the final azimuthal distributions,
dN /dA¢, of the produced hadrons (A¢ = ¢ — g p) show a strong harmonic modulation with
a preferential “in-plane” emission in non-central collisions. The strength of this asymmetry
is quantified via the second Fourier coefficient, vy(pr, y) = (cos(2A¢)), of the azimuthal
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Figure 1.14. Left: Spatial asymmetry with respect to the reaction plane of the produced “fireball”
in non-central nucleus-nucleus collisions. Right: Elliptic flow (normalised by the participant
eccentricity) [69] v2/e, as a function of the charged hadron rapidity density, dNcn/dnly—o,
normalised by the reaction overlap area A, measured at SPS [70, 71] and RHIC [71, 72],
compared to the “hydrodynamical limit” expectations for a fully thermalized system with hard
(hadron-gas like) or soft (QGP-like) EoS [73-75]. Adapted from [72] (10% errors have been added
to account for the v, and € systematic uncertainties).

decomposition of single inclusive hadron spectra relative to the reaction plane [76, 77],

1+2Zv,, cos[n(¢p — Pgp)l ) . (1.2)

n=1

&¢*N 1 EN

#p 27 prdprdy
At RHIC, a large v, value has been measured (figure 1.14-right), v, ~ 0.2, indicative of
a strong degree of collectivity (pressure gradients) building up in the first instants of the
collision. Such a strong v; is not consistent with the much lower values, v, < 0.06, expected
by transport models of hadronic matter [78] or for a partonic system rescattering with
perturbative cross sections (0g, ~ 3 mb) [79]. The magnitude, and the pr and hadron mass
dependences of the radial and elliptic flows below pt &~ 2 GeV/c are, on the other hand, well
described by ideal hydrodynamic models whose space-time evolution starts with a realistic
QGP equation of state (EoS) with initial energy densities gy ~ 30 GeV /fm® at thermalisation
times tp &~ 0.6fm/c [45, 75, 80, 81] (figure 1.14-right). Such a degree of accord between
relativistic hydrodynamics and the data was absent at lower CERN-SPS energies [70].
Figure 1.14-right shows the particle-density dependence of the v, parameter (scaled by the
eccentricity of the reaction € to remove centrality-dependent geometrical effects) in semi-
central nucleus-nucleus collisions at different c.m. energies. RHIC v, data in the range
JSNN A 62-200 GeV [71, 72, 82] are close to the hydrodynamical limit curves [73, 74]
estimated for a completely thermalized system.

The robust collective flow generated in the first instants of the reaction, the fast (local)
thermalisation times, and the good agreement of the data with ideal relativistic hydrodynamic
models which assume a fluid evolution with zero viscosity (i.e. with negligible internal
shear stress), have been presented as evidence that the matter formed at RHIC is a strongly
interacting QGP (sQGP) [83-87]. This new state of matter with liquid-like properties,
challenges the anticipated paradigm [8, 9] of a weakly interacting gas of relativistic partons,
lending support to the application of strongly-coupled-gauge/weakly-coupled-gravity duality
techniques [33—37] to compute relevant SQGP parameters (see Section 1.1). It is worth noting
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Figure 1.15. Lattice QCD calculations of the “interaction measure”, I/T* = (¢ —3P)/T*, as
a function of the temperature for various lattice spacings N; =4, 6 and quark masses m, g =
0.1,0.2mg [88], with T, ~ 170 MeV.

that in the range of temperatures attained at RHIC, T < 2 T,, lattice QCD predictions for
the pressure and energy-density are still far from fulfilling the expected P ~ ¢/3 ideal-
gas relation. Figure 1.15 shows recent calculations [88] of the interaction measure I =
(¢ —3P), normalised by T#, which clearly deviate from the ideal-gas I ~0 value in the
range T < 3 T.. This result shows that strong interactions between the plasma constituents
persist in the deconfined phase at several times T,. The initial temperatures in central PbPb
collisions at the LHC>® will be of the order of T ~ 3T, where the interaction measure
approaches its asymptotic value. The measurement of the differential elliptic flow properties
in PbPb collisions at the LHC will be of primary importance to confirm or reject the sSQGP
interpretation as well as to search for a possible weakening of v,, indicative of the existence
of a weakly-interacting QGP phase at higher temperatures than those of the liquid-like state
found at RHIC [89, 90]. In addition, at LHC energies the contribution from the QGP phase
to the collective particle flow(s) is expected to be much larger than at RHIC or SPS and,
therefore, v, will be less dependent on the details of the late hadronic phase.

1.4.4. Hard processes: ‘“tomographic” probes of QCD matter

Among all available experimental observables, the so-called hard probes (particles with large
transverse momentum pr and/or high mass [55, 91]) are of crucial importance for several
reasons (figure 1.16): (i) they originate from parton scattering with large momentum transfer
Q? and thus are directly coupled to the fundamental QCD degrees of freedom; (ii) their
production timescale is very short, T &~ 1/pr < 0.1 fm/c, allowing them to propagate through,
and potentially be affected by, the medium; (iii) their cross sections can be theoretically

50 A particle multiplicity in central PbPb of dNey, /dy| y=0 ~ 2000, corresponds to an energy density g9 ~ (0.5 p)3
[0.5dNeh/dyly=0/(to A1)1¥? 2 100 GeV/fm> at an initial time 9 = 0.3 fm/c. A fully equilibrated QGP at these
energy densities would have a temperature of Ty & (80/12)'/4 ~0.52GeV.



2340 CMS Collaboration

q: fast colour friplet|  ~_-w»

Q—QQQJ‘ Induced ™\

gluon

g: fast colowgy radiation > <q>

i aN,

Q: slow colour _ ! Energy dy
triplet 1 loss? ./

28
QQ: slow colour ,,ﬁ;f"_ s Tc
singlet/octet =< _  Dissociation
C

v*: colourless | ,

: Controls
v: colourless -

QCD medium

Figure 1.16. Examples of hard probes whose modifications in high-energy AA collisions provide
direct information on properties of QCD matter such as the medium transport coefficient (g), the
initial gluon rapidity density d N, /dy, and the critical temperature and energy density [55].

predicted using the perturbative QCD (pQCD) framework. Hard processes thus constitute
experimentally- and theoretically-controlled (self-generated) “tomographic” probes of the
hottest and densest phases of the reaction.

1.4.5. Jets and high- pr hadrons: parton number density and medium
transport coefficient

Among the most exciting results of the RHIC physics programme is the factor ~5 suppression
of high-pr leading hadrons in central AuAu [92] compared to an incoherent superposition
of pp collisions (figure 1.17). Such a result is consistent with the predicted attenuation of
the parent quark and gluon jets due to energy loss in a dense QCD medium (“jet
quenching”) [93, 94]. The dominant contribution to the energy loss is believed to be of
non-Abelian radiative nature (“gluon-strahlung”) as described in the GLV [95, 96] and
BDMPS [97-100] formalisms. In the GLV approach, the initial gluon density dN,/dy of the
expanding plasma (with transverse area A and length L) can be estimated from the measured
energy loss AE,

, . 1 dN,
AEO(O{SCRA—d—L, (]3)
1 dy

where Cy is the Casimir colour factor of the parton (4/3 for quarks, 3 for gluons). In the
BDMPS framework, the transport coefficient (), characterising the scattering power of the
medium?®!, can be derived from the average energy loss according to

(AE) occas Cr(G) L*. (1.4
31 The § parameter is the squared average momentum transfer of the hard parton per unit distance, § = (k%) /A, and

can be identified [34] with the coefficient in the exponential of an adjoint Wilson loop averaged over the medium
length L: (WA(C)) = exp[(—1/4+/2)gL~ L?].
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Figure 1.17. Nuclear modification factor, R 4 4 (pr), for high- pr neutral pions at CERN-SPS [106,
107] and RHIC [108] compared to the predictions of the GLV parton energy loss model [96] for
two values of the initial gluon rapidity density, dN,/dy. The bottom bands show the expected
suppression of inclusive high-pr charged hadrons in central PbPb collisions at 5.5 TeV as given
by the GLV (dN, /dy = 2000-4000) and the PQM ((¢) ~ 30-80 GeV?/fm) [101, 104] models.

From equations (1.3) and (1.4), very large initial gluon rapidity densities, dN,/dy ~
1100 = 300 [96], or, equivalently, transport coefficients (§) & 11 £ 3 GeV?¥/fm [101-104], are
required in order to explain the observed amount of hadron suppression at RHIC, as quantified
by the nuclear modification factor :

d*Naa/dy dpr
(Taa(b)) x dzgpp/dy dpr '

which measures the deviation of AA at impact parameter b from a simple incoherent
superposition of NN collisions. In equation (1.5), T45(b) (normalised to A - B) is the nuclear
overlap function at b determined within a geometric Glauber eikonal model using the known
Woods-Saxon distribution for the colliding nuclei [105]. The corresponding predictions for
the inclusive charged hadron suppression at LHC are shown in figure 1.17.

Most of the empirical properties of the quenching factor for light-flavour hadrons — the
magnitude, pr, centrality, and the /sy dependences of the suppression — are in quantitative
agreement with the predictions of non-Abelian parton energy loss models [109]. However,
the fact that the high-pr e* spectrum from semi-leptonic D and B decays is as suppressed as
the light hadrons in central AuAu [110, 111] is in apparent conflict with the robust AEy <
AE,; < AE, prediction of radiative energy loss models. In order to reproduce the measured
high-pt open charm/beauty suppression, jet quenching models require either initial gluon
rapidity densities (dN,/dy ~ 3000 [112]) inconsistent with the total hadron multiplicities
(dN,/dy ~ 1.8dN /dn|,—o [109]) or with the values (dN,/dy ~ 1100) needed to describe the
quenched light hadron spectra, or they need a smaller relative contribution of B relative to
D mesons than theoretically expected in the measured pr range [103]. This discrepancy may
point to an additional contribution from elastic energy loss for heavy quarks [113—115], so far
considered negligible [94]. At the LHC, the original capability to fully reconstruct jets [47], to

Raa(pr,y; b) = (1.5)
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Figure 1.18. J/y nuclear modification factor versus centrality [127] (given by the number of
participant nucleons in the collision) measured in nucleus-nucleus collisions at the SPS [123-125]
and RHIC [126].

tag them with unscathed prompt y [116] or Z° [117], and to carry out high-statistics studies in
the heavy-flavour sector [50], will be very valuable to clarify the apparently conflicting results
at RHIC and to provide accurate information on the transport properties of QCD matter.

1.4.6. Quarkonia: critical temperature and energy density

The study of heavy-quark bound states in high-energy AA collisions has long been proposed
as a sensitive probe of the thermodynamical properties of the produced medium [118].
Analysis of quarkonia correlators and potentials in finite-7 lattice QCD indicate that the
different charmonium and bottomonium states dissociate at temperatures for which the colour
(Debye) screening radius of the medium falls below their corresponding Q' Q binding radii.
Recent lattice analyses of the quarkonia spectral functions [119-122] indicate that the ground
states (J/v and Y) survive at least up to T & 2 T, whereas the less bound . and ' melt near
T,. Experimental confirmation of such a threshold-like dissociation pattern would provide
a direct means to determine the transition temperature reached in the system and their
comparison to ab initio lattice QCD predictions. A significant amount of experimental data
on J /v production in different proton-(deuteron-)nucleus and nucleus-nucleus collisions have
been collected at SPS [123—125] and at RHIC [126]. The corresponding nuclear modification
factors, compiled in Ref. [127], are shown in figure 1.18 as a function of Ny, . The surprisingly
similar amount of J/v suppression observed at SPS and RHIC energies (with expected
temperature differences of a factor of ~ 2) has been interpreted in a sequential-dissociation
scenario [128] where the J /1 survivesup to T ~ 2 T, in agreement with the lattice predictions,
and the observed suppression at both c.m. energies is due to the absence of feed-down decay
contributions from x.(1P) (~30%) and ¥'(2S) (~ 10%) resonances which melt at T ~ T,.
The confirmation of such an interpretation would set an upper limit of T < 2 T, ~ 400 MeV
for the temperatures reached at RHIC.
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Figure 1.19. Schematic diagram of an ultraperipheral collision (UPC) of two ions with charge Z,
leading to two typical photoproduction processes (y A and y y collisions).

Other explanations of the comparatively low depletion of J/v yields at RHIC have
been put forward based on a much stronger direct J/v suppression (at temperatures close
to 7,) combined with ¢¢ — J/1 regeneration from the abundant charm quarks®” in the dense
medium [129]. The LHC measurements will be also crucial to resolve this issue. A strongly
suppressed J/¢ yield in PbPb at 5.5 TeV — where the expected initial temperatures will be
well above 2 T, — would support the sequential-screening scenario, whereas recombination
models predict a strong enhancement due to the larger density of cc pairs in the medium. In
addition, the abundant production of the Y (15, 2§, 35) states at LHC energies will open up
a unique opportunity to study the threshold dissociation behaviour of the whole bottomonium
family. The Y is expected to survive up to 47, and, therefore, direct suppression of the bb
ground state would be indicative of medium temperatures around 1 GeV at the LHC.

1.4.7. Electromagnetic PbPb interactions: high-energy photoproduction

Lead nuclei accelerated to ultrarelativistic energies at the LHC are a powerful source of
quasi-real photons due to the coherent action of the Z = 82 proton charges and the Lorentz
contraction factor y =~ 2900 of the electromagnetic field at such high energies. In ultra-
peripheral collisions (UPCs) of heavy-ions at impact parameters larger than twice the nuclear
radius, where no nucleon-nucleon collisions occur, a strong flux of photons is generated that
can be used for high-energy photoproduction (y A, yy) studies, as shown schematically in
figure 1.19 [130—132]. The equivalent photon spectrum flux in UPCs increases with Z2/ E,
and, thus, for Pb there is a Z> ~ 7000 enhancement factor compared to electron or proton
beams. The upper bound in the equivalent photon energy spectrum is of the order of the
inverse Lorentz-contracted radius R4 of the charge: wm,x =~ ¥/ R 4. The requirement that all
the charges act coherently in the generation of the equivalent quasi-real photon imposes very
small virtualities for the photoproduction process. Therefore, the beam charges are barely
deflected in the process and any produced particles have very low transverse momenta of the
order of pr <2/R4~50MeV/c or pr ~myx/y ~30MeV/c. At the LHC, lead beams at
2.75 TeV /nucleon have Lorentz factors y = 2930 leading to maximum (equivalent) photon
energies wmax ~ 80 GeV. These photons can then collide either with the other incoming

32 On average, 10 charm pairs are produced in a central AuAu collision at the top RHIC energy.
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nucleus at maximum c.m. energies of W%‘g‘ ~ 1 TeV /nucleon (3—4 times larger than those of
equivalent ep collisions at HERA), or they can interact with another similarly-radiated photon
leading to two-photon collisions at W ~ 160 GeV, comparable to (or slightly higher than)
those studied at LEP.

The physics interest of ultraperipheral PbPb collisions at LHC is twofold. On the one
hand, y A collisions open up the possibility to carry out precision QCD studies [133] —
e.g. of the gluon distribution function in the nucleus or of (photoproduced) vector-meson
absorption in cold nuclear matter — with a low background and much simpler initial state
than in equivalent pA or AA studies. On the other hand, photon-photon collisions provide
the conditions to study QED in a non-perturbative regime (with o, Z ~ 0.6), as well as
the production of C-even heavy mesons (cc, bb) or the physics of quartic gauge couplings
(y yW*W ™) [134]. The feasibility of such studies has been proven at RHIC energies where
the existing UPC measurements include p° [135] and J/v [136] photoproduction in photon-
gold collisions as well as low- [137] and high-mass [136] dielectron production in two-photon
processes.

1.4.8. Forward physics: low-x partons, baryon-rich QCD matter, and the
cosmic-ray connection

Forward coverage is essential for measurements of the low-x parton distribution functions,
particularly the gluon distributions, in protons and nuclei. Indeed, from leading-order
kinematics the rapidities and momentum fractions of two colliding partons are related via

X2 = (pr/+/s) - (e +e™) and x; = (pr//5) - (e +€”), (1.6)

and the minimum momentum fractions probed in a 2 — 2 process with a particle of
momentum pr produced at pseudo-rapidity 1 are [138]
-n n
x?i“:%, x{“in:Le_, where xt =2 pr/+/s. (1.7)
—xre 2%y —xt e

XM in particular, decreases by a factor of about 10 every 2 units of (pseudo)rapidity. At LHC
energies, the relevant x values in AA and pA collisions will be 3045 times lower than at
RHIC: x, & 1073-10° for processes with a hard scale of a few GeV? at rapidities 7 ~ 5-6
(see figure 1.7), far exceeding the reach of previous parton distribution measurements. In this
kinematic regime, the nonlinear evolution of the parton densities can be fully mapped out,
thereby clarifying the nature of the gluon saturation predicted by CGC models.

In addition, the study of the bulk particle and energy flow in AuAu and p(d)Au collisions
at forward rapidities has proven of great interest at RHIC to fully characterise the longitudinal
dependence of the properties of the produced medium [139, 140]. On the one hand, several
measurements [141-143] have given evidence for the existence of an extended longitudinal
scaling (also called “limiting fragmentation” [144]) region close to beam rapidity, which
increases with /sy (figure 1.20-left). On the other hand, measurements in the forward region
can be used to study baryon density effects on particle production, essentially changing the
chemistry of the produced quark-gluon system [145, 146]. Thermal and chemical analyses of
the current data in different rapidity slices indicate that the system has larger baryo-chemical
potential, less transverse flow and fewer degrees of freedom at forward rapidity [147]. Based
on extrapolations from BRAHMS data (figure 1.20-right), the maximum net baryon density
at the LHC is expected in the pseudorapidity region n & 5-6. Studies of baryon production in
the forward rapidities will thus shed light on the mechanism of baryon stopping and transport
as well as of partonic matter over a wide range of baryo-chemical potentials.
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Figure 1.20. Left: Pseudorapidity distributions, dNc,/dn’, normalised by the number of
participating nucleon pairs, for primary charged hadrons in central AuAu collisions at RHIC
(/snnv =19-200 GeV) and extrapolation for PbPb at LHC (,/syy = 5500) [139, 140]. Right:
Rapidity distribution (y' =y — ybeam Where Yoeam = In(4/s/my) is the beam rapidity) of net
protons (Np — Np) in central AuAu and PbPb collisions at RHIC and SPS energies (compiled
in Refs. [140, 145]).

Last, but not least, the interest in hadron production at forward rapidities in pA and
AA collisions at LHC energies has interesting connections with cosmic-ray physics. First,
knowledge of the particle multiplicities and energy flow in proton and nucleus collisions
at forward rapidities is a prerequisite for calibrating the existing hadronic codes used to
study the interaction of ultra-high energy (UHE, E > 100 PeV) cosmic rays> in the upper
atmosphere [148]. The only way currently known to study UHE cosmic rays is via extended
air-showers in the atmosphere whose cascade development is dominated by forward and
soft QCD interactions, which are poorly known at such high energies. The LHC data will
help constrain the models and validate their extrapolation up to the highest cosmic-ray
energies measured. Second, emulsion experiments at high altitudes have observed exotic
cosmic-rays events with energies E ~ 10"°-10' eV featuring a very low production of
electromagnetic secondaries [149]. Such “Centauro” events have been interpreted in some
theoretical scenarios [150] as due to the disintegration of a small lump of strange quark matter
(strangelets), a hypothetical state consisting of roughly equal numbers of u, d and s quarks,
or as due to the formation and decay of a Disoriented Chiral Condensate [151], a region
of matter where the quark condensate is misaligned with respect to the physical vacuum
and results in coherent excitations of the pion fields along particular directions in isospin
space. Accelerator searches of signatures of any such unusual objects at the SppS [152, 153],
Tevatron [154], SPS [155, 156] or RHIC [157] have been unsuccessful so far. The much higher
energies and rapidities attainable at the LHC should provide more favourable conditions for
such investigations [158].

1.5. Physics schedule

The timescale with which the various physics topics presented here can be addressed is
determined by the machine luminosity and by the beam time allocated to the different

33 The c.m. energy in pp collisions at the LHC corresponds to a 10'> eV (or 100 PeV) fixed-target collision in the air.
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Table 1.2. The projected run schedule at the LHC with proton and ion beams.

Calendar

Year Beam

2007 Pilot pp

2008 Physics pp, low luminosity
Pilot HI

2009 Physics pp, towards full luminosity
Physics HI, at 1/20 luminosity

2010 Physics pp
Physics HI full luminosity

2011 Physics pp full luminosity
Physics HI
pp at HI beam energy (5.5 TeV)

2012 Physics pp

Physics HI (pPb or ArAr)

running modes at the LHC. Table 1.2 shows the estimated plan for the LHC heavy-ion
physics programme. Using increasing luminosity a range of physics topics starting with basic
global event properties and moving on to more and more rare processes can be addressed. A
preliminary schedule of physics goals is shown in Table 1.3. The heavy-ion (HI) label includes
planned proton-nucleus (pPb at \/syy = 8.8 TeV) and light ion (ArAr) runs.

The discussion presented in the next chapters will clearly demonstrate the significant
capabilities of the CMS detector to perform the important measurements for heavy-ion
physics discussed in this chapter. Experience at other recent collider facilities (LEP, Fermilab,
RHIC) has shown the importance of having multiple detectors addressing a particular physics
topic. However, the contribution of CMS to the heavy-ion effort will go well beyond a
mere complementary role to ALICE, the dedicated heavy-ion detector at the LHC. Instead,
inclusion of CMS provides a number of unique capabilities. These include:

e Acceptance: Significantly broader coverage than ALICE near midrapidity (full ¢, |n| < 2.5)
for layered detection of charged and neutral hadrons as well as muons, electrons and
photons, over a wide range of pr.

e Resolution: The best dimuon mass resolution of any LHC detector, leading to a clean
separation of the various quarkonia (J/y, T) states and an improved signal over background
ratio. Significantly better (than ALICE) charged track momentum resolution over a much
wider range of (pr, 1) acceptance.

e Calorimetry: Full electromagnetic and hadronic calorimetry for complete jet triggering and
reconstruction over a very large solid angle, leading to large statistics measurements of
single jet and jet+ X channels, where X is another jet, a (virtual) y or a Z°.

e Forward coverage: Unparalleled forward physics capabilities thanks to the forward hadronic
calorimeters (HF, 3 < |5| < 5), CASTOR-TOTEM (5.3 < || < 6.6), and the ZDCs (|| =
8.3 for neutrals).

e Trigger: The DAQ is capable of delivering almost every PbPb event to the High Level
Trigger (with an equivalent ~ 50 TFlops computing power), allowing maximum flexibility
to select rare probes. Having the event selection implemented in the software makes it easy
to update, improve, and modify for a variety of physics programmes or to react to new
discoveries.
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Table 1.3. A preliminary schedule for the physics goals of the CMS heavy ion
programme at the LHC.

Calendar year

Physics goals

2007

2008

2009

2010

2011

2012

Monte Carlo simulations:

e Capabilities of the detector for HI

o Trigger performance for HI

900 GeV pp data:

o First opportunity to test detector and trigger performance
o pp charged multiplicity, particle and jet spectra

Reference pp data:

o pp charged multiplicity

e pp particle and jet spectra

o pp jet studies: dijet, jet+y , jet +Z°

e pp quarkonium and heavy quark measurements
First HI data:

e Charged particle multiplicity and energy flow

o Collective elliptic flow

e Spectra of charged particles to pr < 100 GeV /c
e Observation of jets

Increased statistics reference pp data.

Increased statistics HI data:

e Charged multiplicity and flow vs centrality

o Charged particle spectra to pr < multi — 100 GeV/c
e First J/, T family observation

e Jet studies for jets with Et < multi — 100 GeV

e Initial c- and b-quark jets studies

Further statistics for pp and HI data:

e Detailed jet fragmentation studies, multi-jets

e Detailed J/¢, Y family, centrality dependence
o First jet+y and jet +Z° observations

e Detailed c- and b-quark jets studies

Further statistics for pp and light-ion (ArAr) data:
o Detailed jet fragmentation, multi-jet studies

e Detailed J/v, Y family, centrality dependence
o Jet+y, jet +Z0 studies, centrality dependence

pp reference at 5.5 TeV:

o Refined analysis with improved pp reference
Proton-nucleus (pPb at 8.8 TeV) reference data

Increased statistics HI data:

o Detailed studies of all rare channels, centrality dependence
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Chapter 2. Global observables and event characterisation
2.1. Introduction

Our current understanding of how bulk QCD matter behaves with increasing energy density is
based on results from heavy-ion collisions up to a maximum energy of ./syy =200GeV,
currently achievable at the RHIC. Measurements at RHIC suggest that the initial state
described by the concept of parton saturation is directly reflected in the multiplicity of
produced hadrons and their phase-space distribution. These global features of multiparticle
production, measured by PHOBOS and others [64, 68, 147, 159], exhibit great simplicity,
such as factorisation into separate dependencies on energy and collision geometry as well
as the general feature of extended longitudinal scaling over a large fraction of the rapidity
range [141, 142]. In CMS, the high tracking efficiency and low rate of fake tracks,
together with a large calorimetric coverage, provide a precise measurement of global event
characteristics, event by event. Forward angle coverage is essential for studying the complete
longitudinal distribution as well as pushing to the lowest possible x values. An extrapolation
of existing results for the energy dependence of hadron production predicts a much lower
multiplicity at the LHC, dN¢,/dn|,—=o ~ 1300 [139, 140], than can be accommodated by most
current models. Confirmation of, or disagreement with, these expectations will undoubtedly
severely constrain our understanding of the initial conditions and early evolution of the dense
matter formed in heavy-ion collisions.

Experience at SPS and RHIC has demonstrated that global variables, such as the
charged-particle pseudorapidity density (dN.,/dn), transverse energy (both Et and dE1/dn),
and energy of neutral spectators are essential for event categorisation (i.e. to estimate
the attained initial parton and energy densities in a nucleus-nucleus collision at a given
centrality) in various analyses, as well as for placing important constraints on fundamental
properties of particle production. The large coverage of the CMS tracking and muon detectors
(In| < 2.5) and the nearly full coverage of the CMS calorimeters (|n| < 6.6) provides access
to all these measurements with high precision. In particular, the large acceptance will allow
detailed studies of trigger and event selection biases. The resulting event-characterisation
observables will be available on an event-by-event basis for all other studies, allowing
detailed measurements as a function of the centrality, collision volume, and related (derivable)
quantities such as the number of nucleon participants and nucleon-nucleon collisions.

What follows is a brief overview of how we can measure event-by-event charged particle
multiplicities in PbPb collisions using the innermost layers of the silicon pixel tracker, how
to determine the centrality in heavy-ion collisions, and what would be the optimal Level-1
minimum-bias (interaction) trigger to measure these global observables in both pp and PbPb
collisions.

2.2. Event-by-event charged particle multiplicity with the silicon tracker

The measurement of the primary charged particle pseudorapidity density in PbPb collisions,
versus the centrality of the collision, will be one of the initial measurements of the CMS
collaboration. A method for determination of the primary charged-particle multiplicity in
heavy-ion events at CMS is outlined. Further details of the analysis can be found in Ref. [160].

The technique is based on the relation between the pseudorapidity distribution of recon-
structed clusters in the innermost layer of the pixel tracker (|n| < 2.5) and that of charged-
particle tracks originating from the primary vertex. This study is performed using a set of
100 PbPb heavy-ion events, with a midrapidity charged particle yield of dNc,/dn|,=o =~ 5000,
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Figure 2.1. Total ADC count for reconstructed hits in the first layer of the silicon pixel detector
as a function of pseudorapidity, n, which is calculated event-by-event relative to that event’s
primary vertex. Left: Energy deposition in the pixel clusters, which varies as coshn for tracks
originating from the primary vertex and is largely flat for background particles at high . Right:
Same distribution with the cosh n dependence factored out such that a simple cut can be utilised
to remove hits at high 7 from the other (non-primary) sources.

generated using the HUING Monte Carlo [57, 161] (with default settings) and run through the
GEANT3-based CMS detector simulation (cmsiM 125). Hits from all charged particles in the
first layer of the pixel barrel detector are first connected into clusters of hits to incorporate
the possibility that a single charged particle could deposit energy in more than one pixel. This
clustering algorithm is still effective for multiplicities as high as dN.,/dn =~ 5000 at midra-
pidity, i.e. much larger than expected in central PbPb collisions at the LHC, as the occupancy
in that scenario remains less than 2%.

As the amount of energy deposited is proportional to the length traversed in the silicon,
charged particle tracks with longer path lengths will deposit more energy. Thus, at higher
pseudorapidities, or shallower angles, the charged particle path length from the “true”
interaction point through the silicon in the barrel region is longer, resulting in a coshn
dependence of the energy deposited with pseudorapidity 7, see figure 2.1-left. Background
(or secondary) particles originating from dead material (e.g. the beam-pipe) produced at an
effective high n will deposit less energy as they will primarily be emitted perpendicular to the
beam z-axis and thus will traverse less silicon. These background particles can be removed
from the analysis via a cut in cosh 1 that selects only energy loss in the silicon consistent with
particles emanating from the true collision vertex, see figure 2.1-right.

Once the background component of the secondaries is removed, the measured data
can be corrected back to the number of primary charged particles via a correction function
determined from Monte Carlo studies. The correction factor is essentially a ratio of dN.,/dn
for primary tracks to dN,/dn for reconstructed hits in layer 1 of the silicon pixel tracker —
where the effect of background secondaries at higher 1 has been removed as discussed
previously. The average correction factor from these studies is found to be ~0.83 for PbPb
roughly independent of pseudorapidity, see figure 2.2-left, where spikes in the correction
function are the result of gaps in the detector for the chosen nominal interaction point of
the colliding Pb ions. It is worth noting that if all secondary particle hits are removed in the
simulation, the baseline of the correction factor is found to be close to one, illustrating that
the geometrical coverage of CMS is uniform and complete. The correction factor shown is
thus primarily a consequence of the secondary particles produced in the collision. It will be
necessary to apply this correction to the data in order to extract the primary charged particle
production.
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Figure 2.2. Left: The n-dependent correction factor used to convert the measured d N /dn, which
include secondaries, to the primary charged particle multiplicity. Right: Comparison of the original
distribution of primary simulated tracks (black large points) to the estimate obtained from the
reconstructed hits in layer 1 of the Si pixel tracker (red smaller points with statistical error bars,
the grey band indicates a somewhat conservative systematic uncertainty of Ref. [160]).

The results of this analysis applied to one PbPb event is shown in figure 2.2-right.
On an event-by-event basis, the charged particle multiplicity estimated from the innermost
layer of the silicon tracker using this technique is within ~2% of the true (simulated)
primary multiplicity. Final systematic uncertainties are estimated to be below 10%, based
on experience with a similar analysis using the PHOBOS detector at RHIC [162].

2.3. Centrality determination

Determining the impact parameter, b, or centrality of a heavy-ion collision is extremely
important for event characterisation. Knowledge of the reaction centrality provides a
geometrical scale of the overlapping region between the colliding nuclei for use in any
studies of the underlying collision dynamics and affords the possibility of a meaningful
comparison to baseline data from simpler proton-proton or proton-nucleus collisions. The
primary event centrality in high-energy nucleus-nucleus collisions is determined by measuring
the charged particle multiplicities or transverse energies in various regions of pseudorapidity.
These signals, through bins in the percentage of total cross section, provide a measure of
centrality. The validity of this technique is based on the assumption that there is a monotonic
relation between the charged particle multiplicity or the transverse energy and the amount of
nucleus-nucleus overlap.

In CMS, a simple way to determine the impact parameter on an event-by-event basis,
is to use the transverse energy deposited in the calorimeters, E¥', which decreases strongly
from central to peripheral collisions [163]. Due to its relatively low initial parton density,
the very forward rapidity region covered by the CMS Hadron Forward (HF) or CASTOR
calorimeters, |n| > 3, is expected to be nearly free of final-state rescattering compared to
the central rapidity region. Therefore the (transverse) energy deposition in the CMS forward
calorimeters is determined mainly by the initial nuclear geometry of the collision rather than
by final-state dynamics [163, 164].

The impact parameter dependence of the total transverse energy produced in the
pseudorapidity interval 3 < || <5 (covered by the HF acceptance), as obtained at the
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Figure 2.3. Correlation between the impact parameter b, of the collision and the transverse energy,
Et, produced in the forward rapidities covered by HF, 3 < |n| < 5, for 1000 minimum bias PbPb
and ArAr collisions generated with HUING [164].

generator-level with HIING [164], is presented in figure 2.3 for PbPb collisions at /syy =
5.5TeV and ArAr collisions at /syy =6.3TeV . The Er—b correlation is diffuse due to
fluctuations in the nucleus-nucleus collision dynamics, including fluctuations in the number of
nucleon-nucleon sub-collisions at a given b and fluctuations of transverse energy flow in each
nucleon-nucleon interaction. Inclusion of the detector response obtained with a full GEANT3-
based CMS simulation [164] has shown that the finite energy and spatial resolutions of the HF
calorimeter do not substantially degrade the accuracy of the impact parameter determination.
The correlation between the fotal energy and the impact parameter has a similar shape to
the Et—b correlation. The impact parameter distribution at fixed values of Et is Gaussian-
like with a width, o}, dependent on impact parameter. The estimated resolution o}, is about
~ 0.5 fm for PbPb and ArAr collisions at impact parameter up to twice the nuclear radius,
b~ 2R,. It is degraded by a factor of ~ 2 for very peripheral collisions, b > 2R 4, due to the
reduction of the produced energy in the HF pseudorapidity region. In order to improve the
centrality determination for peripheral events, a correlation of the HF transverse energy with
the total neutral energy deposited in the Zero Degree Calorimeters (ZDCs) is foreseen. Such
a correlation technique has become de facto the standard for centrality determination by all
experiments at RHIC.

Applying the method described here, any particle production rate, Nx, can be measured
in bins of EY". The b and EY" dependencies of Nx can be related by the EY'-b correlation
functions C 44 with corresponding Gaussian widths o, and op:

NX(ED) = / PONX(B)C (S, ),
o .1
(B —EF®))

Caa(EY', b) = ———exp
! V2o, (b) 202 (b)
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Figure 2.4. Left: Correlation between the impact parameter, b, and the transverse energy, ET,
deposited in the forward rapidities, 5.3 < || < 6.7, covered by the CASTOR calorimeter, as
simulated with HUING for 3000 minimum bias PbPb collisions. Right: Impact parameter resolution
in PbPb collisions using the total energy measured in CASTOR.

NX(b) = / dER'N*(ERYC sa(b, EXY,
1 e 2.2)
tot T
Caatl, Br) = Vamon B T\ 202

Similarly to what has just been described for the HF, also the CASTOR calorimeter can
provide an estimate of the collision centrality, through the measurement of the transverse
energy flux (or the total energy) emitted in the pseudo-rapidity windows 5.3 < || < 6.7.
Figure 2.4 shows again a monotonic correlation between the transverse energy produced in
the CASTOR pseudorapidity coverage and the impact parameter, b, of the nuclear collision,
according to the HUING event generator. From the width of this bidimensional correlation plot
(or explicitly from the right plot of figure 2.4 obtained from the fotal energy deposited in
CASTOR) we see that the resolution of the b variable, as extracted solely from CASTOR
data, is around 0.6 fm.

By combining information from various independent measurements, such as the Et
measurements in both HF and in both CASTOR calorimeters (on each side of the interaction
point), plus the forward energy of spectator forward neutrons measured in both ZDCs, we
can certainly determine the impact parameter of the reaction with an improved experimental
resolution of a few tenths of fm.

2.4. Minimum-bias trigger at Level 1

24.1. Introduction

The minimum bias trigger in both pp and heavy-ion collisions serves many purposes in
terms of absolute (high-level-trigger) normalisation, detector performance and consistency
determination, as well as evaluation of the event reconstruction quality. The resulting data-
set will also provide valuable physics results to characterise the global properties of the
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Figure 2.5. Hadron multiplicity as a function of pseudo-rapidity in pp minimum bias collisions at
14 TeV (pYTHIA 6.4, see text for details): Initially produced hadrons (left), and remaining hadrons
after removing all particle decays (right).

(underlying) event in these collisions. In this section, sources of possible bias will be discussed
in the context of good or bad triggering schemes for implementing a minimum bias trigger,
where high efficiency and purity are desired. To better convey why this trigger is important
for both proton and heavy-ion running conditions, a brief discussion of its most probable use,
in each physics analysis context, follows.

In pp collisions, the design luminosity is expected to be so large that 20 collisions per
beam crossing (or read-out event) are expected. In this large collection of data are both
the event which gave the trigger (e.g. a jet event) plus 19 other pileup events which are
effectively true minimum bias collisions (true means no bias is applied). To study the events of
interest, one must first understand the “uninteresting” background events. Analysis of these
partner events will begin with the low luminosity pp data, expected at the start-up of the
LHC machine. This data will also be used to analyse global properties of hadron production
— dNw/dn, dET/dn, charged particle spectra and others — as reference for the heavy-ion
physics programme.

In the ion-ion running mode, the first measurements are likely to be based on the initial
minimum bias dataset. The minimum bias dataset is a vital reference for the geometrical
overlap of the colliding nuclei (centrality). Besides, there are also some direct physics
measurements that can only be made from this data sample such as the charged particle
multiplicity, azimuthal anisotropy (elliptic flow), and particle spectra.

2.4.2. Minimum bias in pp collisions at 14 TeV

In order to evaluate the most effective way to trigger on minimum bias events, one must first
consider the total underlying particle distributions, d N /dn. To form the minimum bias sample
studied here, PYTHIA [165] subprocesses 92, 93 and 94 (diffractive events) as well as 95 (low
pr production) were enabled. Thus, for these simulations, the total inelastic cross section
of minimum bias events is 79 mb, including a 55 mb hard core (non-diffractive), as well as
14 and 10 mb for single and double diffractive events, respectively. In figure 2.5, the expected
primary and final hadron distributions predicted by PYTHIA are presented. Primary hadrons are
defined as those which are produced close to the initial collision vertex and are not decayed
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Figure 2.6. The same data as in figure 2.5-right, but with additional cuts to mimic hadronic
calorimeter tower thresholds for total (E) and transverse (ET) energy. The shaded regions show
the HF pseudorapidity coverage.

Table 2.1. Final hadrons predicted by PYTHIA for minimum bias pp collisions at /s = 14 TeV,
integrated in the HF (3.0 < |n| < 5.0) and central calorimeter (|n| < 3.0) regions.

Number of Hadrons
Cut (GeV) 3.0<|n <50 [n <30

No cut 44 70
E>1 42 39
Er>1 4 10

(for example, 7° — yy decays are not considered). Final hadrons are those which reach the
detectors. In these examples, particles produced from dead material are not included. Most
neutral hadrons (in particular the 7%s) decay before reaching the detectors.

Once the number of particles is known, restrictions on the data can be placed to mimic
the detector response to the physical limitations that will be applied at the triggering level.
Figure 2.6 shows the final particles (black markers; top curve) with two trigger conditions
applied. First, a cut on total energy, E > 1 GeV, is applied to the final particles (blue markers;
middle curve). This cut represents a realistic noise level for the tower read-out of the Level-1
trigger and results in a significantly reduced number of particles reaching the detectors in the
central rapidity region (|n| < 3.0). The more forward region (3.0 < |n| < 5.0, corresponding
to the coverage of the forward calorimeters, HF) is only mildly affected. Second, a cut of
transverse energy Et > 1GeV is applied to the final particles (red markers; bottom curve).
In this case all regions are significantly affected. The integrated particle yields for the central
and HF regions are given in Table 2.1.

The next step is to simulate the full response of the detectors in a more realistic
environment. For these studies, full GEANT4-based CMS Monte Carlo (ORCA/OSCAR)
simulations are used, where particles from dead material (e.g. secondary particles originating
from the beam-pipe) are also included. These minimum bias events were generated from
PYTHIA 6.2 with the same diffraction and low pr subprocesses activated as for the prior
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Figure 2.7. Pseudo-rapidity distribution of the generated tracks (upper curve), the tracks reaching
the hadronic calorimeter detectors (dark-shaded area), and the tracks not originating from the
primary vertex (light-shaded area) in fully simulated minimum bias pp collisions at 14 TeV.

generator-level study. Figure 2.7 shows the number of simulated tracks hitting the detector.
The histogram represents all initially generated particles (from the pp vertex), the dark-shaded
region shows the particles that hit at least one of the hadronic calorimeter detectors, and
the light-shaded region represents particles that do not originate from the initial vertex. In the
forward region, additional hits from these secondary particles help provide a trigger for
the minimum bias events.

Optimal design for pp minimum bias triggering

To maximise efficiency, it is desirable to trigger on regions with a large number of particles.
Studies thus far show that by applying a total energy cut (E > 1 GeV), one should expect on
average 21 hadrons in each HF, for a total of 42 (see Table 2.1). This number is significantly
reduced after the transverse energy cut, when only 2 particles in each HF are expected, on
average. In order to reject “non-collision” events, such as those due to beam-gas collisions,
the interaction trigger should require a coincidence of signals from both HF calorimeters (at
the expense of reducing the efficiency for single diffractive processes). The rejection of such
spurious events would not be achievable using only the central calorimeter as a trigger.

The trigger read-out at Level-1 will utilise towers. For the central barrel and endcaps each
hadronic cell is one tower, whereas in the forward calorimeter (HF) several cells are summed.
An optimal minimum bias triggering scheme would be to count the number of towers in
the HFs separately in the positive and negative n-regions. By requiring a specific number of
towers, n, on both sides, a minimum bias trigger can be defined. As an example, figure 2.8-left
shows the number of towers with energy above threshold in total energy E for positive (P)
and negative (N) HF n-regions. By requiring more than 10 towers in both HF calorimeters,
an efficiency of >90% can be obtained. This threshold can be increased in the case of higher
backgrounds, at the expense of efficiency, as illustrated in figure 2.8-right.

Repeating the above logic with transverse energy (Et) rather than total energy, we see that
the efficiency is significantly reduced, as illustrated in figure 2.9. Requiring nTowers >1 hit
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for this case gives only ~60% efficiency. This extremely low threshold and correspondingly
poor efficiency severely restricts options for handling unexpectedly high backgrounds.

2.4.3. Minimum bias in PbPb collisions at 5.5 TeV

To first order, one can classify minimum bias pp collisions (albeit at 14 TeV) as a very
peripheral PbPb collision. From the studies already performed on the pp dataset, we concluded
that it is possible to trigger with an efficiency greater than 90%. The purpose of the following
studies is to check whether applying the same restrictions in heavy ions as for 14TeV
pp collisions will result in at least the same number of final particles and therefore a
correspondingly good trigger efficiency. First, heavy-ion events are simulated with the HYDJET
Monte Carlo [166] (see Appendix A) for various impact parameters ranging from b =0 fm
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Figure 2.10. Pseudo-rapidity distribution of charged hadrons in central PbPb collisions at
JSNN =5.5TeV as generated by the HYDJET Monte Carlo simulation. Particle selection to mimic
the Level-1 trigger are applied for total (E) and transverse (ET) energy.

(central) to b = 13.5 fm (peripheral). Cuts in total and transverse energy have been applied
to the generated data to check the total number of particles expected in HF. From this, the
number of towers expected to be hit is known from full pp simulations.

Figure 2.10 illustrates the expected charged hadron multiplicity (black markers;
top curve) from the HYDJET event generator. The maximum multiplicity considered is
dNn/dnl,=o ~ 3000 (compared to about dNg,/dn|,—o ~ 8 for pp at 14 TeV). The vastly
increased number of particles represents a clear advantage in triggering. However, we find that
although the number of particles is large, the same relative reduction is found from applying
cuts on total (blue markers - middle curve) and transverse (red markers - bottom curve) energy.
Although triggering will be possible for the most central collisions with transverse energy
cuts, more peripheral collisions (with lower multiplicity) will suffer from inefficiency.

Following the proposed minimum bias triggering scheme for pp, figure 2.11 illustrates the
expected number of particles in the HF pseudo-rapidity region versus impact parameter from
the Monte Carlo simulation. Clearly, the number of particles hitting the detectors is expected
to be large for very central collisions and decreases strongly for peripheral collisions. This
large number of charged particles in the forward region is relatively insensitive to a small
change in the total energy threshold of the trigger towers, as illustrated by the E > 5 GeV cut
in figure 2.11-left. To estimate the loss of data in triggering due to the lower multiplicity
peripheral events, figure 2.11-right gives the expected number of particles in the forward
regions as a function of b on a logarithmic scale. The dashed line represents the equivalent
multiplicity in the minimum bias pp collisions at the point where the efficiency will begin
to fall. For total energy cuts, only events with b > 12 fm suffer from inefficiency, relative to
the pp baseline. A cut on transverse energy reduces the particle number and, thus, the trigger
would become inefficient for smaller impact parameters, i.e. less peripheral collisions.

One final, but important, point concerns the question of why a large efficiency is needed
for heavy-ion collisions. In many pp analyses, knowing the cross section is not as important
because many physics quantities can be compared with, or be classified by, the total measured
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Figure 2.11. Total number of final particles produced in PbPb minimum bias collisions within
the HF n windows, as a function of b, for cuts on total (left) and transverse (right) energies. The
dashed line represents the equivalent minimum bias pp baseline.

multiplicity. In heavy ion studies, however, it is important to map the measured multiplicities
to the number of participating nucleons (Npa), number of binary collisions (Nconr), impact
parameter (b), and so on. This requires knowing the total inelastic cross section and the
fractional cross section in a specific centrality bin. As these quantities are not directly
available, the total number of minimum bias events, their efficiency (e.g. triggering efficiency)
and the corresponding fractional cross section are needed. As the triggering efficiency directly
enters this analysis, any inefficiency raises the relative uncertainty, and thus increases the
uncertainty in modelled parameters such as Ny, Which are necessary in any detailed analysis
of the centrality dependences of physics signals, as well as in model comparisons. Thus,
compromising the triggering efficiency in the minimum bias heavy-ion sample will increase
the uncertainties of many physics analyses.

2.5. Transverse energy flow

The transverse energy rapidity density dEt/dn is related, via the simple “Bjorken estimate”,
to the energy density attained in a nucleus-nucleus reaction (see figure 1.6-right). In several
instances of this chapter as well as in chapter 4, the distribution of the transverse energy
measured in different detectors has been presented in the context of discussions on reaction
centrality and reaction plane determination. The measurement of dEr/dn in CMS will be
possible over the largest rapidity range at the LHC: within |n| < 5 for the ECAL and HCAL
calorimeters; within 5.3 < || < 6.6 for CASTOR; and for |5| > 8.3 in the ZDCs (neutrals
only). Comparison of these measurements with the predictions of hydrodynamical models will
provide valuable insights on the thermodynamical conditions as well as on the longitudinal
extent of the produced strongly interacting system.

2.6. Summary

We have analysed the potential of CMS to study global observables in heavy-ion collisions,
such as the event-by-event charged-particle multiplicities and the collision centrality, and we
have presented the Level-1 trigger strategy for pp and PbPb collisions.
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We have shown that the charged-particle multiplicity can be determined, on an event-by-
event basis, using the innermost pixel layer of the silicon tracker, with an accuracy of ~ 2%.
Systematic uncertainties are estimated to be below 10%, based on experience with a similar
analysis using the PHOBOS detector at RHIC.

The impact parameter can be estimated, also on an event-by-event basis, using the
transverse energy deposited in the forward CMS calorimeters, which monotonically decreases
from central to peripheral collisions. The resolution of this measurement is about 0.5 fm for
impact parameter values up to two nuclear radii, for PbPb and ArAr collisions.

Finally, we have shown that requiring a similar number of calorimeter towers hit in
both HF calorimeters (read out as total energy) should provide an optimal minimum bias
Level-1 trigger for pp and PbPb collisions, besides providing useful information for further
background rejection.
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Chapter 3. Low pr hadron spectra
3.1. Introduction

The reconstruction of low pt charged and neutral hadrons (yields, spectra and correlations) is
crucial to characterise the collective properties of the system produced in nucleus-nucleus
collisions at the LHC (see Section 1.4.2). In pp collisions, the measurement of high pr
observables also requires good understanding of the characteristics of the underlying event
and backgrounds which are dominated by soft pr spectra [167].

In CMS, the measurement of charged particle trajectories is achieved primarily using
the silicon tracker with both pixels and strips, embedded in the 4 T field, and with geometric
coverage over |n| < 2.5. The highly segmented silicon pixel tracker consists of three barrel
layers (with about 4, 7 and 10 cm radius) and two endcap disks, embedded in a 4 T magnetic
field. There are about 66 million pixels with an area of 100 x 150 um? and a thickness of
300 um. The strip part is a combination of single- and double-sided layers with ten barrel
and nine forward layers on each side (9.3 million channels). The silicon tracker has excellent
reconstruction performance for pr > 1 GeV /c: 95% efficiency for charged hadrons with high
pr, better than 98% for muons in pp and pA collisions and around 75% for central PbPb
(with dNg, /dy|y,—o = 3200, see Section 7.3.2). The reconstruction capabilities at lower pr are
limited by the high magnetic field and effects of the detector material. In addition, in central
AA collisions the high occupancy of the silicon strips (see figure 3.1) makes the inclusion of
these strips in charged particle tracking difficult [168]. Using only silicon pixels allows the
same analysis to be used for low multiplicity pp, pA and high multiplicity AA events. At the
same time, it enables the reconstruction of very low pr particles, even down to 0.1 GeV /c for
pions, with low fake rate.

3.2. Track reconstruction

The default track reconstruction algorithm in the CMS tracker for charged particles
above 1GeV/c is based on seeded pattern recognition using a Kalman Filter formalism
with four phases: (i) trajectory seed generation in the pixel detector, (ii) trajectory
building (inside-out propagation), (iii) trajectory cleaning (resolution of ambiguities), and
(iv) trajectory smoothing (final fit) [169, 170]. Several modifications are needed in the heavy-
ion environment [168] to cope with the high occupancy in the Si-strip detectors (see Section
7.3.2). The alternative tracking algorithm described here allows one to reconstruct tracks down
to 0.1 GeV/c using just the three Si pixel layers, with the modified hit triplet finding and
cleaning procedures discussed below.

3.2.1. Modified hit triplet finding

In our track finding procedure we start by pairing two hits from different layers (see
figure 3.2). During the search for the third hit, the following requirements must be fulfilled:
the track must come from the cylinder of origin (given by its radius, half-length and position
along the beam-line); the pr of the track must be above the minimal value pr min; and the track
must be able to reach the layer where the third hit may be located. In the small volume of the
pixel detector the magnetic field is practically constant and the charged particles propagate
on helices. The projection of a helix or a cylinder onto the transverse plane is a circle. Each
requirement defines a region of allowed track trajectories. They are enclosed by a pair of
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helix
rediction 6000 s e e
— simulated
"""" accepted ,
———— reconstructed with helix |
P3 . . 5000 standard reconstruction |
ystraight line ]
prediction 4000

3000

2000

1000

cylinder of origin

A by Lo b bty Lo by a b by by

0
0 01 02 03 04 05 06 0.7 08 09 1
pt [GeV/c]

Figure 3.2. Left: Schematic comparison of the standard straight line prediction and the new
helix prediction for finding the third hit. Limiting trajectories (solid blue) that touch the cylinder
of origin cut out an arc (thick green) from the barrel layer of the third hit candidates. In the
standard method, the azimuth of the outer hit, P», is used (solid black arrow). Right: Transverse
momentum distributions of the charged particles: simulated (solid red), accepted (green dashed)
and reconstructed, with the standard method (with a minimum pt of 0.075 GeV /c, dotted black)
or with the new helix method (dotted blue).

limiting circles which can be constructed using simple geometrical transformations. A third hit
candidate is accepted if its position is within the expected deviation from multiple scattering.
The details are described in Ref. [171].
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3.2.2. Triplet cleaning

While high pr tracks are relatively clean, hits can often be combined to form fake low pr
tracks. Therefore, it is important to filter out this undesirable background. A hit contains much
more information than merely its position. The geometrical shape of the hit cluster depends
on the angle of incidence of the particle: bigger angles will result in longer clusters. This
observation can be exploited in various ways. It can be used to check whether the measured
shape of the cluster is compatible with the predicted angle of incidence of the track: if even
one of the hits in the triplet is not compatible, the triplet is removed from the list of track
candidates. The connection between the geometrical envelope and the angle can be obtained
from simulation or from data [171].

3.2.3. Low pr tracking results

The low-pr reconstruction studies are based on 25000 single minimum bias pp events
(generated with PYTHIA [165], with the default minimum bias settings described in the
previous chapter), reconstructed using the GEANT4 simulation package (OrRcA 8_13_0) with
the modified hit triplet finding. The algorithm uses standard settings, except for a much
lower minimum pr (0.075 GeV/c). Simulated and reconstructed tracks can be compared to
each other by associating their hits using spatial distances. A simulated track is tagged as
reconstructed if there is a reconstructed track such that all its hits are associated with hits of
the simulated track. A reconstructed track is partially (fully) matched to a simulated one if
at least one (all) of its hits are associated. With these notions the following properties can be
defined:

e Acceptance: ratio between reconstructible and all generated tracks. A charged particle is
reconstructible if its vertex is in the cylinder of origin and if it has hits in at least three
different groups of pixel layers (out of: first, second and third barrel layers; closer and
farther endcap layers).

e Efficiency: ratio of reconstructed to reconstructible tracks. This is the fraction of
reconstructible tracks which are indeed found.

e Multiple counting: fraction of simulated tracks which are reconstructed more than once
(have more than one full match). They are mostly loopers.

e Fake rate: fraction of reconstructed tracks which have one or two correctly matched
hits to any of the simulated tracks, but not all the three. They are from combinatorial
background.

Acceptance. The acceptance of the pixel detector is limited in both  and pr. The limitation
in 7 is a purely geometric effect, while in pr it is due to the fact that a charged primary particle
can reach the third pixel barrel only if its transverse momentum is pr > 0.003- B - R3 /2 =~
60MeV/c (with B=4T and R; &~ 10 cm). In reality, a higher momentum is needed because
the particle loses energy (momentum) in the beam-pipe, in the crossed pixel layers and in
the supports. The specific energy loss is a function of By = p/m. Therefore, it is different for
particles having the same momentum but a different mass. This reduces the accepted pr range
of the protons and kaons with respect to the pions. The acceptance is also slightly influenced
by the multiple scattering, which predominantly affects the heavier particles.

The acceptances rise sharply with pr (see figure 3.3-left), and become approximately flat
above pr values around 0.1, 0.2 and 0.3 GeV /c, respectively for pions, kaons and protons. In
the range |n| < 2, their averages are 0.88 (pions), 0.85 (kaons) and 0.84 (protons).
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Figure 3.3. Acceptance (left) and efficiency (right) as a function of pr, for tracks in the
range |n| < 1. Values are given separately for pions (circles), kaons (triangles) and (anti)protons
(squares).

Efficiency. The reconstruction efficiencies rise sharply with pr (see figure 3.3-right), and
become nearly flat above pr values around 0.2, 0.3 and 0.4 GeV/c, respectively for pions,
kaons and protons. In the range |n| < 1.5, the average reconstruction efficiencies are 0.90,
0.90 and 0.86.

Multiple counting. The fraction of multiply-counted tracks is less than 1% near n = 0, and
it decreases with n and pr: it is at the per mil level for || > 0.5 or pt > 0.2GeV/c.

Fake rate. Without triplet cleaning, the fake rate is ~4% at n ~0 and reaches 20% at
[n| ~ 2. With cleaning, the fake rate decreases very significantly (by a factor of 10), to around
0.5% and 2% at n ~ 0 and ~2, respectively. In the range || < 1, the fake rate decreases
steeply with pr, being about 4% at 0.1 GeV/c, ~ 1% at 0.16 GeV /c and at the per mil level
for higher pr values.

Resolution. Figure 3.4-left shows, as a function of the generated pr and separately for
pions, kaons and protons, the ratio between the reconstructed and the simulated pr (which
we call “bias”). We see that the particles generated at low pr tend to be reconstructed with
a slightly lower pr value, because of energy loss effects. This bias is negligible for high
p/m values but is quite significant for low momentum protons (or antiprotons): a correction
of almost 10% is needed for protons of pp ~0.2GeV/c. Regarding the pseudorapidity
variable, the reconstructed value agrees very well with the generated value, with less than
1% bias.

Figure 3.4-right shows how the resolution of the reconstructed pr depends on the
generated pr. While at high pr values (~1GeV/c) the resolution is ~6% for all particles,
at low pr the multiple scattering and energy straggling effects are more important and lead to
significantly degraded resolutions, in particular for protons.

Performance under various conditions. The performance of low pr reconstruction was
studied under several running conditions. These studies are based on 25000 minimum bias
pp events (PYTHIA generator) and on 25 central HYDJET PbPb events with two multiplicity
settings: total particle multiplicities 30000 (“central”) and 15000 (“mid-central”). In the
pp case the single events have been superimposed according to a Poisson distribution,
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Figure 3.4. Degradation of the reconstructed pr as a function of the simulated pr, in terms of
“bias” (left) and resolution (right), for pions (circles), kaons (triangles) and (anti)protons (squares),
in the range [n| < 1.

with an appropriate primary vertex distribution, in order to study the effect of pile-up at
low-luminosity (2-10% cm™2s~!, 5 events per bunch-crossing on average) and at high-
luminosity (10** cm~2s7!, 25 events per bunch-crossing on average). Only in-time pile-up
was considered. In the PbPb case, the primary vertex of the event was determined first,
with good precision, using high pr tracks. In a second step, the cylinder of origin was
centered on this vertex, with a small half-length of 0.1 cm. In order to further reduce the
reconstruction rate of fake tracks, the radius of the cylinder of origin was also reduced
to 0.1cm. The reconstruction was made faster by increasing the minimum pt cut to
0.175GeV/c.

The reconstruction efficiency is shown in figure 3.5, for pions, as a function of 5 (left)
and pr (right). Above pr around 0.4 GeV/c, the pion reconstruction efficiency in PbPb
collisions is ~90%, only 5% (or less) smaller than in pp collisions. Figure 3.6 shows that
the reconstruction rate of fake tracks falls steeply with increasing pr. It drops below 10%
for pr ~0.2GeV/c in high-luminosity pp collisions and for pr ~0.4GeV/c in central
PbPb collisions.

3.3. Neutral hadron (V0) and (converted) photon identification

We have seen in the previous sections that silicon detectors can detect charged particles with
good position and momentum resolution. Some weakly-decaying neutral particles (VOs) such
as K(S’, A and A, have a sizeable probability to decay far from the primary event vertex (ct =
2.68 and 7.89 cm for K and A, respectively). Their reconstruction is, thus, less challenging
than that of other resonances decaying very close to the primary vertex. Such long-lived
neutral particles can thus be reconstructed via their charged decay modes (K(S) —>atnT;
A — pm).

Likewise, the silicon detectors can be used to reconstruct photons through their
conversion to e*e™ pairs in the material of the beam-pipe, silicon pixels and supports. For
a thin material, the probability of conversion is approximately 7/9 x/ Xy, where x is the
thickness of the material and X, is its radiation length. For a thickness of 0.1 cm this amounts
to a conversion probability of 0.22% in beryllium and 0.83% in silicon. While the physics
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Figure 3.6. Reconstruction rate of fake tracks as a function of pr, for tracks in the range |n| < 1,
for single, low luminosity and high luminosity minimum bias pp events, and for central and mid-
central PbPb collisions.

process is quite different, photon conversions are very similar to decays in most other aspects
and will be treated together.

The analysis presented here only uses charged particles reconstructed from pixel hit
triplets. Therefore, we can only find neutral particles which decay up to the first pixel barrel
layer. Roughly half of the produced Kg and A particles satisfy this condition. The probability
that a particle decays within a radius r is

P(r)=1—exp <—1ﬂ> G.1)

T pr
which is independent of pseudo-rapidity 7.
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Figure 3.7. Left: Distribution of the distance (r) between the “decay vertex” and the beam-
line for K(S), A and converted photons. The position of the inner and outer silicon wafers of the
first pixel barrel layer are clearly visible in the r distribution of the photons. The scaled-down
background is also shown. Right: Invariant mass distribution of reconstructed K(s’ —*7” in
single minimum bias pp collisions. The mass distribution of the background is indicated with a
black dashed histogram. The results of a Gaussian fit to the signal are given in units of GeV /c?.

These studies are based on 25 000 single minimum bias (PYTHIA) pp events, reconstructed
with the modified hit triplet finding discussed in the previous Section, using the standard
settings except for a much wider cylinder of origin (originRadius = 3.0 cm) and a minimum
pr of 0.075GeV/c.

VO finding. As already mentioned, in the small volume of the pixel detector the magnetic
field is practically constant and the charged particles propagate on helices. The search for VO
candidates reduces to the determination of the closest point between two helices, as described
in detail in Ref. [172].

Cuts. A neutral primary particle can only be formed if the two tracks have opposite electric
charge. If there are n reconstructed tracks in an event, the number of such pairs is around
(n/ 2)2. For high multiplicity events, the number of combinations is enormous. Therefore, it
is important to properly filter tracks and track-pairs in order to speed up the computations and
reduce the background.

The distribution of the distance between the decay vertex and the beam-line (r) is shown
in figure 3.7-left. The r distributions for VOs show an exponential behaviour, steeper for K(S)
than for A, reflecting their different ct values. The r distribution for photons is completely
different. There are two peaks at r &~ 4.2 and 4.7 cm, due to conversions in the inner and outer
silicon wafers of the first pixel barrel layer (the conversions in the 1-mm beryllium beam-pipe
at 4 cm are hardly visible). The background distribution peaks near zero, as expected, and a
cut at 0.5 cm rejects a big fraction of the background. A more detailed discussion is presented
in Ref. [172].

Acceptance and efficiency. In the plateau region 5| < 1.5, about 30% of the produced K
and about 20% of A or A are reconstructed. Less photons are reconstructed, because they
come mostly from 7° decays and have low pr.
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Figure 3.8. Invariant mass distribution of reconstructed A and A baryons in single minimum bias
pp collisions. The dotted black line on the left shows the distribution before using dE /dx to select
the secondary proton or antiproton, while the solid histograms (plotted on the right with adjusted
vertical scale) give the final result. The mass and resolution values extracted by a Gaussian fit are
given in units of GeV/c?.

Mass spectra. The invariant mass distribution of reconstructed K3 — 77~ decays is
shown in figure 3.7-right. The K$ is reconstructed with a resolution of 16 MeV /c?, with an
average mass of 0.496 GeV/c?, in agreement with the nominal mass value. Figure 3.8 shows
the A and A peaks, located at 1.114 GeV/c? and with a resolution of 6 MeV /c?. The dE /dx
selection cut (see end of next section) removes almost all the background.

Performance. In the case of single collisions or low-luminosity pp running, the resonances
can be exclusively identified. For high-luminosity pp running or PbPb collisions, the inclusive
yield can still be extracted, with a reasonable background.

3.4. Further developments

Low pr tracking. The study described above only used pixel hits. The reason for this
limitation is the high occupancy in the strip layers, as already discussed in the introduction.
Of course, even low pr particles leave many hits in the strip layers. The pixel triplets should
give good seeding for the inclusion of the strip layers of the tracker, which could be used for
tracking (in low multiplicity pp collisions) or for vetoing (in high multiplicity nucleus-nucleus
collisions). This extension should improve the momentum resolution for high pr particles,
where the curvature of the track is not sufficiently determined from the small volume of the
pixel detector. Also in the case of the strip layers the analysis of the clusters shape should
provide useful information. In general, the use of the strip information should reduce the rate
of fake tracks, although not many strip hits are expected for the lowest pr tracks (up to a few
100 MeV/c), where the fake tracks are most abundant.

VO reconstruction. The found As can be used for the reconstruction of other weakly-
decaying parent baryons, if the impact parameter cut is relaxed. By adding a 7w ~, we can
reconstruct the doubly strange E7, through the decay E~ — Am~ (100% branching ratio).
The combination with a K~ gives the triple strange 27, which decays via Q= — AK™ with
67.8% branching ratio. In these cases, the VO finding corresponds to the analysis of the point

of closest approach between the A line and the helix of the 7~ or K™.
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Figure 3.9. Reconstructed (solid lines) and generated (dotted lines) pr distributions of the pions,
kaons and protons produced in 25 000 minimum bias pp Pythia events at 14 TeV (left) and in 125
central PbPb HYDJET events at 5.5 TeV/nucleon (right).

Particle identification. The most probable energy loss of the charged particles can be
estimated from the charge deposited in the individual pixels of the clusters [173], using a
maximum likelihood analysis on the well known physical model of energy loss. Even with
only three hits, it gives good relative dE /dx resolution for minimum ionising pions. In the
case of very low momenta, it enables the identification of pions, kaons and protons. Work
in progress shows that inclusive yields can be extracted up to p &~ 1 GeV/c for pions and
kaons, and up to about 2 GeV//c for protons. The expected pr distributions of pions, kaons
and protons, for pp and PbPb collisions, are shown in figure 3.9.

3.5. Conclusions

With a modified hit triplet finding algorithm, the pixel detector can be employed for the
reconstruction of low pr charged hadrons in high luminosity pp collisions, as well as in PbPb
reactions. The acceptance of the method extends down to 0.1, 0.2 and 0.3 GeV/c in pr for
pions, kaons and protons, respectively. The fake track rate can be greatly reduced by using the
geometrical shape of the pixel clusters. Acceptances and efficiencies around 80-90% can be
achieved, with ~ 6% pr resolution in the midrapidity region. The fake track rate for single,
low-luminosity and high-luminosity pp collisions is smaller than 2% above pr values of 0.13,
0.2 and 0.35 GeV/c, respectively. In case of central (mid-central) PbPb events the fake rate is
below 10% (5%) for pr > 0.4GeV //c.

Although neutral particles do not create hits in the pixel detectors, they can be observed
via their charged decay products. The combination of helices of secondary pions and/or
protons enables the reconstruction of low pr weakly-decaying hadrons (K3, A and A)
decaying before the first pixel layer. The observed mass widths are compatible with the
resolution of the momentum reconstruction. Low pr photons converting in the beam-pipe
or in the first pixel barrel layer are also detectable.

In summary, the CMS detector is able to provide good quality data on low pt charged and
neutral particle spectra and yields, thus contributing to the soft hadronic physics programme
at the LHC.
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Chapter 4. Elliptic flow
4.1. Introduction

Measurements of the azimuthal anisotropy of particle production with respect to the reaction
plane are one of the important tools for studying the properties of the dense matter created in
ultrarelativistic heavy-ion collisions (see Section 1.4.3). At RHIC, the elliptic flow parameter,
vy, defined as the second harmonic coefficient of the particle azimuthal distribution with
respect to the reaction plane, equation (1.2), appears to grow monotonically with increasing
pr [174] and saturates for pt above ~2 GeV/c, at v, & 0.2. Below pr ~ 2 GeV/c, the amount
of anisotropic flow for all hadron species can be well described by hydrodynamical models,
indicating that the produced matter develops a strong collective flow in the first ~5fm/c
of the collision and behaves as a “perfect fluid”, with a viscosity near a conjectured lower
bound [33]. Above pr~2GeV/c, particle production is dominated by the fragmentation
of hard-scattered quarks and gluons. Azimuthal anisotropies arise from parton energy loss
effects in the different medium path-lengths L traversed by the produced partons. Therefore,
study of high- pr particle production with respect to the reaction plane provides a quantitative
cross-check of the expected L? dependence of non-Abelian (gluon bremsstrahlung) energy
loss models [175, 176]. Since the initial gluon densities in PbPb reactions at \/syy = 5.5 TeV
at the LHC are expected to be significantly higher than at RHIC, a stronger partonic energy
loss and, correspondingly, larger high- pr elliptic flow [47] is anticipated. In this chapter we
analyse the capabilities of CMS calorimetric and tracker systems to study collective elliptic
flow at low pr, and parton energy loss induced azimuthal anisotropies at high pr.

4.2. Reaction plane reconstruction

4.2.1. General method

Several methods have been proposed and used at the SPS and RHIC to determine the reaction
plane. These can also be used at the LHC [177, 178]. The quantity under study in the most
general case is the triple differential distribution with respect to the reaction plane, written as
a Fourier series, equation (1.2). The reaction plane angle, W¥,, can then be determined from
the measured n-th harmonic via the equation [179]

Y w; sinng;
Y wicosng;’
where ¢; is the azimuthal angle of the i-th particle, w; is a weight, and the sum runs over
all particles. A procedure to optimise the weights is usually needed in order to achieve the
best accuracy, e.g. using the particle transverse momentum, w; = pr;, or (for calorimetric
measurements) the energy deposition in the calorimetric sector i at azimuthal angle ¢;,
w; = E;(¢;). The ¥, angle lies within —/n < ¥, < m/n.

The distribution of the difference, AW,,, between the measured angle, V,,, and the “true”
angle, Wy, is independent of W if non-flow particle correlations are neglected, and has the
form [77, 179]

dw L|: 7%4_ i (nAW )|: _ <1 . f<$ cos (nA\IJn)>>i|] 42)
—d(nA\IJ,,) = e & 3 cos(nAW,)|e er —\/E , .

where w is the weighting variable. The dimensionless parameter £ depends on particle
multiplicity and strength of the anisotropy, and determines the resolution of the reaction plane:
"I]n(i: —00) =Y .

tann\W, = 4.1)
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Figure 4.1. Left: The accuracy of the determination of the elliptic flow coefficient, v, (§)/v2
(& — 00), as a function of the parameter £. Right: Event plane resolution, o (Wp), as a function
of impact parameter in PbPb collisions with Ny (b = 0fm) = 58 000 (solid histogram) and 84000
(dashed histogram) total particle multiplicities.

When the azimuthal distribution of particles is described by an elliptic form, as is the
case in non-central collisions where the initial state is characterised by an anisotropic distri-
bution in coordinate-space given by the lens- or almond-like shape of the overlapping zone
(figure 1.14-left), then

d_N:& [1+2v;cos2(p — Wo)], N0=/d<p d—N, 4.3)
dp 2m do
where Nj is the total particle multiplicity in the event, and the reaction plane angle W, can be
determined via the second harmonic, n = 2 in equation (4.1). The elliptic flow coefficient v,
is (cos 2(¢ — Wy)).

Figure 4.1-left shows the accuracy of the v, determination, defined as the ratio
of the “measured” value, v,(§) = (cos2(p — ¥,)), to the “true” value, v,(§ — 00) =
(cos2(¢ — Wy)) [77,179]. This dependence has a universal form for different absolute values
of v,. For example, figure 4.1-left shows that a value & = 2.5 (0.8) corresponds to an observed
anisotropy parameter reduced by 10% (a factor of 2) compared to the true value.

Note that the procedure described above for the analysis of the azimuthal anisotropies
relies on the assumption that collective elliptical flow is the dominant source of particle
correlations. However, there exist other known physical sources of azimuthal correlations,
such as (mini)jet production, global momentum conservation, resonance decays (where
the decay products are correlated), final state Coulomb, strong or quantum interactions.
The importance of these non-flow contributions can be assessed using different methods
to determine v, and using detectors covering different (and overlapping) ranges of
pseudorapidity.

4.2.2. Generator level studies

In most of the available Monte Carlo heavy-ion event generators, azimuthal anisotropies with
respect to the reaction plane are either ignored or inadequately implemented. The fast Monte
Carlo event generator HYDJET (HYDrodynamics plus JETs, see Appendix A) [166, 180] has
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been developed to be able, among other things, to simulate flow effects in high-energy heavy
ion collisions. The accuracy of event plane determination (§ parameter) is mainly sensitive
to two model factors: the strength of the elliptic flow signal, and the particle multiplicity of
the event Ny. We used a set of 1000 HYDIET PbPb events, without jet quenching, for each
centrality bin, covering the range of impact parameters from » =0 fm to b =2R4 (Rgb ~
6.7 fm). The mean total multiplicity of the soft part of central PbPb event was 26 000, that
corresponds to a mean total multiplicity Ny (b = 0fm) ~ 58 000 and a mean charged particle
density at midrapidity of dN,/dn|,=0(b = 0fm) = 3000. Stable particles (charged pions and
kaons, protons, neutrons, photons and electrons), within the pseudorapidity window |n| < 3
(CMS barrel + endcap calorimetry acceptance), were considered for the event plane analysis
using n = 2 and w; = pr; in equation (4.1). An additional cut py > 0.8 GeV/c on the charged
particle transverse momentum was applied in order to take into account the fact that charged
particles with smaller py do not generally reach the calorimeter since they curl up in the 4 T
magnetic field and are absorbed in the material in front of it.

Figure 4.1-right shows the calculated resolution o (¥y) — defined as the width of a
Gaussian fit to the distribution of the difference between the generated and the reconstructed
azimuthal angles of the reaction plane — as a function of impact parameter in PbPb collisions.
The interplay of multiplicity and anisotropic flow in opposite centrality directions results in
the best resolution being obtained in semi-central collisions. Here, semi-central collisions
have an impact parameter on the order of the nuclear radius, » & R 4. In order to demonstrate
the influence of the multiplicity on the accuracy of the event plane determination, we
also calculated the resolution for “high” multiplicity events (obtained by increasing mean
multiplicity of the soft part of the event up to ~52000 particles in central PbPb collisions
corresponding to a mean total event multiplicity Ny (b = 0 fm) ~ 84 000). Increasing the soft
multiplicity by a factor of 2 results in an improvement of the resolution by a factor ~1.7 with
no significant dependence on the event centrality.

Introducing jet quenching into the model results in a rise of the particle multiplicity
in the event and the generation of some additional elliptic flow in the high-pr region. The
estimated improvement on the event plane resolution is around 20-25% for both lower and
higher multiplicities.

4.2.3. Reaction plane via calorimetry.

A detailed description of the CMS calorimetric system can be found in the Technical Design
Reports [181, 182]. The electromagnetic (ECAL) and hadron (HCAL) calorimeters cover
the pseudorapidity region || < 3 (i.e. || < 1.5 for the barrel part, and 1.5 < [n| < 3 for the
endcaps). A pair of quartz-fiber forward calorimeters (HF) cover the region 3 < |5| < 5 and,
together with the CASTOR and ZDC calorimeters, complement the energy measurement at
very forward rapidities.

The capability of the CMS calorimetric system to study elliptic energy flow and jet
azimuthal anisotropy in heavy-ion collisions was studied with the GEANT3-based CMS
simulation package for the first time in Ref. [183], using a very high multiplicity value,
dNen/dnl,=0 = 8000 (corresponding to Np ~ 100000) in central PbPb collisions, and not
including jet production. An update of this analysis has been performed for a more realistic
value of HYDJET event multiplicity, dNc,/dn|,—0 = 3000 (corresponding to Ny~ 58 000)
in central PbPb collisions. The CMS calorimeter responses were obtained with the
GEANT4-based CMS simulation code OSCAR_3.9_8 [184] and the package for signal
digitisation and reconstruction ORCA_8_13_3 [185]. A sample of 10000 HYDIJET PbPb events
(with jet quenching off) at b = 9 fm was used in the analysis.
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Figure 4.2. Azimuthal dependence of the total energy deposition in the CMS calorimeters in PbPb
collisions at b = 9 fm (solid histogram) and how it is distributed between the HCAL and the ECAL
(left), and between the barrel and the endcaps (right) regions. The cos (2¢) modulation due to the
input HYDJET elliptic flow is clearly visible.

Figure 4.2 illustrates the energy deposited as a function of azimuthal angle for the HCAL
and ECAL (barrel and endcap regions). The event plane resolutions obtained with n =2 and
w; = E;(¢;) in equation (4.1) are shown in figure 4.3 and are summarised in Table 4.1.

The best estimated resolution, o (W) ~ 0.37 rad for the ECAL (barrel + endcaps), allows
the measurement of the v, elliptic flow coefficient with a ~70% accuracy. This accuracy is
obtained from the £—dependence in figure 4.1-left. The corresponding value of £ is determined
by the Gaussian fit of the distribution equation (4.2) with o (¥(). The “measured” o (V)
resolution with CMS calorimetry is about 40% worse than that obtained at the generator
level (the value of the solid histogram in figure 4.1 right, at » = 9 fm), before the smearing
of the particle 4-momenta by the detector effects (non linearity of calorimeter response,
finite calorimetric energy resolution, magnetic field, etc.). The corresponding degradation in
the accuracy of the v, determination is from ~80% at the generator level to ~70% at the
calorimetric level.

The ECAL is more suitable than the HCAL for event plane determination. This is
primarily due to the better energy resolution of the ECAL for low and moderate pt particles,
along with a larger distorting influence of the magnetic field on the HCAL energy flow.
Another important result is that, although the anisotropic flow is maximal at midrapidity,
the much larger total energy deposition in the endcaps results in reducing the relative
fluctuations and, accordingly, in a much better event plane resolution. Moreover, energy flow
measurements in the endcaps are less sensitive to the magnetic field than in the barrel. We
could even rely exclusively on the endcaps for the event plane determination. This would be
particularly interesting for the study of jet azimuthal anisotropies. Indeed, we would perform
a more robust measurement by only considering jets in the barrel (which would only reduce
the dijet rate by a factor of 2, since the jet rapidity distribution peaks at midrapidity), in a
rapidity window different from the one where the reaction plane would be determined.

An alternative method for calorimetric measurement of the jet azimuthal anisotropy,
without direct event-by-event reconstruction of the reaction plane has been discussed in
Ref. [186]. The technique is based on the correlation between the azimuthal position of a
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Figure 4.3. The differences between the generated and the reconstructed azimuthal angles of the
reaction plane for PbPb collisions at » = 9 fm. From left to right: using only the barrel (HB, EB),
only the endcaps (HE, EE), both barrel and endcaps. From top to bottom: only ECAL, only HCAL,
ECAL +HCAL.

Table 4.1. Event plane resolutions, o (W) in rad, for PbPb collisions at b = 9 fm.

Calorimeter Barrel Endcaps  Barrel + Endcaps
ECAL 0.53 0.39 0.37
HCAL 1.11 0.62 0.58

ECAL+HCAL 058 041 0.39

Jet axis and the energy deposition in calorimetric sectors that are not incorporated in the jet.
The accuracy of the vJ2er determination achieved by such a method has been found to be similar
to that derived from the direct reconstruction of the reaction plane [183].
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4.2 4. Reaction plane determination with the tracker

The charged particle reconstruction capabilities in heavy-ion collisions using the CMS Silicon
Tracking System [187] were evaluated in Ref. [168] using a full detector simulation. Even
in the high-multiplicity environment of central PbPb events, a high algorithmic tracking
efficiency of about 80% is achieved with less than a few percent fake track rate for pr >
1 GeV/c. Tracks are reconstructed with excellent momentum resolution, Apr/pr < 1.5% (for
pr values up to 100 GeV/c). The resolution of the track offset at the event vertex is better
than 50 um, improving to 20 um for pr above 10 GeV/c. Thus, it seems feasible to use the
CMS tracking system for elliptic flow measurements. A preliminary analysis, based on a full
detector simulation of HYDJET PbPb events, shows that the event plane resolution achieved
with the CMS tracker is close to the value obtained at the generator level and somewhat better
than the value obtained with the CMS calorimetry. The transverse momentum and rapidity
dependences of the elliptic flow coefficient can be reconstructed with the CMS tracker with
high accuracy, using the event plane as well as the cumulant method. More detailed studies of
this topic are currently in progress [188].

4.3. The cumulant method for flow studies

Anisotropic flow can also be measured without direct reconstruction of the reaction plane
angle. Since all particles are correlated with the reaction plane, they are also indirectly
correlated with each other [179, 189]. In the case when the particle distribution can be well
described by an elliptic form, equation (4.3), and there are no other particle correlations
besides those due to flow (or other correlations can be neglected), the azimuthal anisotropy
coefficient can be determined using the two-particle azimuthal correlator without the event
plane angle Wy,

(08 2(p1 — 92)) lfd fnd 21 — o)
COS — = —= COS —
Y1 —$2 Ng @1 ©2 @1 — @2 dprdes
1 dN AN,
= N_g de; [ dga cos 2((¢p1 — Wo) — (92 — W) dor dpa = v;. (4.4)
-r -7

The advantage of this method is that it automatically corrects for the detector anisotropies.
Thus, the correlation-function method is more robust than the event-plane based approaches.
On the other hand, in this procedure each harmonic of the azimuthal distribution is determined
independently, without taking into account that the different harmonics are related to each
other through the reaction plane. In the event-plane method these relations provide useful
consistency checks which are absent here. The statistical uncertainties, and those arising from
non-flow effects, are the same in the event-plane methods and in the correlation function
approach, because all these methods rely on two-particle azimuthal correlations.

The sensitivity to non-flow effects in the two-particle azimuthal correlation methods
motivated the development of new techniques which make use of the fact that anisotropic flow
correlates all particles in the event. It was thus proposed to measure flow with multi-particle
azimuthal correlations by performing a cumulant expansion where the collective source of
correlations can be disentangled from other sources [189, 190]. The main advantage of the
higher order cumulant analysis lies in the fact that, if the flow is larger than the non-flow
correlations, the contribution of the latter to v, extracted from higher order correlators, is
suppressed by powers of the particle multiplicity in the event, Nj.



CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions 2375

Thus, for example, the fourth order cumulant for elliptic particle flow is defined as

2[4] = (cos2(p1 + @2 — @3 — @4)) — (cos 2(@1 — @3)) (o8 2(2 — ¢4))
— (cos2(p1 — @4)) (cos 2(¢2 — @3)) . 4.5)

If there are only correlations with the reaction plane (i.e. the multi-particle distributions
factorise as in equation (4.4)), then

ca[4] = —v5. (4.6)
If the coefficient v, is defined by the two-particle correlator,

vy =/ (cos 2(¢1 — ¢2)), 4.7

then the contribution of non-flow correlations is of order 1/4/Ny . Non-flow contributions to
vy, extracted from the fourth-order correlator,

vy = (—ca[4) "4, (4.8)

scale as 1/ Ng a suppressed by an extra factor of 1/ NO1 ",

Reference [191] has applied the two- and four-particle correlations technique with
the HYDJET event generator to reproduce the elliptic flow observed at RHIC. Studies are
ongoing [192] to apply the cumulant method with charged tracks measured in CMS.

4.4. Conclusions

Azimuthal correlation measurements in ultrarelativistic heavy ion collisions have recently
generated a very strong interest. High-accuracy measurements of anisotropic flow provide
important constraints on the viscosity (low pr) and parton number density (high pr) properties
of the produced medium. The rescattering and energy loss of hard partons in an azimuthally
anisotropic volume of dense matter can result in an observable azimuthal anisotropy of
high-pr particles and jets.

The reaction plane can be determined independently by different detector subsystems (in
different pseudo-rapidity windows), and using different analysis methods. At central rapidities
(In] < 2.5), CMS will be able to determine the reaction plane for a very wide range of particle
multiplicities and elliptic flow magnitudes, using the calorimeters and the tracker. The ECAL
is found to be more suitable than the HCAL for event plane determination. Using the endcaps
for the event plane reconstruction and reconstructing the jets in the barrel should provide
a more robust analysis of elliptic flow. Use of the CMS tracking system for elliptic flow
measurements yields somewhat better values than those obtained with calorimetry at central
rapidities.

In addition to the central rapidity region, measurements in the forward rapidity region
covered by the HF and CASTOR calorimeters should allow us to study v, in a region
almost free from non-flow contributions. Besides, the longitudinally segmented CASTOR
calorimeter (and, to some extent, also the HF) has some capability for separating photons
from hadrons, allowing us to compare photon and hadron flow.

At beam-rapidity, the ZDCs can provide an independent determination of the reaction
plane from the directed flow signal (v;). A systematic comparison between different methods
and different detector subsystems in CMS will allow us to estimate non-flow contributions
to the measured anisotropies and will be crucial for a quantitative interpretation of the
results. The expected precision of the reaction-plane determination will allow for anisotropy
measurements with a good accuracy for charged particles (identified or not) in a momentum
range from a few hundred MeV/c up to a few hundred GeV/c.
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Chapter 5. Triggering on hard probes
5.1. Introduction

The key component for exploiting the CMS capabilities in heavy-ion collisions is the trigger
system, which is crucial for accessing the rare probes expected to yield the most direct
insights into the properties of high-density strongly-interacting matter. Examples of such
probes are high Er jets and photons, Z° bosons, D and B mesons, and high-mass dileptons
from quarkonia decays. The unique CMS trigger architecture employs only two trigger levels.
The Level-1 trigger is implemented using custom electronics and inspects events at the full
bunch crossing rate. All further online selection is performed in the High-Level Trigger (HLT)
using a large cluster of commodity workstations (the “filter farm™) with a vast computing
power (equivalent to 12000 1.8 GHz CPUs or ~50 TFlops) running offline reconstruction
algorithms on fully-assembled event information.

In this section, we will discuss the basic performance parameters of the trigger system
in the context of heavy-ion collisions. We will define the overall trigger strategy and show
examples of the CMS physics performance using event selection in the HLT. The studies
are based on parametrisations of the performance of offline algorithms for jet and muon
finding, described in previous CMS heavy-ion analysis notes [193, 194] and elsewhere in this
volume. Using this information, we employ a simulation chain to translate production cross
sections into rates to tape, making assumptions about the allocation of bandwidth to tape
for various trigger channels (i.e. the trigger table). For the HLT, we follow the pp philosophy,
assuming that the present offline reconstruction algorithms for the heavy-ion data will provide
the baseline for the online HLT event selection algorithms.

The studies confirm that the design of the CMS trigger system is well suited to application
in heavy-ion collisions. This is true even though the proposed basic trigger strategy is very
different from that in pp: for PbPb running, it appears feasible and desirable to perform all
event selection for true PbPb collision events in the HLT, using the Level-1 hardware trigger
mainly for rejection of background and beam-gas collision candidates. This may no longer be
the case for runs with lighter nuclei, where luminosities should approach 103! cm=2s~!.

5.2. Basic constraints for triggering in heavy-ion collisions

Experience from studies of heavy-ion collisions at the SPS and RHIC shows that there is
no simple criterion for rejecting events based on global characteristics like multiplicity or
total transverse energy. Rather, it was found that, for essentially all observables, studies as a
function of collision centrality are critical for extracting the underlying physics. Therefore,
the basic trigger strategy for heavy-ion collisions has to be the efficient identification of
any potentially interesting signature for a given input event. Experience also shows that the
rejection of background events, such as those caused by beam-gas collisions, early on in the
triggering chain is crucial for providing a sufficiently clean, low-rate environment for the high
level trigger stages. In this section, we summarise the basic performance parameters of the
CMS DAQ and trigger system that were used in our trigger studies, as well as the assumptions
we made about PbPb luminosities and production rates for various physics processes.

The basic constraints for the CMS DAQ and trigger system follow from the pp running
conditions. At LHC pp design luminosity, multiple collisions will occur at each bunch
crossing with a frequency of 40 MHz. The effective pp event output rate to mass storage
is limited to 150 Hz, for technology and cost reasons, corresponding to an output bandwidth
of 225 MByte/s.
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Consequently, the trigger system in pp running has to select less than 103 of all collision
events for permanent storage while maximising the sensitivity to new physics. The Level-1
selection reduces the event rate by a factor of 400, to 100 kHz. In pp running, a reduction
of the event rate by a factor of more than 600 in the HLT is required to achieve the design
output rate. The fact that a typical pp “event” at design luminosity actually consists of ~20
superimposed pp collisions is also important for our discussion.

The PbPb design luminosity, £ = 10>’ cm~2s~! at the beginning of a store, is smaller than
the pp design luminosity by 7 orders of magnitude.>* Assuming collisions in three interaction
regions, the instantaneous luminosity will drop quickly throughout the duration of a store,
giving an average luminosity of (£) = 4 x 10%® cm™2s~!. Using a nucleon—nucleon inelastic
cross section of 72 mb at 5.5 TeV, the corresponding PbPb collision rate at the beginning of a
store is expected to be ~8kHz, while the average collision rate over the duration of a store
will be ~3 kHz.

Therefore, even the maximum rate for PbPb collisions is much smaller than the 100 kHz
input rate for the HLT in pp collisions after Level-1 selection. This suggests that it will be
possible to send all PbPb events to the HLT, provided that the average event size is less than
a factor 10 larger than the average event size of the pp events sent to the HLT. To validate a
possible trigger strategy in which all event selection in PbPb running is done at the HLT level,
one therefore needs to verify two conditions:

1. The average PbPb event size is less than a factor of 10 larger than that of full luminosity
pp running;

2. On average, the heavy-ion HLT algorithms are fast enough to process PbPb events at the
full PbPb event rate.

If these conditions are fulfilled, PbPb event selection by algorithms using the full event
information in the HLT will be feasible and, by definition, will provide the best possible
selectivity for the physics of interest. Following this strategy, the main purpose of the Level-1
trigger in PbPb running will be to provide a clean discrimination of true heavy-ion collisions
and to provide seed objects, such as high pr muon candidates, as input to the HLT algorithms.
No significant rejection of PbPb collisions would be performed at Level-1.

The possible gain in physics reach by the HLT, relative to simply collecting minimum
bias events, is determined by the ratio between the collision rate and the rate of events written
to mass storage. The bandwidth to mass storage of 225 MByte/s translates into an event rate
of 10-100 Hz, based on estimates of the heavy-ion event size that will be discussed below.
This output rate is not only limited by the available mass storage technology but also by limits
on the available offline analysis resources. It is more efficient to invest resources in a high
quality online trigger scheme than in offline handling and storage of poorly-selected data.

Our calculations suggest a maximum average gain due to triggering of a factor 30-300
in the statistics of rare probes. Although this is far less than the gain in pp collisions, it is
still crucial for the success of the CMS heavy-ion programme. In practical terms, this gain in
effective rate to tape will allow us to study rare processes as a function of impact parameter
and reaction plane, for instance, instead of just measuring its overall yield. The flexibility of
the HLT system will allow allocation of bandwidth not just to certain trigger channels, but
differentially as a function of y and pr of the trigger object, and as a function of collision
centrality, thereby maximising the overall physics reach of our measurements.

54 The “equivalent-pp luminosity” for hard processes — obtained scaling by the number of binary nucleon—nucleon
collisions — is, however, a much larger value. For minimum bias PbPb, (£)pp—equiv = A2 (Lyaa=20ub st
corresponding to [ £dt =20 pb~! for the nominal 1 month and 50% efficiency.
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The basic trigger strategy in PbPb running can be summarised as follows. Every PbPb
collision in our interaction region, identified by the Level-1 trigger, will be sent to the HLT
filter farm. In the HLT, the full event information will be available for each event. All rejection
of PbPb collisions will be based on the outcome of HLT trigger algorithms that are identical
to the corresponding offline algorithms or optimised versions of the offline algorithms. This
strategy relies on the fact that, in its final configuration, the HLT will provide sufficient
input bandwidth to accept all collision events, even at the maximum PbPb collision rate. The
strategy also requires that the algorithms can be executed fast enough. For comparison with the
expected HLT CPU budget per event, we show the expected gain in physics reach for selected
algorithms and present timing measurements of those algorithms. Overall, the selectivity that
can be achieved by the trigger depends on the availability of sufficient CPU resources to
execute the algorithms, possibly triggered by a Level-1 seed, and on the efficiency, acceptance,
and background level of each particular algorithm. The output event rate is determined by the
ratio between the “allowed” bandwidth to tape and the average size of the selected events.
To validate this trigger strategy, studies of the PbPb event size and the timing of various
algorithms will be presented in Section 5.3.

5.2.1. Trigger channels

The results from RHIC have clearly pointed out the importance of probes at intermediate
and high pr, such as leading hadrons, dihadron correlations and spectra, and azimuthal
distributions of hadrons carrying charm. At the LHC, studies of high pt hadron production can
be extended from the present RHIC statistical limit of pr < 20 GeV/c to transverse energies
of several hundred GeV /c. Similarly, studies of open and hidden heavy-flavour physics at
the LHC will be extended to include b-quark production. Studies of vector bosons and fully
formed jets in heavy-ion collisions will become possible for the first time. As is currently
the case at RHIC, the corresponding studies at the LHC will ultimately be limited by the
statistics given by production rates and integrated luminosity. The Level-1 and HLT triggers
are essential for maximising the physics reach of CMS within these constraints.

The high granularity of the CMS silicon pixel tracker allows the reconstruction of
a large fraction of the produced charged hadrons even in central PbPb collisions (see
Section 7.3) [168]. The current execution time of the track reconstruction algorithm (~1200 s
for a central event) prohibits running the full reconstruction on each event at the HLT level.
While future studies will explore the possibility of running regional tracking to detect high pr
hadrons, including those from heavy flavour decays, the present trigger studies are focussed
on channels related to calorimeter and muon chamber triggers. Figure 5.1-left summaries
the production cross sections of some of the relevant physics channels, obtained using
NLO pQCD (for the QQ, see Section 6.1, and prompt photons) and version 6.326 of the
PYTHIA event generator for the rest (Section 7.2). The bottom line indicates the expected
l-event statistics reach for the nominal PbPb integrated luminosity of 0.5nb~! equivalent
to 20pb~! in proton-proton collisions. The range of cross sections of interest extends over
10 orders of magnitude, leading to the corresponding variation in production rates shown
in figure 5.1-right. There, the production rates were calculated for an average luminosity of
(L) =4 x 10*° cm~2 s~ and minimum bias (i.e. impact-parameter averaged) PbPb collisions
with an average number of binary nucleon—nucleon collisions, (N ), of 400 [105].

The corresponding average PbPb collision rate is 3 kHz, while the maximum event rate
to tape is in the range 10-100 Hz, also indicated in figure 5.1. Table 5.1 shows the integrated
production yields for the same channels, for one nominal CMS heavy-ion run with a total
up-time of 10°s, and an ideal DAQ with infinite bandwidth. Yields are shown for the design
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Figure 5.1. Left: Production cross sections (|y| < 2.5) of some of the relevant physics channels
in pp collisions at , /s, = 5.5TeV, the nominal collision energy per nucleon in PbPb collisions
at the LHC. The cross sections correspond to those used in the studies presented in Sections 6.1
(NLO pQCD for QQ, as well as for prompt-photons) and 7.2 (PYTHIA for the other observables).
Right: Production rates in minimum bias PbPb collisions at /s, = 5.5 TeV corresponding to the
cross sections from the left plot scaled by (Ncon) = 400 and for the average design luminosity.

Table 5.1. Integrated yields of selected observables for a 10s heavy-ion run, both at low-
luminosity and at design luminosity (see text). The dilepton branching ratios and the muon pr
thresholds have not been applied to the quarkonia and vector boson channels.

Signal Threshold Yield/yr. (low lumi) Yield/yr. (high lumi)
h* pr > 25GeV/c 1.1 x 100 2.1 x 107
h* pr > 50GeV/c 4.1 % 10% 8.2 x 10°
jet Et > 100 GeV 22 x10° 4.4 %100
jet Et > 200 GeV 6.5 x 10° 1.3 % 10°
yprompt pr > 25GeV/c 2.2 % 10* 43 % 10°
I/ - 1.3 x 107 2.6 x 108
T - 1.0 x 103 2.1x 100
Y - 7.6 x 102 1.5 x 10
70 - 6.5x 103 1.3 x 10°

average luminosity of (£) =4 x 10?®cm™2s~! and for an initial “low-luminosity” run at
1/20 design luminosity. These yields form the input to our HLT simulation chain. Expected
production rates after applying acceptance, efficiency and branching ratios will be discussed
in Section 5.4. Clearly, differential studies of Y production and jets at high Et, as well as
measurements of y + jet correlations, will require a highly-efficient trigger that selects a large
fraction of the corresponding interesting events for storage on tape. This is particularly true
for studies of these observables as a function of transverse momentum, rapidity, centrality
and event plane. The purpose of the heavy-ion trigger is the allocation of the available output
bandwidth to a selection of trigger channels such that we maximise the overall physics impact
of the CMS heavy-ion programme.
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5.3. Event size and timing measurements

As described in Section 1.2, the trigger strategy for PbPb collisions foresees running recon-
struction algorithms on all PbPb collisions in the HLT filter farm, using the full event in-
formation. Detailed studies of the HLT performance in the dimuon and jet channels were
discussed in Ref. [195] and are briefly summarised here. All event size and timing measure-
ments are based on three sets of fully simulated HYDJET PbPb events corresponding to b =0,
9 and 12 fm, processed with the CMS GEANT4-based OSCAR simulation package. The timing
measurements were performed running the standard heavy-ion offline algorithms of the orcA
software package on standard PCs with 1.8 GHz Opteron CPUs and 4 GByte RAM.

5.3.1. Event size

The maximum gain in statistics for rare probes provided by the online trigger system is
given by the ratio between the collision rate and the permanent storage event rate. The
latter is given by the ratio between the bandwidth limit of 225 MByte/s and the average
event size written to tape. The event size estimates were obtained by writing simulated raw
data, including hits from background and secondary particles, in the form of CMS standard
“Digis”. The average midrapidity charged hadron densities for the three PbPb centrality cases
considered are dNe,/dnl,—o = 3300, 575, and 65, respectively for the b =0, 9 and 12 fm.
Pedestal subtraction and zero-suppression are performed for all hits. The output data were
compressed using ROOT compression level 1, yielding a compression factor of about 3.5.
No additional compression or encoding of the hit information was attempted. The MC event
size was found to increase approximately linearly with the charged hadron multiplicity, from
330 kByte for the b = 12 fm sample to 8.5 MByte for the » = 0 fm sample. From the impact
parameter dependence of the event size and adjusting for additional noise, backgrounds and
diagnostic information, we obtain 2.5 MByte per minimum bias event and up to ~9.5 MByte
for the most central events, when running at design luminosity [195]. With an average data rate
to tape of 225 MByte/s, the corresponding average minimum bias event rate to tape is 90 Hz.
Clearly, this estimate depends on the multiplicity of produced hadrons in PbPb collisions at
the LHC. Predictions and extrapolations based on the present RHIC data suggest a range
of dN¢/dnl,=0 ~ 1300-4000 for central PbPb collisions at the LHC (see figure 1.20). The
value of dN /dn|,=o = 3300 which we assumed for the most central collisions is, thus, quite
conservative.

Including all the uncertainties, we expect that the bandwidth of 225 MByte/s will allow a
rate of PbPb events to mass storage between 10 and 100 Hz. A large part of this uncertainty
will only be resolved once the first LHC data are taken, emphasising the need for a flexible
high-level trigger scheme.

The event sizes quoted above refer to the HLT output to tape, using ROOT compression.
To validate the HLT input bandwidth, we note that the upper range of the expected midrapidity
charged hadron densities in minimum bias PbPb collisions at the LHC is d N, /dn],—o &~ 1000,
to be compared to a density of dN,/dn|,=o &~ 150 for 20 superimposed minimum bias pp
collisions at pp design luminosity. While PbPb collisions have a midrapidity multiplicity that
is, at most, 7 times larger than for pp, the collision rate in PbPb is a factor of 12 smaller
than the 100kHz HLT input rate in pp. Furthermore, the rapidity distributions in 5.5 TeV
PbPb collisions will be narrower than in 14 TeV pp collisions. Thus, safety factors in the data
rate will be even larger away from midrapidity. Finally, the bandwidth requirements for low-
luminosity PbPb running will be smaller by another order of magnitude, whereas the expected
initial bandwidth should only be reduced by a factor of 2—4.
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5.3.2. Trigger timing studies

The capabilities of the HLT are largely determined by the time required to process each event
and are therefore strongly dependent on the CPU resources available in the filter farm. The
online farm is expected to consist of about 1500 servers. Because of the expected increase
in CPU performance/cost over the coming years, the detailed specifications of these servers
are not yet precisely known. For the purpose of our present studies, we will assume that the
servers purchased for 2008 running will have dual CPUs with quad cores, with a performance
per core comparable to 1.5 times the performance of the 1.8 GHz Opteron CPUs used in
our timing measurements. This estimate is conservative since the actual trigger PCs will be
purchased no earlier than end of 2007. Timing measurements will be quoted in units of CPU
seconds for the present CPUs. In these units the time budget per event for the full HLT filter
farm will be ~1.5s at the beginning of each store (8 kHz collision rate), and ~4 s averaged
over the duration of the store (3 kHz collision rate).

The timing studies were performed using the full GEANT4-based simulations (ORCA)
described above and the present offline algorithms for jet-finding and dimuon reconstruction.
As of now, these algorithms have been optimised for reconstruction efficiency and background
rejection, but not for timing performance. Work on optimising the timing of our trigger
algorithms will begin once heavy-ion simulations and algorithms have been ported to the
new CMSSW software framework.

Based on generator-level studies with simplified geometries and comparisons to the
optimised pp algorithms, we expect that significant gains relative to the timing performance
shown below can still be achieved. However, these gains will be partially offset by the CPU
resources needed for running the algorithms for additional trigger channels as shown in
Table 5.3. These additional algorithms have so far only been tested in generator-level studies
which do not allow detailed timing measurements.

Jet finder timing

The offline jet-finding algorithm used here is a modified iterative cone algorithm, with
subtraction of the large underlying event energy in heavy-ion collisions, applied to the towers
of the electromagnetic and hadronic calorimeters (ECAL+HCAL) in ORCA (see Section 7.2).
The average execution times are found to be 820, 320, and 164ms for b =0, 9, and
12 fm, respectively. Averaging over the impact parameter distribution, the estimated average
execution time is () =250 ms. Therefore, if it is executed for every event, the jet-finding
algorithm is expected to use between 5 and 15% of the CPU budget for the average and
for the maximum instantaneous (start of store) event rate. Although the present algorithm
comfortably fits into the expected CPU budget, further optimisation is desirable. In the present
implementation, a large fraction of the execution time is spent building the ECAL+HCAL
objects. For the eventual online algorithm, significant time savings may be achieved by using
the L1 trigger tower information embedded in the data stream.

Muon finder timing

The muon finder consists of three different algorithms. The first part, L1, is executed at
Level-1 for every event, producing a list of muon candidates. The Level-1 muon selection is
based on the corresponding selection for pp, although the cuts have been adjusted to increase
acceptance at low pr. The second part of the muon finder, L2, is also executed on all events,
this time in the HLT. The average execution times for this algorithm are 710, 100, and 10 ms
for b =0, 9, and 12 fm, respectively. Parameterising the execution time as a function of the
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Figure 5.2. Schematic description of the HLT simulation chain. Input cross sections are obtained
from PYTHIA 6.326 or NLO pQCD calculations. Acceptance, efficiency and background levels are
parameterised from full GEANT4 based simulations. See the text for detailed descriptions of each
of the steps.

impact parameter and averaging over all centralities yields an estimated average execution
time of () = 80 &= 20 ms. The error is dominated by the uncertainty in the functional form of
the impact parameter dependence, due to the small number of points. Correspondingly, L2
execution uses 1 to 5% of the HLT CPU budget, depending on event rate.

The third part of the algorithm, L3, is run in the HLT on events with at least two muon
candidates found by either L1 or L2. The L3 algorithm extends the tracks found in the
muon system to the silicon tracker and provides a significant improvement in momentum
resolution and background rejection. This is particularly important for low pr dimuons, which
are expected to take up the largest fraction of the output bandwidth to tape. Averaged over
impact parameter, L3 will only be called for 2 &= 1% of all events. However, as L3 requires
tracking in the silicon detector, its execution time is significantly longer than for the other
algorithms studied here and shows a very steep dependence on multiplicity. The L3 execution
time is found to be linear in the number of muon candidates from L2. Averaging over the
impact parameter distribution of inputs selected by L2, we find an execution time for the L3
selection of 700 4= 200 s per L2 accepted event, corresponding to about 10 = 3 s per minimum
bias event.

The uncertainty in execution time results from the uncertainties in interpolation between
the three available impact parameter samples. Based on the total available CPU budget and
the importance of the dimuon trigger, we estimate that an allocation of 0.5s to 1s per
minimum bias event for the L3 algorithm is reasonable. Consequently, a further speed-up of
the algorithm by about a factor of 10-20 is necessary. While this is a large factor, it should be
attainable. The current L3 algorithm uses more than 10> CPU seconds for the determination of
2—4 muon candidates in central PbPb events, while the runtime for the full track reconstruction
in the silicon tracker, yielding ~800 tracks with py > 1 GeV /c [168], is less than 103 s on the
same events. Further work on optimising or significantly modifying the present algorithm
for use in the HLT event selection will proceed when the offline algorithms are ported
to CMSSW.

5.4. HLT simulation procedure and results

A schematic description of the components of our HLT simulation chain is shown in figure 5.2.
Below, we describe the individual elements of this chain and summarise the benefits of the
HLT compared to a minimum bias trigger, for single jet and dimuon measurements, for two
luminosity scenarios.
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5.4.1. Trigger signal rates

To evaluate the physics reach of the CMS detector, the production rates shown in figure 5.1
need to be translated into rates of observed events in the detector and finally into the rates to
mass storage for the physics processes of interest. A straightforward measurement of the rates
seen in full simulations is presently not feasible. Available CPU resources limit the sizes of
typical MC data sets to about 100 k, compared to a total integrated number of collisions of
several times 10° for a nominal LHC heavy-ion run. As we are only interested in triggering on
rare probes, we can instead use the approach shown schematically in figure 5.2 and described
in the following sections. The production rates shown in figure 5.1 were scaled to minimum
bias PbPb collisions ({No) = 400) and then multiplied by branching ratios, where appropri-
ate, to obtain the rate of signal events as a function of (y, pr). For the present rate studies,
the yield of hard probes was taken to be proportional to Ny, allowing us to use the rates
for minimum bias PbPb collisions to estimate the average production rates, and no impact
parameter selection except for the inherent bias from a trigger on hard probes was assumed.

The acceptance and efficiency of the offline algorithms for simulated events were also
parameterised in as a function of (y, pr).

Multiplication of the production rate histograms with acceptance and efficiency
histograms yields the trigger signal rate for each channel. The rates for J/1 and Y production
lie below the total output rate limit, while the expected rate of jet triggers exceeds this limit
for minimum jet E trigger thresholds of around 40 GeV.

5.4.2. Trigger background rates

Offline studies show that the jet and dimuon triggers will include a substantial fraction
of background events, depending on the chosen Et and pr thresholds. In addition, the
dimuon analysis requires a certain number of events outside the J/¢ and T mass windows,
to allow a reliable estimate of the dimuon continuum under the resonance peaks, mostly
due to combinatorial background. To include these backgrounds in our rate estimate, we
parameterised the fraction of background to signal events, B/S, from the full offline
simulations (see Section 6.1), as a function of pr or Et. The trigger signal rates discussed
previously were then multiplied by the factor (1 + B/S), to obtain the actual trigger rates.

The possible trigger rates from the dimuon and jet channels alone far exceed the limit of
10-100 Hz if no minimum pt or Et threshold is applied to the triggers. Besides, additional
bandwidth will be needed for composite channels such as y +jet (see Section 7.4), for a
trigger on ultraperipheral events in diffractive photoproduction processes (Section 8), and for
minimum bias events (Section 2.4). The available output bandwidth needs to be allocated to
the various trigger channels by applying trigger thresholds and pre-scales, such that the overall
physics reach of the experiment is maximised. In allocating the bandwidth, it is important to
take into account that the average event size satisfying each trigger condition will typically
be significantly larger than that of minimum bias events. With the obvious exception of
ultraperipheral triggers, the assumption that rates of the interesting processes scale with the
number of nucleon-nucleon collisions heavily biases the accepted distributions towards more
central collisions.

We have calculated the output signal rates using strawman trigger tables for two
luminosity scenarios, corresponding to the conditions for an initial PbPb run in the fall of
2008 and for runs at design luminosity in 2009. For each luminosity scenario, we defined a
strawman trigger table to allocate output bandwidth to several trigger channels. The quoted
signal rates to tape take into account that a fraction of the allocated bandwidth is taken up by
background events for each particular channel.
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Figure 5.3. Minimum bias and HLT J/v, Y, and jet trigger rates for the settings of Table 5.2, for
low luminosity (left) and design luminosity (right).

Low luminosity scenario

For the initial PbPb run in 2008, we expect an average luminosity (L) =2 x 10 cm 257!,
a factor of 20 below the design average luminosity. We calculated the trigger signal and
background rates for this low luminosity. We assumed 10° s total run time and an event size
1 MByte larger than in later running periods, accounting for additional diagnostic information
and less efficient data compression. For this initial run, we assumed that only 25% of the DAQ
event builder CPUs and 25% of the HLT event filter will be installed. Even with the reduced
DAQ capacity, the lower initial luminosity results in a more favourable CPU time budget per
event than for a scenario with 100% of the DAQ capacity at design luminosity. This leaves the
output bandwidth of 225 MByte/s as the main constraint. Figure 5.3-left shows the signal rates
and statistical significance for jet and dimuon measurements for minimum bias running and
for HLT running using the trigger allocations given in Table 5.2. Although the lower collision
rate decreases the possible gain from using the HLT, the integrated yields are higher than for
minimum bias triggering by a factor of 2 to 3 for jet and dimuon triggers, with the biggest
gains seen for Y measurements.

Design luminosity scenario

In figure 5.3-right we compare the rates of signal events to tape for minimum bias running (no
event selection in HLT) and for the HLT event selection conditions. The rates were calculated
for the design average luminosity, (L) =4 x 10%cm~2s~!, with the bandwidth allocation
given in Table 5.3. Clearly, this table will have to be optimised as further information becomes
available.

Using the HLT, a gain in statistics of more than an order of magnitude is achieved for
large Et jets and dimuons. Correspondingly, the usable range in Et (pr) for the jet and



CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions 2385

Table 5.2. Strawman trigger table for running at 1/20 of the design luminosity, assigning fractions
of the total bandwidth (225 MByte/s) to individual trigger channels. The last column shows the
average event size for each of the trigger streams.

Channel Threshold Pre-scale Bandwidth [MByte/s] Event size [MB]
Min. bias - 1 146 (65%) 35

jet 50 GeV 1 45 (20%) 64

I/ 0GeV/c 1 11 (5%) 59

T 0GeV/c 1 2.5 (1%) 59

y prompt 10GeV 1 18 (8%) 6.8
UPC/forward - 1 2.5 (1%) 2

Table 5.3. Strawman trigger table for running at design luminosity, assigning fractions of the total
bandwidth (225 MByte/s) to individual trigger channels. The last column shows the average event
size for each of the trigger streams.

Channel Threshold Pre-scale Bandwidth [MByte/s] Event size [MByte]
min. bias - 1 33.75 (15%) 2.5

jet 100 GeV 1 24.75 (11%) 5.8

jet 75 GeV 3 27 (12%) 5.7

jet 50 GeV 25 27 (12%) 54

/v 0GeV/c 1 67.5 (30%) 49

T 0GeV/c 1 2.25 (1%) 49

y prompt 10 GeV 1 40.5 (18%) 5.8
UPC/forward — 1 2.25 (1%) 1

dimuon measurements is extended by more than factor of 2 and 3, respectively. Note that,
for this comparison, the HLT rate for each process was only counted in the corresponding
trigger stream, leading to rates below minimum bias for low Et in the jet channel. In any
case, at low Et jet measurements will likely be limited by systematic errors.

5.4.3. Quarkonia and jet physics with the HLT

Two key examples of the physics benefit of the HLT for quarkonium and jet related
measurements are shown below, with the measurements discussed in detail in detail in
Sections 6.1 and 7.2. The first measurement, shown in figure 5.4, shows the ratio of Y/ to T
yields as a function of transverse momentum. The projected statistical resolution is compared
to model calculations of the pt dependence of the Y’/ ratio, for two different choices of
initial conditions (parton gas and hot gluon plasma) and two different assumptions of the
temperature dependence of the screening mass [196]. This measurement, using the added
statistics provided by the HLT selection, allows a clear distinction of the different scenarios,
and may therefore serve as a sensitive probe of the initial QCD medium (see Section 6.1.4).

In figure 5.5 we show the nuclear modification factor, R4 (pr), for charged hadrons
measured in minimum bias data (left) and in events selected by an HLT trigger on high Et
jets (right). The triggered sample extends the useful range in pt by more than a factor of two,
to around 300 GeV/c. Predictions for R 4 4 in PbPb collisions at the LHC have been made using
several models of parton energy loss in the QCD medium. The theoretical predictions differ
most markedly in the high pr region (figure 1.17), which can only be accurately measured in
the jet-triggered event sample (see Section 7.3.3).
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Figure 54. Y’ over Y ratio as a function of their pr. Statistics correspond to a 10° s heavy-
ion run. The model calculations are for different choices of initial conditions and screening mass
temperature assumptions [196] (see details in Section 6.1.4).
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Figure 5.5. The nuclear modification factor, R44, as a function of pr, for inclusive charged
hadrons, for minimum bias data (left panel) and for data collected with a high-ET jets trigger
(right panel), in a 109 s heavy-ion run (see details in Section 7.3.3).

Summary

In summary, we have outlined a possible trigger strategy for heavy ion running of CMS which
relies on event rejection solely in the HLT. We have validated the trigger strategy using event
size and timing measurements on fully simulated HYDJET events, processed in the ORCA
framework. By parameterising the performance of the offline algorithms, we have developed
a trigger simulation chain that allows to compare the rate of signal events to tape for various
trigger channels, luminosity scenarios and trigger tables. The simulation chain allows us to
evaluate the impact of the HLT event selection on the physics reach of the experiment.

In terms of accessible physics, the benefits of the HLT can be summarised as follows.

e Without the HLT selection of dimuons in the YT mass range, our simulations show less than
300 Y recorded to tape per nominal year of data taking at design luminosity. With HLT
selection, we expect a factor of 70 more Y recorded. A study of the Y’ and Y relative yields,
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as a function of pr, which is expected to provide information about the initial temperature
of the medium produced in heavy ion collisions (figure 5.4) will only be possible using the
HLT selection.

e The J/y statistics on tape, increased by about a factor 10 thanks to the HLT, will
allow differential studies as a function of centrality, reaction plane (path length), pt and
rapidity. These are important measurements to elucidate, in particular, the importance of
recombination processes in the J/y yields [129].

e The statistics for high E jet measurements above 100 GeV are enhanced by a factor of 20
thanks to the HLT, extending the Et reach by nearly a factor of two (up to Et ~ 0.5 TeV),
using a yield of 10* jets as benchmark. These well-defined jets provide a qualitatively
new tool for understanding the transport properties of QCD matter, giving the largest
lever arm for testing different models of the interaction of a fast parton with the medium.
Experience in pp collisions and our own model studies show that a large sample of jet
events and highly differential studies will be necessary to calibrate these new experimental
tools. Measurements of the nuclear modification factors of charged hadron spectra up to
pr =300GeV/c will greatly benefit from the jet-triggered event sample. Predictions of
current theoretical models of parton interactions with a strongly-coupled medium diverge
in shape from each other in the region above pr > 50 GeV /c (see figure 1.17).

e Although studies are still ongoing, the rates for Z° production or for composite channels
(such as Z° + jet correlations) show that these measurements will only be feasible using an
efficient trigger (see Section 7.4). Composite channels with a clear jet energy tag will be
critical for calibrating the jet-finding performance in pp or peripheral PbPb events and for
obtaining a qualitatively new handle on partonic energy loss in more central PbPb collisions.
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Chapter 6. Quarkonia and heavy-quarks
6.1. Quarkonia

6.1.1. Introduction

The measurement of the charmonium (J/+, ¥') and bottomonium (Y, Y’, Y”) resonances
in PbPb collisions at /syy = 5.5TeV will provide crucial information on the many-body
dynamics of high-density QCD matter. First, the step-wise suppression of heavy quark-
antiquark bound states with increasing energy density or temperature is generally agreed to be
one of the most direct probes of Quark-Gluon-Plasma formation due to Debye screening of the
colour potential in the plasma [118]. Lattice QCD calculations of the heavy-quark correlators
indicate that the ground-state charmonium and bottomonium states, J/1 and T, dissolve at
T4iss ~ 2 1. and 4 T, respectively [119-122]. While the relevance of charmonia production
studies in heavy-ion collisions is well established from measurements done at the SPS and at
RHIC, where a factor of ~2-3 anomalous suppression has been observed in PbPb and AuAu
collisions at /syy = 17.3GeV [124, 197] and 200 GeV [126], respectively, the clarification
of some important remaining questions requires equivalent studies at the LHC energies, where
the YT family becomes accessible to similar studies. Second, the production of heavy-quarks
proceeds mainly via gluon-gluon processes and, as such, is sensitive to saturation of the gluon
density at low-x in the nucleus (Colour Glass Condensate). Measured departures from the
expected vacuum (proton-proton) quarkonia cross-sections in PbPb collisions at LHC will
thus provide valuable information not only on the thermodynamical state of the produced
partonic medium, but also on the initial-state modifications of the nuclear parton distribution
functions, especially of the gluon.

In this chapter we present the expected capabilities of CMS to measure the heavy-
quarkonia cross-sections versus centrality, rapidity y and transverse momentum pr, in PbPb
collisions at ,/syy =5.5TeV, via their dimuon decay channel. The generation of realistic
signals and backgrounds, the dimuon reconstruction algorithm and the trigger, acceptance and
efficiency corrections are discussed. The obtained dimuon mass resolutions, the signal over
background ratio and the expected yields as a function of pr, y, and centrality in one-month
PbPb running are also presented [194].

6.1.2. Simulation of physics and background processes

The relatively low Y production rates (~10~* per PbPb event) and the large number
of particles to track in heavy-ion collisions make it very expensive computationally to
use a full nucleus-nucleus event generator (such as HUING [198]) with detailed detector
simulation and reconstruction to obtain a statistically significant sample of signal events.
Instead, a combination of fast and slow simulations is used in this analysis. The input signal
and backgrounds are obtained from realistic distributions: NLO pQCD for heavy-quark
production processes and HUING for the soft background, constrained by extrapolations
from lower energy heavy-ion data. A full detector and trigger simulation plus reconstruc-
tion are carried out for a few 107 events with the embedded quarkonium states and the
hadronic decays relevant to the muon background. The corresponding response functions
(trigger acceptances, mass resolutions, reconstruction efficiencies, etc.) are parameterised,
and implemented in a fast MC to obtain the final fully corrected yields. The response
functions are cross-checked by comparing the final dimuon spectra obtained with the fast
MC against 5 x 103 PbPb HIJING events fully simulated and reconstructed in the detector.
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Table 6.1. The inclusive cross sections for quarkonium production, times the branching ratio into
dimuons, in minimum bias PbPb collisions, at 5.5 TeV, calculated to NLO in the CEM.

B+~ X opppp (1b)

v v Y Y Y
48900 880 300 80 44

The quarkonium production cross sections per nucleon-nucleon collision are calculated
to NLO in the total cross section at ,/syy = 5.5TeV using the colour evaporation model
(CEM) [50] with the MRST parton densities weighted by the EKS98 parameterisation [199]
of nuclear shadowing effects. The renormalisation and factorisation scales are up = ur =
2m7 for charmonium and pug = ur = mt for bottomonium, where mrt = (m%2 + p%)l/ 2 with

m.=1.2GeV/c* and mj, = 4.75GeV/c>. The PbPb cross sections are obtained by scaling
the per nucleon cross section with A%, where A =208 for Pb. The resulting PbPb (impact-
parameter averaged) inclusive quarkonia production cross sections are quoted in Table 6.1,
multiplied by the corresponding dimuon branching ratios, B+~ (5.94%,0.73%,2.4%,1.94%
and 2.24%, for the J/v, ¥/, Y, Y, and Y, respectively). The NLO J/4 and Y double-
differential d>0/d pr dy distributions are also used for the other states within each quarkonium
family, as prescribed by the CEM.
The two main sources of background in the dimuon invariant mass spectrum are:

1. Combinatorial muon pairs from the decays of charged pions and kaons. The
production of 7* and K¥*, which represent about 90% of the total produced charged
particles, was simulated using input d>N /dprdy distributions from HIJING, normalised
to give dN/dn|, =0 = 2500 and 5000 in the 0-5% most central PbPb collisions. These
multiplicities were selected as conservative lower and upper limits at n = 0. However,
extrapolations from RHIC indicate that the LHC multiplicity may, in fact, be lower than
our chosen lower limit, with dN/dn|,=o as low as 1300, see Section 6.4.2. The total
relative yield of kaons over pions is ~11%, but since the kaons have a harder spectrum
({pr) =0.6GeV/c) than the pions ({pr) = 0.44GeV/c) and a shorter lifetime, ct, they
are responsible for ~80% of the background reaching the muon chambers [200]. Before
decaying, a few metres away from the production point, many pions and kaons suffer
nuclear interactions in the calorimeters (which have an effective thickness of 11-16
interaction lengths in the barrel and 11 in the endcaps) [56, 170]. Punchthrough in the
muon chambers is less than 1.2 x 1073 for hadrons with pr < 10GeV/c [201]. About
0.3% (1%) of the produced pions (kaons) lead to tracks in the muon chambers, either
because they decay to muons or because of punchthrough. The proton punchthrough
probability is more than two orders of magnitude lower and can safely be neglected.

2. Another source of background is due to muons from open heavy flavour (D,B) meson
decays. The probability to produce at least one muon at the end of the decay chain of
charm (bottom) quarks is ~18% (38%) according to PYTHIA 6.025. The corresponding
double differential (pt, y) cross sections are obtained from pp NLO calculations (with
CTEQ5M1 PDFs and scales pup = ur = 2 mt for charm and my for bottom), which give
0c = 7.5mb and 0,3 = 0.2mb [50]. Including shadowing on the PDFs reduces the cross
sections by 35% and 15%, respectively [202]. The number of heavy-quark pairs produced
in AA collisions, as a function of impact parameter b, is

N1a(QQ) =0 (Q0) Taa(b), 6.1)
where T44(b) is the nuclear overlap function (30.4 mb~! for head-on PbPb collisions).
The D and B meson decays give similar contributions to the dimuon background since the



2390 CMS Collaboration

Table 6.2. Expected average multiplicities per PbPb collision at 5.5 TeV for the quarkonia signals
and for the heavy-quark background.

b~0fm 0-5% central ~ min. bias

dNen/dnly =0 5000 4600 1380
Npppo () — utp™) 0.034 0.026 6.3x1073
Npppp (W' — ™) 62x107%  47x107* 1.3x 1074
Npppp(Y — putp) 21x107%  1.6x107* 3.8x 1073
Npppp(T = pwtu™) 56x107°  43x107° 1.0 x 1073
Npppp (X' = ptp™) 3.0x 1075 23x1073 5.7x107°
Npppp(cc) no shadowing 220 180 41
Npppp(cc) with shadowing 150 120 26
Npppp(bb) no shadowing 6 49 1.1
Npppy(bb) with shadowing 5 4.1 10

12

higher average pr of the b quark ((p;), = 1.45 GeV /c compared to (p}). = 0.55GeV/c)
is compensated by the much larger number of cc pairs produced.

Note that in all input MC distributions for either the signal or the background we have
not considered any nuclear modification other than a mild shadowing effect of the PDFs.
Possible yield suppressions in the hot and dense medium due to colour screening and/or
strong gluon saturation effects (for the quarkonia) or due to parton energy loss (for the light
and heavy quarks background) have not been taken into account. We consider this approach to
be the least biased possible since although the total quarkonia cross-sections will obviously be
reduced if medium effects are present — the final goal of the analysis is exactly to use those
reductions of the yields to infer the QCD matter properties — the reconstruction efficiencies
and signal-over-background ratios should not be significantly changed.

Table 6.2 shows the average particle multiplicities for the heavy-quark background
as expected in three PbPb centrality classes: head-on (b =0fm), 0-5% most central, and
minimum bias (0-100%) collisions. The charged hadron multiplicity quoted corresponds to
the high-multiplicity setting (dN /dn|,=o = 5000) used in the fast MC simulations.

A fast MC simulation equivalent to 5-10” PbPb events was then carried out
superimposing the decay dimuons from the five quarkonium resonances on top of the
background from the m, K and open heavy flavour combinatorial decays. Each muon track
(with a given momentum, pseudorapidity, charge and origin) is weighted by a factor that takes
into account the corresponding detector acceptance, as well as the trigger and reconstruction
efficiencies for the two event multiplicities considered (see next section).

6.1.3. Reconstruction and analysis
Dimuon trigger efficiency and acceptance

The response of the CMS detector to muons (or long-lived punchthrough pions and kaons
reaching the muon chambers) is parameterised by 2-dimensional (p, 1) acceptance and trigger
tables. The particles are fully tracked using GEANT4 (0SCAR3_4_0 and ORCA8_7_1) from the
vertex to the chambers. Each track is accepted or rejected according to the Level-1 and
Level-2 heavy-ion dimuon trigger criteria (i.e. the standard L1 pp muon trigger, with a low-
quality ¢ condition and without pr-cut, and the standard pp L2 muon trigger, see Ref. [54]).
The corresponding efficiencies, €y (p,n) and €2 (p, 1), are then computed. The trigger

efficiencies are of the order of 90% for the muons reaching the muon chambers.
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Figure 6.1. J/y (top) and Y (bottom) acceptances (convoluted with trigger efficiencies) as a
function of pr, in the full detector (barrel and endcap, |n| < 2.4, full line) and only in the barrel
(In] < 0.8, dashed line).

The J/¢ and Y acceptances are shown as a function of pr in Figure 6.1 for two n ranges:
full detector (|n| < 2.4) and central barrel (|n| < 0.8). Because of their relatively small mass,
low momentum J/¢’s (p < 4GeV/c) are mostly not accepted: their decay muons do not
have enough energy to traverse the calorimeters and coil, and are absorbed before reaching
the muon chambers, curling in the 4 T magnetic field. At more forward rapidities the extra
longitudinal Lorentz boost improves the acceptance, as can be seen in Figure 6.2. The J/y
acceptance increases with pr, flattening out at ~15% for pr 2 12GeV/c. The T acceptance
starts at ~40% at pr = 0 GeV/c and remains constant at ~15% (full detector) or 5% (barrel
only) for pr > 4 GeV/c. The pr-integrated acceptance is about 1.2% for the J/r and 26% for
the Y, assuming our input theoretical distributions [200, 203].

Dimuon reconstruction efficiency and purity

The dimuon reconstruction algorithm used in the heavy-ion analysis follows the regional
track finder, based on the muons seeded by the muon stations and on the knowledge of the
primary vertex [194, 200]. It is adapted to deal with the high hit occupancy of the silicon
tracker in PbPb collisions. The muon track segments found by the Level 1 and Level 2
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Figure 6.2. Geometrical acceptances (no trigger efficiency included) as a function of pr and
pseudorapidity for J/iy (top) and Y (bottom) when requiring that both decay muons reach the
muon chambers and penetrate through at least one muon chamber.
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Figure 6.3. Y reconstruction efficiency (left) and purity (right) as a function of the PbPb charged
particle rapidity density, dNch/dy|y—=o.

trigger algorithms (the same as used for pp running [54]), with the lowest quality requirement
on the muon candidates at Level 1 [54], are extrapolated inwards to identify hits in the
outermost silicon strip layer, and form the starting points (seeds) for the matching between
the muons and the tracks in the silicon tracker. The propagation in the tracker is performed
from the outer silicon strip layer towards the primary vertex [200, 203]. The final fit of the
full trajectories is performed with a Kalman-fitter. The efficiency of a given muon pair is
€pair(Ps 1) = €trackl X €rack2 X €veriex- 1he dependence of the Y reconstruction efficiency on
the event charged-particle multiplicity was obtained from a full GEANT simulation using the
Y signal dimuons embedded in HUING PbPb events. Figure 6.3 shows the T efficiency and
purity (where purity is defined as the fraction of correctly reconstructed Y) as a function
of charged-particle multiplicity. Note that particle multiplicities are given here in terms
of rapidity densities: due to the n — y Jacobian transformation, dNc,/dyl,—o ~ 6500 is
equivalent to dN¢,/dn|, =0 = 5000. In the central barrel, the dimuon reconstruction efficiency
remains above 80% for all multiplicities whereas the purity decreases slightly with increasing
dN,/dyly =0 but also stays above 80% even at multiplicities as high as d N, /dy|,—o = 6500.
If (at least) one of the muons is detected in the endcaps, the efficiency and purity drop
due to stronger reconstruction cuts. Nevertheless, for the dNc,/dnl,—o ~ 2000 multiplicity
realistically expected in central PbPb at LHC, the efficiency (purity) remains above 65%
(90%) even including the endcaps.
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Figure 6.4. Reconstructed J/v (left) and Y (right) dimuon decays in the full simulation, for
events without background. Both muons are in || < 2.4.

J/1) and Y mass resolutions

At the Y mass, the dimuon mass resolution for muon pairs in the central barrel, || < 0.8, is
54MeV/c?, as obtained from a Gaussian fit of the reconstructed M.+, distribution (using a
detailed MC simulation without background). In the full pseudorapidity range, the dimuon
mass resolution is about 1% of the quarkonium mass: 35MeV/c? at the J/i mass and
86MeV/c? at the Y mass (figure 6.4). These dimuon mass resolutions (the best among the
LHC experiments) provide a clean separation of the different quarkonia states. These values
are used to smear the dimuon mass distribution in the fast MC studies.

There is a slight dependence of the mass resolution on the event multiplicity. Increasing
the multiplicity from dNch/dy|,—o =0 to 2500 degrades the mass resolution of the
reconstructed Y from 86 to 90 MeV /c?. For larger particle densities, the resolution goes down
more significantly because the endcap muons are then treated in a stricter way: a stronger
cut is applied to the muons that intersect the endcap tracker disks to keep the purity of the
reconstructed dimuon sample. This is done because the tracks in the endcap have up to two
times worse momentum resolution than barrel tracks [54]. The efficiency of the forward
muons is reduced but the purity is kept above 80% (figure 6.3). Alternatively, applying the
same stringent cuts for all multiplicities would result in a degradation of the mass resolution
to 58, 63 and 66 MeV /c? for dN,/dy| y=0 =0, 2500 and 5000, respectively. The residual
dependence of the mass resolution on the event multiplicity reflects the ratio between events
with both muons in the barrel part of the tracker and events with at least one muon intersecting
the endcap tracker disks. This ratio amounts to 0.25,0.28 and 0.34 for dNcy /dy|y—0 = 0,2500
and 5000, respectively.

Two different approximations were studied to parameterise the mass resolution in the fast
Monte Carlo. In the first method, a fixed value (37 MeV /c? for the J/v and 86 MeV /c? for the
T mass ranges) was used to smear the dimuons for all pseudorapidity and multiplicity ranges.
In the second method, the mass resolution was taken to be 0.009 x M,;+,-, where M,,+,- is the
invariant mass of the muon pair. Both methods were used in the fast simulation and compared
to the full (HUING) simulation [203]. No significant differences were observed and, thus, the
first method was used to produce the final figures.

6.1.4. Results

About 5 x 107 PbPb collisions were generated with the fast MC, as described previously.
Muons passing the acceptance tables are combined to form pairs and each pair is weighted
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Figure 6.5. Dimuon mass distributions measured within |n| < 2.4 for PbPb events with
dNen/dnly =0 = 5000 (top) and 2500 (bottom) in the J/v (left) and Y (right) mass regions. The
main background contributions are also shown: %, ¢ and b stand for 7 + K, charm, and bottom
decay muons, respectively.

according to the trigger and reconstruction efficiencies (dependent on the momentum,
pseudorapidity, purity and event multiplicity) determined with the full simulation. Their
invariant mass is calculated and smeared as described in the previous section. The obtained
dimuon mass distributions are then scaled to 0.5nb~!, corresponding to the PbPb luminosity
integrated in one month with average luminosity £ =4 x 102 cm~2s~! and 50% machine
operation efficiency. Figure 6.5 shows the resulting opposite-sign dimuon mass distributions,
for the high and low multiplicity cases and full acceptance (|n| < 2.4). The different quarkonia
resonances appear on top of a continuum due to the various sources of decay muons: 7 + K,
charm and bottom decays.

The background of uncorrelated muon pairs should also contribute to the like-sign muon
pairs mass distribution. Figure 6.6 shows the like-sign and the opposite-sign distributions
around the J/¢ and Y signals for the two multiplicity scenarios considered in the central
barrel (|n| < 0.8). Assuming that the CMS trigger and acceptance conditions treat opposite-
sign and like-sign muon pairs on equal footing, the combinatorial like-sign background can
be subtracted from the opposite-sign dimuon mass distribution, giving us a better access to
the quarkonia decay signals. Applying such a background subtraction technique, in each mass
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Figure 6.6. Invariant mass spectra of opposite-sign and like-sign muon pairs with dNep/dn|,=0 =
5000 (top) and 2500 (bottom), in the J/y (left) and Y (right) mass regions. Both muons have
Inl <0.8.

bin, the signal is given by [124]:
NS& = N*~ —2J/N+N—. (6.2)

Figure 6.7 shows the signal dimuon mass distributions, after background subtraction,
for two different scenarios: dNch/dnl,—o =5000 and |n| <2.4 (worst case scenario);
dNen/dnl,—o = 2500 and |n| < 0.8 (best case scenario). The track reconstruction has a better
momentum resolution in the barrel (|| < 0.8) than in the endcaps, providing a better dimuon
mass resolution. Except for the v/, all quarkonia states are clearly visible.

Signal /Background ratio and statistics

Table 6.3 shows the J/¢ and Y statistics expected in one month of data taking. The
Signal/Background ratios are also indicated: S/B = 1.2 (0.6) in the low (high) multiplicity
settings for the J/1 and ten times lower for the Y. As mentioned above, these quantities
have been calculated for an integrated luminosity of 0.5nb~', corresponding to an
average luminosity £ =4 x 10%® cm~2s~! and a 50% machine efficiency. In the tables, the
background and reconstructed resonance yields are given for a mass interval o, where o
is the mass resolution. Since the reconstruction efficiencies depend on the multiplicity of
tracks, it is not surprising to have a higher number of reconstructed resonances at the lower
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Figure 6.7. Signal dimuon mass distributions in the J/v¢ (left) and Y (right) mass regions, as
expected after one month of PbPb running (0.5 nb~ 1. Top panels for dNch/dn|,;—0 = 5000 and
[n| < 2.4 (worst case scenario), bottom panels for dNcy/dnl;=o = 2500 and |n| < 0.8 (best case
scenario); assuming no quarkonia suppression.

Table 6.3. Signal-to-background ratios and integrated quarkonia yields expected in one month
of PbPb running (0.5nb~! integrated luminosity) for two charged-multiplicity scenarios and two
pseudorapidity windows, assuming no quarkonia suppression.

dNen/dnly=0, An  S/B NQJ/¥)  SB  N(Y) N(Y) N

2500, |n| <2.4 12 184000 0.12 26000 7300 4400
2500, |n| < 0.8 45 11600 097 6400 2000 1200
5000, |n| <2.4 0.6 146000 0.07 20300 5900 3500
5000, |n| < 0.8 2.8 12600 0.52 6000 1800 1100

dN/dnl, =o. The total expected statistics should be enough to allow for differential analyses
of the yields as a function of the centrality of the collision, or of the transverse momentum or
rapidity of the resonances.

The signal-to-background ratios and number of events tabulated in Table 6.3 correspond
to an average over the impact parameter distribution. The corresponding signal-to-background
ratios and number of reconstructed resonances in three different centrality bins (0-10%
“central”, 10—45% “semicentral” and 45—-100% “‘peripheral”) are shown in Table 6.4 for the
two charged-particle multiplicity scenarios.
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Table 6.4. Signal-to-background ratios and quarkonia yields expected in central, semi-central and
peripheral PbPb collisions (0.5nb~! integrated luminosity, full muon acceptance || < 2.4), for
two charged-particle multiplicity scenarios.

dNey/dnl,=o, PbPb centrality  S/B N(J/¥) S/B  N(Y)

2500, 0-10% (central) 09 72000 0.1 9200
2500, 10-45% (semicentral) 15 100 000 02 15000
2500, 45-100% (peripheral) 6.7 10400 09 1600
5000, 0-10%(central) 0.5 50000 0.04 6200
5000, 10-45% (semicentral) 0.6 85000 0.08 12000
5000, 45-100% (peripheral) 2.5 11000 04 1600
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Figure 6.8. p (left) and rapidity (right) distributions of the muon pairs in the J/1 mass peak
for PbPb at 5.5 TeV assuming no quarkonia suppression. The three distributions are the J/v’s
produced in 0.5 nb~! (solid circles), and the reconstructed ones with either dNen/dnly=o = 2500
(squares) or dNcn/dn|,=o = 5000 (open circles).

If we assume that, at the LHC, we will see a J/y suppression of the same order of
magnitude as seen at RHIC, the J/¢ is not likely to be more suppressed than the muon
background from light and heavy quark decays due to the foreseeable parton energy loss
in the accepted phase space window (p > 3GeV/c, |n| < 2.4) [110, 111]. Thus the signal-
to-background ratio at the J/i mass should not change significantly from the values
quoted here.

Transverse momentum and rapidity spectra

The J/¢ transverse momentum and rapidity distributions are shown in figure 6.8, at
the generated and reconstructed levels, for the two different multiplicity scenarios. The
corresponding distributions for the Y are shown in figure 6.9.

While the reconstructed Y transverse momentum distributions have a shape quite similar
to the generated one, we see a pronounced acceptance effect on the J/¢ spectrum up to
about 4 GeV/c, reflecting the J/y pr acceptance curve (see figure 6.1). With regard to the
rapidity distributions, we see that the J /i acceptance is smaller at midrapidity than at |y| & 2,
because of the lower fotal momentum of the midrapidity muons, not large enough to traverse
the calorimeters and the magnet coil. The reconstructed Y rapidity distribution has a shape
similar to the generated one. The reconstructed spectra are almost insensitive to the difference
between the two considered multiplicity scenarios. The amount of statistics collected for
the T resonance family in one nominal heavy-ion run with the high-level-trigger (HLT)
settings discussed in chapter 5 would allow one to study the pr-dependence of the Y/ over T
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Figure 6.10. Expected statistical uncertainties for the Y’ over Y ratio as a function of pt for a
10° s heavy-ion run with the HLT settings tabulated in Table 5.3. The data points are (arbitrarily)
set at a ratio = 0.5 and the curves are model calculations for different choices of the plasma initial
conditions and for various assumptions on the screening mass temperature [196].

ratio (figure 6.10), which is a very sensitive probe of the thermodynamical properties of the
produced QGP [196].

6.1.5. Conclusions

With its very broad muon acceptance and precise tracking, CMS will provide significant
contributions to heavy ion physics at the LHC. Studies of quarkonium production in PbPb
reactions at ./syy = 5.5 TeV at different centralities, rapidities and pr’s (and their comparison
to the corresponding Njj-scaled proton-proton cross sections at the same energy) will provide
crucial information on the thermodynamical state of the QCD medium formed in these
reactions, through the expected step-wise “melting” pattern of the different Q Q states due
to colour screening. These results will also be sensitive to modifications of the low-x nuclear
parton distribution functions, as expected in the case of gluon saturation.
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CMS can reconstruct the charmonium and bottomonium resonances, via their dimuon
decay channel, with large acceptances (26% for the Y and 1.2% for the J/+/), high efficiencies
(~80%), good purity (~90%) and a very good dimuon mass resolution (54 MeV/c* at
the T mass), when both muons are detected in the central barrel (|n| < 0.8), even in the
case of exceptionally high multiplicities (dNc,/dn|,=0 ~ 5000). When considering the full
pseudorapidity region (|| < 2.4), the mass resolution becomes 86 MeV/c? at the Y and
35MeV/c? at the J/v, with 50% dimuon reconstruction efficiencies. The Y states can be
measured all the way down to pyr =0 GeV/c with acceptances as large as 40%, while the
lower rest mass of the J/y state and the large amount of material in the calorimeters prevent
us from measuring J/y’s below pr ~ 4 GeV /c at mid-rapidity. At high pr (above 12 GeV/c
for the J/¢ and 4 GeV/c for the Y') the dimuon acceptance flattens out at 15%.

The large aperture of the muon detectors and the precise tracking result in a very good
separation between the QQ states in the dimuon mass distributions, with relatively high
statistics and good signal to background ratios. After one month of PbPb running (0.5nb~!)
we should collect 180000 J/¢ and 25000 Y dimuons, enough to compare central and
peripheral PbPb collisions, and to carry out differential studies (dN/dy, dN/dpr), which
will contribute significantly to clarify the physics mechanisms behind the production (and
destruction) of quarkonia states in high-energy nucleus-nucleus collisions.

6.2. Heavy Quarks

6.2.1. Introduction

While the study of inclusive high- pr jet production provides information on the differential
response of a hot and dense quark-gluon environment to gluons and light quarks, the study of
open heavy flavour production gives corresponding information on massive colour charges,
providing a complementary view of the thermodynamical and transport properties of QCD
matter. Recent RHIC results show a significant suppression of the yields of heavy-quark
decay electrons at high pr, comparable to that observed for light-quark hadrons [204].
This observation was surprising since heavy quarks, especially bottom quarks, expected to
dominate the single electron spectra at RHIC for pr > 5GeV/c, were predicted to lose less
energy than the light quarks [205]. The RHIC results suggest that either charm production
dominates the single electron spectra over all measured pr or that bottom quarks lose as
much energy as the charm quarks. Neither option was anticipated. At the LHC, the charm
and bottom production cross sections are much larger than at RHIC [50] and systematic
studies of heavy flavour (especially B) production can be performed for the first time. Such
studies, particularly of high mass dimuons, can test the effects of energy loss on bottom
quarks to greater precision than at RHIC and in a mass region where other contributions
to the continuum are small. In this section we present a first exploratory (mostly generator-
level) study of the CMS capabilities to indirectly measure heavy quarks via three channels:
(i) high mass dimuons from open heavy-quark decays [206—-208]; (ii) secondary J/yr’s from
B decays [207, 208]; and (iii) muon tagged b-jet production [209].

6.2.2. High-mass dimuons

The open charm and bottom semileptonic decays are the main sources of muon pairs in the
resonance-free high invariant mass region, 20 < M+,- < 50 GeV/cz, between the YT and
Z° peaks. Heavy quark pairs are primarily produced at the very beginning of the nuclear
collisions, in gluon-gluon processes. The quarks propagate through the dense medium before
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Figure 6.11. Expected contributions to the dimuon mass distribution, for p% > 5GeV/c and
[n*| < 2.4, after one month of PbPb running [163].

forming B and D mesons by capturing u, d or s quarks during the hadronization stage.
Heavy mesons decay subsequently with mean lifetimes ct =496, 464, 315 and 124 um,
respectively for B, B?, D* and D°, with muon branching ratios of about 20% (12%) for B (D)
mesons. However, not all the produced muons are expected to pass the CMS acceptance cuts
Py 2 4GeV/c and |n*| < 2.4. Firstly, about half of the muons from B decays are produced
through an intermediate D [210] and populate the softer part of the muon pr spectrum.
Secondly, dimuon production from single B decays, B — Du*X — u*u~Y (which have
comparable yields to bb pair decays), are concentrated at masses below the B meson mass
and, therefore, outside of the region under consideration here.

Figure 6.11 shows the expected dimuon mass spectra within the CMS acceptance
corresponding to one month of PbPb running at a luminosity £ = 10>’ cm~2s~! with 50%
efficiency [163]. The PbPb production cross sections of all processes contributing to the high-
mass dimuon yield> (heavy flavours, Drell-Yan, Z°, W) were obtained from the PyTHIA [165]
values for pp interactions at /s = 5.5 TeV, scaling them with 044 = A%0,,. Uncorrelated
muon pairs from hadronic w and K decays were obtained from PbPb events generated with
HIJING [161], as described in Section 6.1.2. The dimuon detection efficiencies have been taken
into account. In the mass range 10 < M,,+,- < 70 GeV /c?, the dominant contribution comes
from bb fragmentation. Hence, the dimuon yield in this mass region should be sensitive to the
in-medium bottom quark energy loss. The combinatorial background contribution, where one
muon is from beauty decays and the other from 7 /K decays, is about 16%. The contributions
from 7r/K and charm decays are 5-6%. In addition, a clear signal from Z° — u*u~ decays

55 The dimuon rates from other massive sources (tt, WW, WZO, 70 ZO) are found to be negligible.
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Figure 6.12. Left: Transverse distance, r, distribution for muon pairs from beauty decays (solid
histogram) and for Drell-Yan dimuons (dashed histogram). Right: Invariant mass distribution of
Wt~ pairs from bb decays with p’TL > 5GeV/cand || < 2.4 in minimum bias PbPb collisions,
with (dashed histogram) and without (solid histogram) bottom quark energy loss.

is seen, about 11000 events within M, &+ 10GeV/02, with less than 5% background. While
Z° production is sensitive to the proton and neutron content of the colliding nuclei as well as
to modifications of the quark densities in the nucleus at high Q?, it is unaffected by final-state
interactions in the medium. Thus, the Z° could be used as a reference process to normalise
the jet, quarkonium and heavy flavour rates in AA relative to pp collisions.

It is important to isolate the (possibly suppressed) signal dimuons from bb and c¢ decays
with respect to other sources. The uncorrelated background from decays of pions and kaons,
and the muon pairs of mixed origin, can be estimated from the like-sign pu*u* and =™ mass
spectra and subtracted from the total u* ™ distribution, as discussed in the previous Section.
Out of the remaining correlated background, the Drell-Yan dimuons (which are unaffected by
medium-induced final state interactions) can be rejected with a secondary vertex cut: Drell-
Yan muons come from the primary vertex while those from B and D meson decays appear at
some distance from the interaction point. The path length between the primary and secondary
vertices depends on the meson lifetime and its momentum (Lorentz boost). Thus, an efficient
way to select the dimuons from B decays is to require a minimum transverse distance, Jr.
If Puin is the track point with minimal distance to the beam axis, z, then ér is the distance
in the x—y plane between the points Pj i, and P; pin, of two different muon tracks. Muon
pairs from bb decays show a rather flat distribution while those from Drell-Yan production are
concentrated at small §r values, vanishing at §r ~ 70 um (see figure 6.12-left). Fast simulation
studies, including the track and vertex resolutions, indicate that a cut 6r > 50 um suppresses
the Drell-Yan rate by two orders of magnitude while the signal is only reduced by 30% [208].
Figure 6.12-right shows the PYTHIA spectra (scaled by A?) of high-mass pu*u™ pairs (with
p¥ > 5GeV/c and |n*| < 2.4) for minimum bias PbPb collisions, with and without medium-
induced energy loss of bottom quarks, according to the PYQUEN energy loss model [180,211].
A factor of around 3 suppression for bb — p*u~ would be clearly observed over the 15%
initial state nuclear shadowing expected in this kinematic region. Note that the open bottom
yield integrated over all phase space is always conserved: the suppression in the rate becomes
apparent only when the kinematic cuts are applied.
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Figure 6.13. Left: Transverse distance, dr, distribution of u*u™ pairs from secondary (solid
histogram) and primary (dashed histogram) J/ decays. Right: Transverse momentum distribution
of secondary J/y dimuons, with p’TL > 5GeV/cand || < 2.4, in minimum bias PbPb collisions,
with (dashed histogram) and without (solid histogram) bottom energy loss [180].

6.2.3. Secondary J /v production

Another process which also carries information about medium-induced rescattering and
bottom energy loss is secondary J /v production from the B — J /¢ X decay (1.15% branching
ratio). The J /v subsequently decays to dimuons with a 5.9% branching ratio so that the whole
process reads gg — bb — BB X — I/ Y — p*u~ Y. A leading order pQCD calculation
with muon kinematical cuts imposed to take into account the region where CMS is efficient
(pF >5GeV/c and |n*| < 2.4) yields 13000 dimuons from secondary J/¢ decays in a
nominal one month PbPb run. Primary J/v’s produced at the nucleus-nucleus interaction
point can be rejected using the secondary vertex information (see figure 6.13-left), as
previously discussed. Figure 6.13-right shows the py distribution of the J /i mesons resulting
from B meson decays in two cases: as generated by PYTHIA and after including energy loss
effects (according to the PYQUEN [180, 211] model). It is clear that the measured secondary
J/¢r yields will be very sensitive to the suppression of open bottom yields.

6.2.4. B-jet tagging via energetic muons

The possibility to observe the medium-modified fragmentation of hard b quarks tagged by a
leading muon in ultrarelativistic heavy ion collisions has been analysed in Ref [209], using
PYTHIA 6.2 [165] with CTEQSL PDFs to calculate the cross section of b-jet production at
/SNy =5.5TeV, scaled by A? to obtain the corresponding PbPb spectra. The event rate has
been estimated for the central CMS acceptance, |7*®| < 3 and |n*| < 2.4, where the muon is
considered as a leading particle if it belongs to a hard jet and carries at least 20% of the jet
transverse momentum. More specifically, the jet energy is determined as the total transverse
energy of the final particles collected around the direction of a leading particle inside a cone
R=./An?2+A¢p?=0.5, where n and ¢ are the pseudorapidity and the azimuthal angle,
respectively. The pp cross section to have a leading muon from a B meson is ~0.7 pb, with the
kinematical cuts p4 > 5GeV/c and EL' > 50 GeV. This gives a 0.7 pb x (208)? 2 0.03 mb
PbPb cross section. The corresponding event sample collected in one month of PbPb running
is high enough, 2 x 10, for detailed B-jet energy loss studies. Naturally, increasing the
minimal jet energy threshold reduces the measured rates; but even for E%?t > 100 GeV we
still expect around 10° events.
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Chapter 7. Jets and high-py hadrons
7.1. Introduction

The abundance of high Q? processes at LHC energies will provide large samples of high
Er jets, large pr hadrons, and jets produced back-to-back to gauge bosons (y, Z°). The
strong interest in these observables in heavy-ion collisions stems from the fact that high Et
quarks and gluons can be used as tomographic probes of the hot and dense medium produced
in the collision as they propagate (and, potentially, attenuate) through it (see discussion in
Section 1.4.5). Their hard momentum ensures that their production cross sections and medium
modifications are perturbatively calculable, making them quantitative tomographic tools of
QCD matter.

Experimentally, one can study jet quenching phenomena in several channels. In jet+ jet
events, the energy of the jets can be asymmetrically reduced by the medium, leading to the
appearance of monojet topologies [94]. Comparisons of jets with their weakly interacting
counterparts in y-jet or Z-jet events allow one to directly estimate the amount of medium-
induced energy loss. The process by which the high- pt partons become final state hadrons is
characterised by fragmentation functions, that are also expected to be modified in the medium.
Medium-induced parton energy loss is expected to change the multiplicity inside the jet cone
and the pr distribution relative to the jet axis [47,212]. The jet quenching can also manifest
itself by a reduced yield of inclusive (leading) hadrons at high pr compared to pp collisions.
The corresponding nuclear modification factors, R 44 (pr), and the central-to-peripheral ratios,
Rcp(pr), of charged particle pr spectra are important observables characterising energy loss
in the created medium, and have been extensively studied at RHIC [213-216]. The pr reach
of these measurements will be dramatically increased at LHC energies.

CMS is, by design, an experiment extremely well suited to measure hard scattering
processes. With high quality electromagnetic and hadronic calorimeters covering a wide
pseudorapidity range and with excellent trigger capabilities, CMS will undoubtedly provide
better measurements than the dedicated heavy-ion ALICE experiment in the perturbative
sector. In particular, CMS will be able to adequately reconstruct jets in the high multiplicity
environment of PbPb collisions, using full calorimetric measurements [47, 163, 217, 218],
as well as precise charged particle tracking and momentum reconstruction in its 4 T field up
to momenta of hundreds of GeV/c [168]. This is particularly interesting given the fact that
heavy-ion collisions at LHC energies will provide, for the first time, fully formed high Et
jets, at a rate of more than 10 jet pairs per second. Systematic studies will, hence, be possible
in a clean kinematic regime, far beyond the limits of RHIC, and with high statistics.

This chapter starts with the methodology and performance of the jet reconstruction in
heavy-ion collisions, followed by a description of the jet triggering strategy and the trigger
rates expected using the calorimeters. We will then present the expected reach in jet Et, up to
0.5TeV in central PbPb using the triggered event sample. In another section we introduce
the reconstruction performances of the CMS tracker in heavy ion collisions for high-pr
hadrons, the statistical reach of the inclusive charged particle pr spectra (up to 300 GeV/c), the
nuclear modification factors and the central-to-peripheral ratios of these spectra, discussing
the benefits of triggering on jets with respect to the option of simply using minimum bias
data. The combination of the large reach of the inclusive jet and hadron measurements allows
for a detailed study of the in-medium jet fragmentation function. The chapter closes with a
discussion of the physics interest and experimental capabilities of studies of jet production
tagged with gauge bosons (y, y*, Z°).
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Figure 7.1. Jet properties measured by CDF in p p collisions at /s = 1.8 TeV [219]. Left: Fraction
of electromagnetic energy in jets with different ranges of Et (dots) compared to the HERWIG Monte
Carlo predictions (histogram). Right: Fragmentation function for jets of different ET obtained by
CDF compared to HERWIG predictions.

7.2. Jets

7.2.1. Introduction

In this section we present a realistic estimate of the expected statistical reach of the inclusive
jet spectra measurement in different PbPb centralities in one month at design luminosity
(0.5nb™"). We review the full jet reconstruction capabilities of CMS, including a description
of the algorithm to deal with the high particle multiplicities and the detector performance. We
discuss the expected trigger rates for the HLT strategy and thresholds discussed in the previous
HLT chapter, and we present the results obtained with a fast simulation, with parameterised
jet energy resolutions obtained from full GEANT4 studies.

7.2.2. Jet measurement

The reconstruction of full jets in PbPb collisions at the LHC faces two experimental
challenges. First, the randomness of the fragmentation/hadronization process leads to
fluctuations of the fraction of jet energy going into final state charged and neutral particles
(see figure 7.1-left) [219] which require an efficient measurement of the jet hadronic as well
as electromagnetic energy, using fully hermetic and highly segmented calorimeters. Given
the steep falloff of the jet cross section as a function of energy, a precise calibration of the
jet energy scale is also essential in order to perform an unbiased comparison between data
and theoretical predictions. The second experimental challenge in a heavy-ion environment
— where the amount of soft hadronic activity (the “underlying event”) is much larger than in
pp collisions — is the separation of the particles associated with the jet from the background
of soft remnants in the underlying event. The right panel of figure 7.1 shows the jet
“fragmentation function”, dN/dz, i.e. the transverse momentum distribution of hadrons
resulting from the fragmentation of a jet (z is the fraction of parton energy carried by the
hadron). Even for very high energy partons, most of the energy goes into rather soft particles.
To separate the particles belonging to the jet from the underlying collision background, a
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minimum momentum must be required (say, well above 4 GeV /c), resulting in a severe bias in
the fragmentation function of low energy jets (Et < 50 GeV). This emphasizes the advantage
of studying highly energetic jets (E1 > 50 GeV), to reduce such bias in the cross sections
and fragmentation functions. Furthermore, such studies give access to the low-z region of the
fragmentation functions.

7.2.3. Reconstruction algorithm

Jet reconstruction in heavy-ion collisions in CMS is performed with an iterative cone algo-
rithm modified to subtract the underlying soft background on an event-by-event basis [163].
The algorithm is a variant of an iterative “noise/ pedestal subtraction” technique. Initially, the
mean value and dispersion of the energies recorded in the calorimeter cells are calculated for
all rings of cells at constant pseudorapidity, n. The value of this pedestal function, P(#), is
then subtracted from all cells and the jets are reconstructed, using a standard iterative cone
algorithm, from the remaining non-empty cells. In a second iteration, the pedestal function is
recalculated using only calorimeter cells outside the area covered by reconstructed high Et
jets (Et > 30 GeV). The cell energies are updated with the new pedestal function and the jets
are reconstructed again, using the updated calorimeter cells. This method fully exploits the
large n and full azimuthal coverage of the CMS calorimetry (6 units of pseudorapidity in the
barrel and endcap sections; and about 10 units in total including the HF).

7.2.4. Reconstruction performance

The capability of CMS to reconstruct hard QCD jets in PbPb events has been extensively
studied using full GEANT4 (OSCAR) detector simulations with realistic assumptions concerning
jet and hadron spectra, and particle multiplicities. To evaluate the reconstruction performance,
event samples of (signal) QCD dijet events were generated as pp collisions with PYTHIA
6.158 [165], in several intervals of the initial parton transverse momentum (pr = 50 — 60,
70-80, 90-105, 120-130, 200-210, and 300-310 GeV//c), and embedded into central PbPb
background events at ,/syy = 5.5 TeV . The PbPb background was simulated with the HIJING
Monte-Carlo generator [161] (default settings, quenching on) scaling the charged particle
multiplicity down to a value dNgp,/dy|y—o = 5000. The energy flow, (EX""(1)), defined as
the transverse energy per calorimeter tower averaged over the full azimuthal angle at a
given 1'% is shown in the left panel of figure 7.2, separately for the ECAL and HCAL
calorimeters. The transverse energy flow shows a strong 1 dependence; at mid-rapidity, most
of the energy is reconstructed in the ECAL. The right panel of figure 7.2 shows the background
fluctuations in the (ECAL + HCAL) calorimeter towers, (o™ (n)) = /(D¥V*'(17)), where
D¥™"(n) is the variance of the transverse energy per tower, DYV (n) = (EXY"(1))? —
(E%’Wer(n))z, summed over all towers at a given """, The average values of E1 per tower
(ECAL + HCAL) for central PbPb collisions are 1.7GeV in the barrel and 4.8 GeV in
the endcap (excluding the last tower in the endcap), with dispersions of 0.9 and 1.5GeV,
respectively.

The jet reconstruction performance is studied in events with and without addition of
the background from central PbPb collisions. Jets are reconstructed using the modified
iterative cone jet finder (cone radius of R = 0.5) with event-by-event background subtraction
and a threshold of 30GeV on the reconstructed jet energy. Only one jet per event, the
jet with the largest transverse energy, is used for further analysis. The quality of the jet
reconstruction is evaluated by matching the jets reconstructed in the full detector simulation
to jets reconstructed from the generator level particles in the corresponding signal events.
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Figure 7.3. Correlation between the reconstructed and the generated jet transverse energies, in
PbPb (full squares) and in jet events without background (open circles), in the central barrel
(In] < 0.3, left panel) and endcap (1.6 < |n| < 1.9, right panel) regions.

The influence of the background subtraction algorithm on the jet energy scale is evaluated
by studying the correlation between the reconstructed, EX®, and the generated, EMC,
transverse energies of jets in a cone of R = 0.5, both in central PbPb events and in jet events
without background. Such correlations are shown in figure 7.3, for the barrel (left panel)
and endcap (right panel) regions. The points represent the mean transverse energy of the
reconstructed jets and the error bars show the dispersion of the corresponding distributions.
On average, the reconstructed jet energy in central PbPb collisions corresponds very well
to the energy reconstructed without background. In events with background, with respect to
the events without background, the mean values of the reconstructed jet transverse energy
are slightly lower for EMC > 200 GeV and slightly higher for E}© < 100 GeV. Although the
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Figure 7.5. Jet pseudorapidity (left) and azimuthal angle (right) resolutions as a function of jet
transverse energy, in central PbPb collisions (full squares) and in jet events without background
(open circles) in the central barrel (|n| < 0.3) region.

values with and without background are compatible with each other within their error bars,
the EX° vs. EMC correlation seems to have a slightly different “slope”.

The jet energy resolution, defined as o (EX<°/ EMC) /(E° / EMC) 'is shown in figure 7.4
for the central barrel (left panel) and endcap (right panel) regions. For jets above Et =
75 GeV, the jet energy resolution is degraded by a factor ~1.3 in high multiplicity central
PbPb collisions compared to jets without background.

Since the azimuthal angle and the rapidity distributions of jets are of particular interest for
jet quenching observables in heavy-ion collisions, spatial resolution is important. Figure 7.5
shows the differences in pseudorapidity (An, left panel) and in azimuthal angle (Ag, right
panel) between reconstructed and generated jets in events without and with PbPb background
for different generated jet energies in the barrel. For 100 GeV jets, the 1 and ¢ resolutions
are 2.8% and 3.2%, respectively. They are slightly better in the endcap region than in the
barrel. The jet spatial resolution is degraded in central PbPb collisions in comparison with the
event sample without background, but is still better than the 5, ¢ size of one calorimeter
tower (0.087 x 0.087). Thus, the spatial position of a hard jet can be reconstructed in
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Figure 7.6. Transverse energy dependence of the reconstruction efficiency (open squares) and
purity (closed triangles) of the jet reconstruction, in central PbPb events in the central barrel
(In] < 0.3, left panel) and in the endcap (1.6 < |n| < 1.9, right panel).

heavy-ion collisions in CMS with sufficient accuracy for the analysis of jet production as
a function of azimuthal angle and of pseudorapidity.

Figure 7.6 shows the efficiency and purity of the calorimetric jet reconstruction in the
barrel (left panel) and endcap regions (right panel) as a function of the MC jet energy. The
efficiency of the jet reconstruction is defined as the fraction of events with a true QCD jet
matched to the reconstructed jet among all the generated events. It is essentially 100% for Et
above 75 GeV (100 GeV) jets in the barrel (endcap) region. The purity of the reconstructed jet
sample is defined as the number of events with a matched true QCD jet divided by the number
of events with at least one reconstructed jet (fake or real) with transverse energy above 30 GeV.
For jets in the barrel (endcap) with Et above 50 GeV (75 GeV), the purity of the reconstructed
jet sample is essentially 100%. More detailed descriptions of the jet reconstruction algorithm
and performance can be found in Refs. [217, 218, 220, 221].

7.2.5. Jet studies with fast simulation

The aim of this study is to estimate the statistical reach of the expected inclusive jet
(and corresponding inclusive high-pt charged hadron) spectra in different PbPb collision
centralities, corresponding to one month of LHC heavy-ion running at design luminosity
(0.5nb~"). Given the large statistics (millions of heavy-ion events) necessary to complete
the study, a full detector simulation is, computationally, too expensive. Alternatively, we
have employed a fast simulation technique including the basic geometrical coverage of the
CMS calorimeter system, magnetic field and segmentation, adjusting the most important
detector response features, like the energy resolution of the jet reconstruction algorithm, to
agree with the performance obtained using detailed detector simulations [217, 218, 220, 221].
A summary of the procedure is described below. More detailed information can be found
in Ref. [193].

Jet reconstruction is carried out within the HIROOT framework (see Appendix B). The
same modified iterative cone algorithm is used as in the full simulations, with a seed
threshold of E.q = 10 GeV and a minimum Et cut of 30 GeV. The particles in the PbPb final
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Figure 7.7. Jet ET resolutions (in percent), as a function of ET, as obtained in the fast (HIROOT)
and full (oscaRr) detector simulations. After additional smearing, the HIROOT resolutions are in
good agreement with those from the full simulations, both for pp and for PbPb collisions.

state, generated by HYDJET, are sorted into 17 — ¢ bins corresponding to the CMS hadronic
calorimeter segmentation. Charged tracks with pr smaller than 0.8 GeV/c are not considered
(since they cannot reach the calorimeter surface in the 4 T magnetic field), but for all other
purposes the magnetic field is neglected (trajectories are approximated as straight lines). The
deposited energy in all calorimeter towers is collected (without including a specific detailed
calorimeter response) and a “jet component” object is created for all calorimeter towers. The
energy of such a jet component will simply be the sum of energies of the particles hitting
the given calorimeter tower. The iterative cone algorithm and the background subtraction is
run on these jet components. The first step is to find all jet candidates using a R = 0.5 cone
radius, iteratively, starting from jet component seeds in decreasing order of transverse energy.
The second step is to calculate the average energy and the RMS of the tower energies for all
n-rings excluding the cones of the jet candidates. The sum of the average and the dispersion
of the energies in each n-ring are subtracted from all towers in that n-ring. The third step is to
find the jets on the jet towers with the newly corrected energies.

The resolution of the jet energy obtained by this procedure includes the smearing induced
by the fluctuating soft particle underlying heavy-ion background. However, the resolution
obtained in this way does not take into account the intrinsic energy resolution of the
calorimeter, or any kind of detector response. To approach reality more closely, the jet energy
resolutions were adjusted (“smeared”) to match the full GEANT4 (0SCAR) detector simulations
discussed in the previous section.

Figure 7.7 compares the resolutions from the fast (HIROOT) and full (0SCAR) detector
simulations. In the case of central PbPb collisions, the Et dependence of the resolution
given by the full detector simulation (closed black squares) is well reproduced by the fast
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Table 7.1. Part of the strawman trigger table (Table 5.3) relevant for jet-related studies at design
PbPb luminosity. For each channel we quote the allocated bandwidth, the average size of the events
satisfying the trigger condition and the average data logging rate.

Channel Et threshold ~ Bandwidth [MByte/s]  event size [MByte]  rate to tape [Hz]

min. bias - 33.75 (15%) 25 13.50
jet 100 GeV 24.75 (11%) 58 4.27
jet 75 GeV 27 (12%) 57 4.74
jet 50 GeV 27 (12%) 54 5.00

simulation results (closed blue triangles). A very good agreement is obtained when the jet
energy reconstructed is convoluted with an additional Gaussian smearing function of 3-15%,
depending on multiplicity and Et (closed red circles).

In pp collisions the difference between the generator level and OSCAR resolutions is much
larger, because of the lack of background fluctuations and any other detector effects in the fast
simulation. Therefore, a larger jet energy smearing is added in the pp case to adjust the fast
Monte Carlo resolutions to the OSCAR results. The extra smearing is slightly £t dependent in
both the pp and PbPb cases. The good agreement seen in figure 7.7 between the red circles
(smeared fast MC) and the black squares (OSCAR) is precise enough to justify doing the large
statistics simulations and the trigger studies only using the fast simulation tool. After the extra
necessary smearing has been determined for pp and central PbPb collisions, the amount of
smearing in non-central PbPb collisions is interpolated between these two cases, for each
generated event, assuming that the smearing scales like the square root of the multiplicity
density at midrapidity, \/dNc,/dy |,—o. Although a multiplicity density of dNc,/dyl,—o =
5000 was used in these comparisons and adjustments, a smaller (more realistic) multiplicity
density, dNcy/dy|y—o = 3200, is assumed for central PbPb collisions for all other results
presented here.

7.2.6. Trigger rates

The expected number of jet pairs produced with EJ > 100 GeV in the CMS acceptance
is as high as 4.3 x 10°® in one month of PbPb running at the LHC (see Table 7.2) [47]. As
discussed in detail in Chapter 5, the high readout rate of the CMS data acquisition system
allows inspection of all minimum bias PbPb events by the high level trigger farm. The jet
reconstruction algorithm fits into the foreseen HLT time budget and can thus be used to derive
a trigger decision using fully reconstructed jets in each inspected PbPb event.

Table 7.1 collects the bandwidth allocations for the various trigger channels relevant for
jet studies (see Table 5.3 for more details). The average event size depends on the trigger
condition, because a high energy jet trigger tends to select slightly more central collisions.
The maximum logging rate in each channel (last column) is the ratio between the allocated
bandwidth and the average event size. Since the jet quenching effect introduces a centrality-
dependent modification of the shape of the jet Et distribution, it is not a priori possible to
calculate the corresponding HLT pre-scale factor, which will have to be determined from real
data once data taking starts.

The CMS High Level Trigger will have a large buffer storage that ensures data taking
with almost no dead time. The channels with large input rate will be appropriately prescaled
so that the rate to tape will be min{r;, R;}, where r; is the input rate and R; is the maximum
rate to tape in the i’* channel. The jet rates were obtained using the standard integrated
luminosity of 0.5nb~! and a 7.8 b inelastic PbPb cross section, giving a total of 3.9 x 10°
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Table 7.2. Number of jets (with axis within || < 2) above three different EtT thresholds, in
different centralities for PbPb collisions at 5.5 TeV and 0.5 nb~! integrated luminosity. 15% of the
total bandwidth was allocated to the minimum bias trigger and 11-12% to the individual triggered

channels.
Number of jets above
Centrality bin  Data taking mode 50 GeV 75 GeV 100 GeV
0-10% Infinite bandwidth  2.27 x 107 3.71 x 10°  9.67 x 103
Minimum bias 7.86x10* 128 x10* 3.35x10%
Triggered 2.02x10°  1.79x 10°  9.67 x 10°
10-20% Infinite bandwidth ~ 1.40 x 107 2,51 x 10°  6.74 x 10°
Minimum bias 485x10* 8.69x10° 233x10°
Triggered 1.23x10° 121 x10° 6.74x 10°
20-30% Infinite bandwidth  1.03 x 107  1.98 x 10°  6.29 x 10°
Minimum bias 3.57x 10 6.85x10° 2.18x 10°
Triggered 9.22x10°  9.54x10°  6.29 x 10°
30-40% Infinite bandwidth ~ 7.06 x 10°  1.25x 10°  3.17 x 10°
Minimum bias 244 x10%  433x10°  1.10x 103
Triggered 6.33x10°  6.01x10° 3.17x 10°
40-50% Infinite bandwidth  4.84 x 10° 930 x 10°  2.78 x 10°
Minimum bias 1.68 x 10*  3.22x 103  9.62 x 102
Triggered 434x 100 448x10° 278 x 103
50-60% Infinite bandwidth ~ 3.28 x 10°  5.89 x 105 1.72 x 10°
Minimum bias 1.14x 10*  2.04x10° 595 x 10?
Triggered 294x10° 2.84x10° 1.72x10°
60-70% Infinite bandwidth  1.87 x 10° 3.68 x 10°  9.92 x 10*
Minimum bias 647 x10°  127x10°  3.43 x 102
Triggered 1.68x10° 178 x10°  9.92x 10*
70-80% Infinite bandwidth  9.23 x 105  1.80 x 10°  4.98 x 10*
Minimum bias 3.12x10°  6.23x 102 1.72 x 10%
Triggered 826 x 10*  8.67x10*  4.98 x 10*
80-90% Infinite bandwidth  3.96 x 105 7.24 x 10*  1.82 x 10*
Minimum bias 1.37x 103> 2.52x10>  6.29 x 10!
Triggered 3.55x 104 3.49x10*  1.82x10*
Total Infinite bandwidth ~ 6.54 x 107  1.16 x 107 3.20 x 10°
Minimum bias 226x105  4.02x10* 1.11x10*
Triggered 5.82x 10 5.59x10% 3.20 x 10°

PbPb collisions. The impact parameter distribution was sliced into bins corresponding to 10%
of the total inelastic cross section, from most central (0—10%) to most peripheral (80-90%).
A few million minimum bias HYDJET events were used to count the number of jets in each
centrality bin, with axis within |n| < 2, including jet quenching and the extra smearing that
makes the resolution in the fast simulation similar to the one of oscar. The number of jets
with Et above 50, 75, and 100 GeV are listed in the “Infinite bandwidth” rows of Table 7.2.

The second row for each centrality bin lists the number of jets in the minimum bias trigger
channel, which has 15% of the allocated bandwidth. The trigger acceptance rate was estimated
to be 0.35%, assuming a 2.5 MByte average event size [195], 10° seconds of data taking
per month and a constant luminosity during each store. The third row, labelled “Triggered”,
contains the number of jets to be collected using the jet trigger.

The values in Table 7.2, which reflect the jet quenching model of the HYDJET event
generator, show that the production rate of Et > 100 GeV jets is below the bandwidth limit
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Figure 7.8. Left panel: Leading jet E distributions for one month PbPb running (0.5 nb~!) taking
into account the HLT bandwidth allocations: untriggered dataset (black) and triggered samples
with Et thresholds of 50, 75 and 100 GeV (blue, green and red, respectively). Right panel: The
same distributions but normalised per event and scaled by appropriate factors to recover the shape
of the non-triggered distribution, with much higher statistics.

(hence, all those events will be stored), while the events with less energetic jets will have to be
pre-scaled, by factors around 10 and 2 for the 50 and 75 GeV jet trigger channels, respectively.
We can also see that the gain in the number of jets at high Et due to the jet trigger, compared
to the minimum bias rates, will be more than two orders of magnitude. We will now present
the benefit of the high-Er trigger on the expected Et reach of the jet spectra, for different
PbPb centralities.

7.2.7. Jet E1 spectra reach

The left panel of figure 7.8 shows the simulated leading jet E distribution as collected after
one month of PbPb running at the LHC (0.5nb™ "), taking into account High Level Trigger
bandwidths and jet quenching effects implemented in HYDJET. There are four different data
sets contributing to this figure, collected with the minimum bias trigger and with the three
different triggered samples, requiring jet Et values above 50, 75 and 100 GeV. The relative
integrals of these different contributions reflect the HLT bandwidth allocations. In particular,
assigning 15% of the total bandwidth to minimum bias triggers, we should collect 13.5 million
minimum bias events in one month. The original shape of the non-triggered distribution can
be recovered by scaling the relative yields of the four data sets so that a smooth distribution
is obtained. The scaling factors are determined by considering each pair of consecutive data
sets and fitting the combined leading jet Et spectrum with a power law in the joining region
(see figure 7.8). It is worth noting that the optimal scaling factors can be determined from the
data distribution without any prior knowledge of the spectrum, simply minimising the x2 of
the power-law fit.

This way, the shape of the minimum bias Et spectrum is recovered, but with much larger
statistics. The right panel of figure 7.8 shows these datasets scaled by the appropriate factors,
and sliced into the intervals between trigger thresholds. Here, only the events generated for the
dataset with 50 GeV threshold contribute to the histogram in the zone of leading jet transverse
energies between 50 and 75 GeV, and so on. Figure 7.9 shows the corresponding inclusive jet
Er distributions.
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Figure 7.9. Inclusive jet Et distributions in 10 centrality bins expected for PbPb (5.5 TeV)
collisions with nominal integrated luminosity 0.5nb™!. The distributions for different centrality
bins are offset by factors of 10 for illustration purposes. Left panel: Minimum bias. Right panel:
Triggered data sets merged by the scaling procedure described in the text.

With the effective integrated luminosity sampled by our HLT trigger settings, CMS can
measure inclusive jet production up to Et ~ 0.5 TeV in central PbPb collisions at 5.5 TeV.
Such a large Et reach and statistics allow one to carry out detailed differential studies of jet
quenching phenomena. A few examples are shown in the next sections.

7.3. High-py hadrons

7.3.1. Introduction

Above pr =~ 5GeV/c, hadron production is dominated by the fragmentation products of
(semi)hard partons. In high-energy AA collisions, the momentum of the leading hadrons of
the jets carry information on the amount of energy lost by the fragmenting parent parton. At
RHIC, in central AuAu collisions, the suppression of hadron production at high transverse
momenta (up to pr =20 GeV/c) has been one of the most important observables to study
medium-induced parton energy loss (see Section 1.4.5). The measured suppression factor
provides information on the initial gluon density and on the diffusion properties of the
medium (quantified by the transport coefficient, (¢)) [99,222]. CMS can extend the transverse
momentum reach of this measurement up to pr = 300 GeV/c, in PbPb collisions, thanks to
the large hard scattering cross sections at /syy = 5.5 TeV, the high luminosity, the large
acceptance of the CMS tracking system (|| < 2.5) and the triggering capability on jets. The
trigger is necessary to enhance particle yields at the highest transverse momenta reachable at
LHC energies. In this section, we present the statistical reach expected for the measurement of
inclusive charged hadron spectra in different PbPb centrality classes as well as in the nuclear
modification factors, by making use of the powerful tracking capabilities of the CMS silicon
tracker and the high- E jet trigger scheme discussed in the previous section.

7.3.2. Charged particle tracking efficiency

The reconstruction capabilities of the CMS Silicon Tracking System for charged particles
with pr > 0.8 GeV/c have been studied in detail [168] using a full detector simulation,
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Figure 7.10. Algorithmic charged particle tracking efficiency (left panel) and fake rate (right
panel), obtained from detailed 0sCAR simulation and ORCA reconstruction for central (b =0 fm,
closed symbols) and peripheral (b = 9 fm, open symbols) PbPb collisions [168].

with the GEANT4-based detector simulation package 0sCAR and the reconstruction package
ORCA. Figure 7.10 shows the transverse momentum dependence of the obtained algorithmic
tracking efficiency (left panel) and of the fake rate (right panel) in central (b = 0fm, closed
symbols) and peripheral (b=9fm, open symbols) PbPb collisions. A charged particle
multiplicity density of dNc,/dy|,—o = 3200 is assumed for central reactions. In this high-
multiplicity environment, an algorithmic tracking efficiency of at least 75% is achieved for
all centralities, keeping the fake track rate for pr > 1 GeV/c below the 5% level. The charged
particle reconstruction code developed for treating PbPb events requires, for particles to be
reconstructible, that they deposit hits in all the three pixel layers, for trajectory seeding, and
have a minimum of 8 hits in the full silicon tracker (pixel plus strip layers).

These geometrical requirements, convoluted with the probability that particles suffer
nuclear interactions in the tracker material and, hence, fail to deposit the minimum number
of hits in the silicon tracking system, give an efficiency of about 80% for charged particles in
the tracker volume (|n| < 2.5). Folding in the algorithmic reconstruction efficiency, high pr
charged tracks have a global probability of 75% x 80% = 60% to be reconstructed.

In addition, as shown in figure 7.11, high-pr tracks are reconstructed with excellent
momentum resolution, Apt/pr < 1.5% (for pr < 100GeV/c), and with a track impact
parameter resolution better than 50 um at high pr, good enough to measure secondary
displaced vertices from heavy-quark meson decays.

7.3.3. Results

The HYDJET model gives a factor of 4-5 suppression of the hadron yields at high pr in central
PbPb collisions at /syy =5.5TeV, due to parton energy loss in the produced medium,
with a decreasing amount of suppression with increasing impact parameter (i.e. when going
from central to peripheral collisions). In order to determine the expected inclusive charged
particle spectra and nuclear modification factors for different PbPb centrality classes, we
use the HIROOT fast MC complemented with realistic parametrisations of the efficiencies,
as obtained from full simulations. The total reconstruction efficiency for high-pr charged
tracks in the CMS silicon tracker is ~60%, independently of pr. The effect of this efficiency
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Figure 7.11. pr dependence of the track transverse momentum resolution (left) and of the
transverse impact parameter resolution (right) achieved in heavy ion events (with d N /dy|y—0 =
3200) in the barrel (full symbols) and in the forward endcap (open symbols) regions.

loss is simulated in our generator level study by randomly removing 40% of the generated
tracks (in a pr-independent way) and by applying a 1/0.6 correction factor when getting
the charged particle pr spectrum. In addition, we also correct for the trigger efficiencies, by
applying scaling factors obtained for each HLT trigger class. Data sets have been generated
following the trigger requirements and containing the amount of jets (with Et above the
specific threshold of each class) expected for one month of PbPb data taking at design
luminosity. The data sets are then combined in the way explained in the previous section, so
that the statistical errors on the charged particle pr spectrum realistically reflect the expected
experimental situation after one month of data taking with the four different trigger conditions.
In total, 7.2 million minimum bias events and 6.2 million triggered events were generated.
The resulting spectra, as well as the R44(pr) and Rcp(pr) ratios are presented in the next
sections.

Inclusive high- pr spectra

Figure 7.12 shows the charged particle transverse momentum spectra in the four event classes
discussed in the previous Section 7.2:

A) minimum bias events where the Et of the leading jet is below 50 GeV;
B) triggered events where 50 < EX" < 75GeV;

C) triggered events where 75 < EX* < 100 GeV;

D) triggered events where EX* > 100 GeV.

Each histogram is corrected by the appropriate trigger scaling factor. Since the four
(scaled) sets of simulated data, together, give the minimum bias set (as was shown for the
leading jet distributions), the sum of the four histograms (represented by the closed black
circles) gives the minimum bias charged particle distribution. The shape of this merged
charged particle pr spectrum is identical to the spectrum that would be obtained without the
jet triggers from a data set of much larger statistics. Figure 7.13 shows the expected charged
particle pr spectra for the minimum bias (left) and merged triggered (right) data samples,
in several centrality bins. Using the jet-triggered data samples, CMS can measure with good
efficiency the inclusive charged spectra up to pr & 300 GeV /c, in central PbPb collisions.
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Figure 7.12. Charged particle transverse momentum distributions in the |5| < 2.5 window for the
four trigger categories, selected according to the transverse energy of the highest Et (leading) jet.
The merged spectrum (closed black circles) has the same shape as the minimum bias spectrum but

much larger statistics.
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Figure 7.13. Charged particle pt spectra expected for PbPb collisions at 5.5 TeV with nominal
integrated luminosity (0.5nb™!), in 9 centrality bins, offset by factors of 100 for illustration
purposes, only using the minimum bias triggered sample (left) and using also the jet-triggered
data sets (right) merged following the procedure described in the text.

Nuclear modification factors

The nuclear modification factor, R44(pr, 1), and the central to peripheral ratio, Rcp (pr, 1),
provide quantitative information on the level of the energy lost by hard scattered partons,
and on its pr and n dependence, as they traverse the high density QCD medium. The study
of Raa(pr,n) and Rcp(pr, n) for leading hadrons provides important information on the
(thermo)dynamical properties of the created plasma, namely the initial gluon rapidity density,
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Figure 7.14. Expected statistical reach for the nuclear modification factor, R 44 (pr), for inclusive
charged hadrons in central PbPb collisions generated with HYDJET for a nominal integrated
luminosity of 0.5nb~!, for minimum bias data (left panel) and for data triggered on high-E
jets (right panel).

dN,/dy, and the transport coefficient, () (see Section 1.4.5). These nuclear modification
factors are defined as:

ot 42Ny /dprdy

Raa(pr,n; b) =
AT (Neor) dzapp/dedn
h .
e ton )= DY) NI g

(NGH™) 2N /d prdn

where (Neon) = (Tpppp (b)) X 0;‘;'1 is the average number of binary nucleon-nucleon collisions
in a given centrality class (with nuclear overlap function (Tp,p(b)) at impact parameter b)
obtained with a standard Glauber MC (see Ref. [105]).

R 44 quantifies the suppression (or enhancement) of hadron production with respect to pp
collisions, which are considered as a baseline for the QCD vacuum. If there are no nuclear
effects, the value of R4, at high pr should be unity. At LHC, no pp data will be available
at ./syy =5.5TeV at the time of the first PbPb data taking and analysis. Thus, transverse
momentum spectra of charged particles in pp collisions will be interpolated to this energy
using next-to-leading-order (NLO) predictions constrained by the existing Tevatron data at
2TeV and by the LHC results at 14 TeV [223]. The R¢p ratio, on the other hand, does not
require a pp reference, as it compares central to peripheral heavy ion collisions. It is not
equivalent to R4y, since even the most peripheral heavy ion collisions are influenced by
nuclear effects. Experimentally, the pr reach of the R¢ p ratio will be limited by the peripheral
data set (denominator), where only relatively few jets are produced as they scale with the
number of underlying nucleon-nucleon collisions and (N*"") & 23 « (N%M) A 1556. This
is a practical limitation to the pr range of the Rcp measurement.’®

Figure 7.14 shows the final result for one month of PbPb running (0.5 nb™"). The PYTHIA
proton-proton spectrum, obtained with the same settings as the PYTHIA /PYQUEN part of the

56 A possible extension of the present work is the study of a triggering scheme combining centrality and jet energy,
to enhance the yield of peripheral events with produced jets.
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Figure 7.15. Same as previous figure but for the central-to-peripheral ratio, Rcp (pr).

HYDJET generator (except, obviously, for the quenching part) has been consistently used
here as reference (denominator) for the R4 ratio. The R, nuclear modification factor is
shown as a function of pr for minimum bias (left panel) and for triggered data (right panel).
The statistical errors limit the reach of the minimum bias data sample to pp =~ 90GeV/c
while values of pt =~ 200GeV/c can be measured by applying the jet trigger with three
different thresholds. This shows that the application of the jet trigger is clearly very useful
for high statistics measurements of large transverse momentum charged particles. The actual
suppression factor, R4 4 ~ 0.3, shown in figure 7.14 reflects the specific implementation of the
jet energy loss model in our HYDJET event generator, which is in the ballpark of other existing
theoretical predictions (see figure 1.17).

Figure 7.15 shows our result for the pr reach of the R¢ p ratio for one month of data taking
at nominal luminosity. Comparing the minimum bias sample (left panel) to the jet triggered
sample (right panel), we conclude that triggering on jets extends the pr range where R¢p is
measurable very significantly, from ~ 50 to ~ 150 GeV /c.

It is important to note that the procedure to match and merge data from different data
streams is not sensitive to details of the physics model chosen for jet quenching. It is also
insensitive to the precise knowledge of the jet energy resolution (by construction, the scale
factors do not depend on the jet energy resolution), as long as the jet energy resolution is not
extremely poor. Other observables, like the jet Et spectra and the jet fragmentation functions,
are much less robust against poor knowledge of the jet reconstruction performance. Because
of their robustness, the measurements presented here are likely to be the first ones to emerge
from the PbPb data analyses, related to jet quenching phenomena.

7.34. Jet fragmentation function

We have seen in previous sections that CMS can measure jets up to Et ~ 500 GeV and leading
hadrons up to pr =~ 300 GeV /c. We can exploit such large ’dynamical range’ to study in detail
the properties of the effects of parton energy loss on the “jet fragmentation function” (JFF),
D(z), defined as the probability for a given product of the jet fragmentation to carry a fraction
z of the jet transverse energy, E1. In nuclear (AA) interactions, the JFF for leading hadrons
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Figure 7.16. Jet fragmentation function for leading hadrons with " <2.4, |;7je‘| <3 and
Et > 100 GeV (jet cone radius R = 0.5) in central PbPb collisions for the cases without (squares)
and with (circles) partonic energy loss. The number of histogram entries and statistical errors
correspond to the estimated jet rate in most central PbPb collision for one month of LHC run.

(i.e. the hadron carrying the largest fraction of the jet momentum) can be written as [224]:

2 dN/l;?x() t JEI(k)
_ _|e
b= [ awhrave e Ahdydz” Jet / der) Je‘)zd b

z-pjTe‘.
where plt = szTet = 7'pr is the transverse momentum of a leading hadron, 7’ is the hadron
momentum fraction relative to the pr of the parent parton (i.e. without energy loss z =z’

in leading order pQCD), pﬁnm is the minimum momentum threshold of observable jets, and

AN/ d(pEH2dy) and (ANED)/(d(ph)2dy dz') are the yields of k-type jets (k =g, g)
and jet- fragmentatlon hadrons, respectively. Comparison of the JFF in nuclear and pp
collisions (or in central and peripheral nuclear interactions) yields information about the
in-medium modification of the JFF.

The leading hadron in a jet can be a charged hadron or a neutral pion. As described
previously, the CMS tracking system can measure with high efficiency the high-pr (leading)
charged hadrons. Detecting energetic neutral pions in jets is more challenging since at high
enough transverse momentum (above & 15GeV/c), the centres of the showers of the two
photons from the 7 decay fall into a single crystal of the CMS electromagnetic calorimeter,
and traditional techniques for reconstructing the 7°’s using yy invariant mass analysis fail.
However, such merged electromagnetic clusters can still be identified as a leading 7° with
relatively large efficiency [225] using cluster-shape analysis in the central barrel and using the
preshower in the endcaps.
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A significant softening of the JFF, determined by the absolute value of medium-induced
partonic energy loss and the angular radiation spectrum, has been predicted for heavy-
ion collisions at the LHC [224, 226]. Figure 7.16 shows JFF’s with and without partonic
energy loss simulated with PYTHIA [165]. The one with energy loss has been computed for
central PbPb collisions using the PYQUEN energy loss model [180, 211]. The jet energy was
determined as the total transverse energy of the final particles collected around the direction of
the leading particle inside the cone of radius R =/ An? + Ag? = 0.5, where 1 and ¢ are the
pseudorapidity and the azimuthal angle, respectively. Extra cuts of |n"| < 2.4, [7®| < 3 and
E%?t > 100 GeV were applied. The number of entries and the statistical errors correspond
to the estimated jet rate in central PbPb collisions for one month of LHC running (first
row in Table 7.2). A concurrent study of the possible softening of the JFF and suppression
of the absolute jet rates due to in-medium gluon bremsstrahlung out of jet cone can be
carried out in order to differentiate between various energy loss mechanisms (small-angle
radiation versus wide-angle radiation and collisional loss) [224]. Significant softening of the
JFF without substantial jet rate suppression would be an indication of small-angle gluon
radiation dominating the medium-induced partonic energy loss. Increasing the contribution
from wide-angle gluon radiation and collisional energy loss leads to jet rate suppression with
less pronounced softening of the JFF. If, instead, the contribution of the “out-of-cone” jet
energy loss is large enough, the jet rate suppression may be even more significant than the
JFF softening. In addition, determination of the FFs for varying values of the cone radius R,
can help to systematically sample the pattern of the radiated energy loss.

Note that, in the real experimental situation, the jet observables will be sensitive to the
accuracy of the jet energy reconstruction, in particular to the systematic jet energy loss.
However, since the average reconstructed jet energy in PbPb collisions is expected to be about
the same as in pp interactions [217, 218], the reduced jet energy measurement will be a well-
controlled systematic error, for heavy-ion data as well as for pp collisions, and it can be taken
into account using the standard calibration procedure.

7.3.5. Summary

The high-pr charged particle reconstruction capabilities using the CMS Silicon Tracking
System have been evaluated using a full detector simulation, assuming a charged
particle density in central PbPb collisions of d/Ncy/dy|y—o = 3200. In this high-multiplicity
environment, a pr-independent algorithmic tracking efficiency of about 75% is achieved with
only a few percent fake track rate for pr > 1 GeV/c. Tracks are reconstructed with excellent
momentum resolution, Apt/pr < 1.5% (for pt < 100 GeV/c). The proposed high level jet
trigger enhances the statistics of high-pr particle spectra significantly. The pr reach of the
measured inclusive spectra and nuclear modification factors can be extended from about
pr =90GeV/c to about 300 GeV/c in central PbPb collisions, allowing precise differential
studies of the expected high-pr suppression pattern due to parton energy loss in the hot
and dense medium produced in the reaction (such as medium-modified JFFs), and providing
crucial information on the thermodynamical and transport properties of the system.

7.4. Jet tagging

An ideal direct probe of in-medium parton energy loss in high-energy nucleus-nucleus
collisions is provided by hard processes where a high-pr jet is tagged by an “unquenched”
(i.e. not strongly interacting) particle such as a prompt y or a y*/Z° decaying into dileptons
(see figure 7.17). The advantage of such processes is that the initial transverse momentum
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Figure 7.17. Cartoon illustrating the Z°/y*(— u*u™) (quenched) jet azimuthal geometry.

of the hard jet can be determined since at LO pY S p%’ZU, and the energy lost by the parton
in the QCD medium can be directly estimated. The dependence of the energy loss per unit
length, dE /dx, on the initial jet energy or on the distance traversed through the medium can
then be measured by varying the energy of the tagged (virtual) photon or Z° in collisions of
different nuclei or as a function of centrality.

The production of high-mass virtual photons, y*, and Z° bosons in association with
hadronic jets is, for the first time, energetically feasible in heavy-ion collisions at the LHC
[117,227], with reasonable cross sections (see figure 7.20, below). In this section, we present a
generator-level study with basic CMS acceptance cuts on the expected signal and backgrounds
for different observables related to jets (or high-pt hadrons) produced opposite to a gauge
boson decaying into a muon pair.

74.1. v+ jet studies

Obtaining precise information on parton energy loss via the study of jet-jet correlations (or
leading hadron-hadron correlations, as done at RHIC [228]) is not trivial because both hard
scattered partons can potentially be affected by the medium and the initial energy of both
jets is, in principle, unknown. An alternative measurement suggested by Wang and collab-
orators [229, 230] was to study the hadron momentum fraction distribution, z = phadron /¥
in y+jet processes. Replacing the hadronic probe on one side by an electromagnetic probe,
it is possible to measure the pt of the initial hard scattering since ﬁjlf’t ~ —p¥. The relation
is valid at leading order up to kr effects, where kr is the intrinsic transverse momentum of
the initial partons. The jet is then considered to be tagged (y-tag). The direct photon cou-
ples weakly with the medium and conserves its initial kinematics while, on the other side,
the parton loses energy (by collisions, gluon radiation) and will be attenuated. Precise studies
of the medium-modified leading hadron fragmentation functions are thus accessible in the
y+ jet channel [116,231]. In addition, since the dominant channel for high pr y + jet produc-
tion is gg — qy , the bulk of the jets detected in this channel originate from quarks. Therefore,
at variance with the dominant gluon scattering in dijet production below Et = 100 GeV, the
y+ jet process makes it possible to directly study quark energy loss and thus test the expected
colour Casimir-factor dependence of QCD bremsstrahlung, see equations. (1.3) and (1.4).
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Figure 7.18. Distribution of ET “imbalance” between the y and jet with E%, EJTet > 120GeV,
at mid-rapidity (|y| < 1.5), for different values of the leading parton energy loss [232, 233]. The
statistical errors correspond to those expected for a two week run at £ = 10?7 cm~2 s~! with HLT
triggering.

An example of the expected Et “imbalance” between a y and a quenched jet in PbPb
collisions at the LHC is shown in figure 7.18, from Refs. [232, 233]. Both the y and the
jet have E}'/Jet > 120 GeV and are produced at central rapidities (|y,, yj:| < 1.5) for three
different “jet quenching” scenarios, depending on the average parton energy losses at y = 0:
(1) (AE,) >~ 0 (no quenching); (ii) (AE,) >~ 9GeV; (iii) (AE,) >~ 18 GeV. Initial state gluon
radiation and finite jet energy resolution have been taken into account. Without parton energy
loss, the difference EX — E%e' is relatively broad but symmetric. With increasing energy loss,
the distribution becomes more skewed as EY — E4 grows larger.

7.4.2. Z°- and y *-tagged jet studies

A drawback of the y + jet measurement presented in the previous section is the difficulty
of prompt photon identification. At variance with the proton-proton case, and due to the large
particle multiplicities in AA interactions, in general no simple isolation criteria can be applied
to easily identify prompt photons on top of the underlying event. Several instrumental and
analysis factors conspire to make this measurement relatively challenging: random pairing of a
direct photon with a decay y to give an invariant mass consistent with a 7°; two photons from
a high- pr 7° merging into a single cluster in the ECAL; and others. In addition, direct photons
can also be produced by the collinear fragmentation of a hard quark or gluon (especially
relevant at relatively low pr) [234]. Thus their inclusive cross section can also (potentially)
be affected by medium-induced attenuation [235], blurring their use as a clean calibration of
the opposing jet.

Alternatively, the processes gq — qy* or gq — qZ° with dilepton+ jet as the
experimental signature, overcome all the drawbacks of the y+ jet analysis while keeping
the ‘golden channel’ characteristic of an unbiased measure of the original energy of the
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Figure 7.19. The distribution of the difference between the transverse momentum of a Z°/y* —

o
urp” pair, p% “ and five times the transverse energy of the leading particle in a jet, 5 E]Te"‘d, in

minimum bias PbPb collisions at 5.5 TeV with (dashed histogram) and without (solid histogram)
parton energy loss [117]. See text for the kinematic cuts.

hard-scattered parton. The only disadvantage is the significantly lower cross section relative
to y +jet (see figure 7.20, below). While the reaction gg — ¢Z° is a small contribution
to the total Z° yield [49], it is a more distinctive signature than the gg — gy channel
since the Z° is free from the high background of hadronic decays contributing to the direct
photon spectrum [163]. The transverse momentum imbalance in y*/Z%+ jet production due
to interactions of the parent parton in the medium has been studied [117] for u*pu™+ jet,
as has the correlation between the u*pu™ pair and the leading particle in a jet. The average
fraction of the parent parton energy carried by a leading hadron at these energies is z ~ 0.2.
Figure 7.19 shows the difference between the transverse momentum of a u* ™ pair, p‘Tﬁ’f,
and five times the transverse energy of the leading particle in a jet (since z ~ 0.2) for minimum
bias PbPb collisions at 5.5 TeV. The process was simulated with COMPHEP/PYTHIA [165,
236] with and without partonic energy loss as parameterised in the PYQUEN model [180,
211]. The CMS acceptance cuts, [n*| < 2.4, [p¥| < 3, pt > 5GeV/c, p’Tﬁ“i >50GeV/c
and E > 50 GeV, have been applied. The jet energy was determined as the total transverse
energy of the final particles collected around the direction of a leading particle inside a
cone R =./An?+ Ag?=0.5, where n and ¢ are the pseudorapidity and azimuthal angle,
respectively. Despite the fact that the initial distribution is smeared and asymmetric due to
initial-state gluon radiation, hadronization effects, etc., one can clearly observe the additional
smearing and the displaced mean and maximum values of the pr imbalance due to partonic
energy loss. The pr-imbalance between the u* ™ pair and a leading particle in a jet is directly
related to the absolute value of partonic energy loss, and almost insensitive to the form of the
angular spectrum of the emitted gluons or to the experimental jet energy resolution.
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Medium-modified jet “fragmentation functions”

The production channels gg — y*/Z% (annihilation) and gqg — y*/Z% (Compton
scattering) with the subsequent decay y*/Z° — I*I~ (I =e, u) and the fragmentation of
the parton g/g — jet (figure 7.17) are useful tools for determining the jet “fragmentation
function” constructed from the normalised yields of associated hadrons produced opposite
(in the away-side azimuthal hemisphere) the Z°/y* as a function of the variable z =
p%SSOC/p'tlflgger’

1 dNaway
N trigger dz

D() = | 2)
p[T”ggerﬁxed

where the variables are described below. On an event-by-event basis, dileptons (trigger)
coming from Z°/y* decays are identified and paired with all associated hadrons within
different momentum ranges from the same event. The overall azimuthal distribution per

trigger particle is defined as
Zevem Ntrigger

where A¢ = ¢plrieeer — $p35°¢ The N (A¢) distributions are generated for a fixed ptTrigger interval

and several p7° intervals. After identifying the away-side (A¢ ~ m) jet component, the

dependence of the Nyy,y yield can be computed for a fixed py = interval, as in equation (2).
This distribution contains all the hadronic fragments of the initial parton, including the
hadrons from the fragmentation of medium-induced gluon radiation of the parton. Thus D(z)
is not the same as the vacuum fragmentation function measured in e*e™ collisions, though
this identification is typically assumed.

The analysis can be performed in azimuth (in the plane perpendicular to the beam axis)
and in rapidity (along the beam axis), but only the principles of the azimuthal analysis are
discussed here. Only muons are considered with cuts, where mentioned, imposed by the
CMS muon detector (p > 3.5GeV/c and |n| < 2.4). Dielectrons can also be used to increase
the signal statistics as well as to reduce the systematic uncertainties of the measurement
(the branching ratios for both signal and background decays into electrons and muons are
equal). However, the capabilities of the CMS electromagnetic calorimeter for dielectron
measurements in the high multiplicity heavy-ion environment have not yet been investigated.

N(Ag) = , 3)

Expected signal yields

The following discussion considers PbPb collisions at ./syy =5.5TeV with nominal
luminosity, £ =5 x 10**cm™2s~!. A runtime of 10°s is used, corresponding to one month
of collisions at 50% efficiency, giving an integrated luminosity of 0.5nb~!. The Z°/y*+ jet
rates in PbPb collisions are obtained from the pp cross sections, evaluated with the PYTHIA
6.32 event generator [237] (default parameters and CTEQSM PDFs), via 044 = Azap,,. In
order to reduce the MC generation time, all PYTHIA processes were turned off (MSEL = 0)
except gg — Z°/y*g(ISUB = 15) and gg — Z°/y*q(ISUB = 30). The Z°(MSTP(43) = 2)
and y*(MSTP(43) =1) contributions were separated. To obtain good statistics at high
transverse momentum, 10 000 events were simulated in 10 GeV/c-wide pr bins between 10
and 300 GeV/c. Each bin was afterwards scaled by its corresponding cross section and added
to the rest of the bins to give the final signal spectra. Only dimuon decays were selected,
BR(Z°/y* — u*u~) = 3.36%, and only dimuons with individual muon pr high enough to
pass the CMS acceptance momentum and pseudorapidity cuts were kept (p > 3.5GeV/c
and |n| < 2.4.
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Figure 7.20. Integrated annual yield of tagged jets in PbPb at \/syy =5.5TeV for 0.5 nb~!
integrated luminosity, as a function of the lower bound pf"" of the jet. The lines depict y tags and
dimuon tags from Z° and y* for different dilepton invariant mass, M, intervals.

Table 7.3. Integrated annual yield of dimuon tags from Z° and y* for different invariant mass,
M- intervals in PbPb at /syy =5.5TeV and 0.5 nb~! integrated luminosity, for four

min

minimum pr values, py

pRin(GeV/c) 10 20 30 50
70 > ptu” 3000 1800 900 500
y* (My+,~ > 12GeV/c?) 1900 750 300 90

y* (My+,-[4.0,8.51GeV/c?) 2100 750 200 40
y* (My+,~113,2.71GeV/c?) 900 300 100 20

The results of the PYTHIA simulations are presented in figure 7.20, which shows the
total integrated yield above the corresponding p’Tni“ for Z° +jet and y*+ jet in three different
mass windows. The y + jet yield is also shown, for comparison. The highest mass interval,
above 12GeV/ 02, is PYTHIA’s default. As reference, we also show two lower mass windows:
between the light-quark resonances (7, ¢) and the J/v mass; and between the ¢’ and YT
masses.

In Table 7.3 we list the integrated dimuon+jet yields expected with the nominal integrated
PbPb luminosity for four values of p", from figure 7.20. The lower limit on the dimuon pr
is the value for which we can reasonably well reconstruct the back-to-back leading hadron,
knowing that, on average, the leading hadrons carry ~ 20% (z & 0.2) of the initial parton pr.

Dimuon backgrounds

The main source of dimuon background is the combinatorial background from decays of D
and D (charm) and B and B (bottom) mesons. Dijets can also contribute through hadrons that
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Table 7.4. Parameters used in HVQMNR: (k7) is the mean intrinsic momentum, € is the
parameter in the Peterson fragmentation function [241], and &£f and &g are factorisation and the
renormalisation scale factors respectively.

mo(GeV/?)  (kr)(GeV/e) e & &g

charm 1.5 10 0.06 10 10

bottom 4.75 1.0 0006 10 10
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Figure 7.21. Annual dimuon yield for signal and background dimuons in two mass windows:
from 12 to 81 GeV/c? (left) and from 81 to 101GeV /c? (right) in minimum bias PbPb collisions
at 5.5 TeV with integrated luminosity 0.5nb~!. The error bars are only statistical.

are not stopped in the hadron absorber and are misidentified as muons in the muon chambers,
as well as through kaon and pion decays to muons (see Section 6.1). The semileptonic decays
DD/BB — [*I~ + X produce dileptons with branching ratios ~10.5% [238], that overlap with
the real dilepton signal from Z°/y* decays. In order to estimate the effect of this background,
we have used, as in previous studies [50], the HVQMNR [239] code (with the CTEQ6M
parton distribution functions [240]) which calculates heavy quark production at next-to-
leading order (NLO). The azimuthal distributions of the heavy quark pairs (and corresponding
decay dileptons) are peaked closer to ¢ = 7w for the more massive bottom quarks than for
charm. The HVQMNR input parameters are listed in Table 7.4. The parameters £ and &g
determine the proportionality of the factorisation and the renormalisation scales, respectively,
to a default scale wo: wr =&pmo and g = Egpg. For double differential distributions,
Lo = (m%2 + (p%))l/z, where m is the quark mass and (p%) is the average of the Q and Q
squared transverse momentum. For single inclusive distributions, 1o = (m3 + p1)'/?.

The D and B background combined with the Z°/y* signal dimuons are shown in
figure 7.21, as a function of p{“ ~, for two different invariant mass cuts: 12 < M+,- <
81GeV/c? (left panel) and 81 < M,+,- <101GeV/c* (in the Z° mass region, right
panel).

Figure 7.22 shows the dimuon invariant mass distribution for the Z/y*—jet signal on top
of the heavy-quark decay muon background. At low invariant mass the continuum dimuons
are overwhelmed by the heavy-meson decays but in the Z° mass region the Z° peak is
well above the background. A few thousand Z°/y*+ jet signal events can be collected
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Figure 7.22. The invariant mass distribution for Z°/y*+jet and DD/BB dimuons with

p{’f >25GeV/c, p* > 3.5GeV/c and [n*| < 2.4 in PbPb collisions at 5.5 TeV. An integrated
luminosity of 0.5 nb~! is assumed.
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Figure 7.23. The rejection factor of D and B decay dimuons obtained applying a 30 DCA cut in
the CMS silicon vertex tracker. The vertical bars are statistical errors while the horizontal ones are
the r.m.s. of the momentum distribution within the bin.

(see Table 7.3), sufficient for detailed studies of the medium modification of jet fragmentation
functions (Eq. 2).
DD, BB background rejection

The signal dileptons from y* and Z° decays come directly from the collision vertex whereas
the background muons from D and B decays issue from a secondary vertex a few hundreds
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of um away. The distance of closest approach (DCA) between the primary vertex and the
lepton trajectory can then be used to reject this background. The DCA cut consists of two
separate “point-to-line” DCA cuts, used together (one or the other). The dilepton rejection
factor for heavy meson decays has been estimated with a typical DCA cut for the CMS
silicon vertex tracker. The DCA resolution in a heavy-ion environment [168] is 0,4 ~ 20 um
in the transverse plane and o,, =~ 50 um in the longitudinal plane (see figure 7.11-right in
Section 7.3.1). Figure 7.23 shows the rejection factor achieved with a 3o cut (DCA(r¢)>
60 um or DCA(rz)> 150 um). The vertical bars are statistical errors corresponding to 5S0M
events with ph > 15GeV/c. Hence, a rejection factor of about 5 can be obtained by two
simple DCA cuts between each lepton trajectory and the primary vertex, OR ’ed together.
Note that, even though an ideal decay geometry was simulated in our event-generator studies
(straight trajectories for zero magnetic field and perfect primary vertex position), the DCA
resolution has been estimated with the full detector simulation in a heavy-ion environment
(bent tracks, high multiplicity, realistic resolutions) [168].



CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions 2429

Chapter 8. Ultraperipheral collisions
8.1. Introduction

Ultra-peripheral collisions (UPCs) of heavy-ions involve long range electromagnetic
interactions at impact parameters larger than twice the nuclear radius where no nucleon-
nucleon collisions occur. At the LHC, the strong electromagnetic field due to the coherent
action of the Z = 82 proton charges of the lead nucleus accelerated at TeV energies generates
an equivalent flux of photons which can be used for high-energy photoproduction studies
(see e.g. [130-132]). The equivalent (Weiszicker-Williams) photon spectrum of UPCs has
axZ?/ E, dependence and, thus, for a Pb beam, a Z? ~ 7000 flux enhancement factor
is expected compared to electron or proton beams. The upper limit in the photon energies
is of the order of the inverse Lorentz contracted radius R, of the nucleus: w;qx = y/R4.
The requirement that all the charges act coherently in the generation of the equivalent
photon imposes very small virtualities for the photoproduction process. Therefore, the emitted
photons are quasi-real (Q? ~ 0), the beam charges are barely deflected in the process and any
produced particles have very low transverse momenta, of the order pr <2/R4 &~ 50 MeV/c
or pr & Mx/y ~ 30 MeV/c. At the LHC, lead beams at 2.75 TeV/nucleon have Lorentz
factors y = 2930 leading to maximum (equivalent) photon energies wy,,, =~ 80 GeV. These
photons can then collide either with the other incoming Pb ion at maximum c.m. energies of
W)'ss ~ 1 TeV/nucleon (3—4 times larger than those of equivalent ep collisions at HERA), or
they can interact with another similarly radiated photon leading to two-photon collisions at
Wit &~ 160 GeV, comparable to those studied at LEP.

The physics interest of ultraperipheral PbPb collisions at the LHC is two-fold. On the one
hand, y A collisions open up the possibility to carry out precision QCD studies (e.g. of the
gluon distribution function in the nucleus [133]) with a low background and a much simpler
initial state than in pA or AA collisions. On the other hand, photon-photon collisions allow one
to study QED in a non-perturbative regime (where o, Z & 0.6) as well as, for example, triple
and quartic gauge couplings (such as y WW,y y W*W ™, see [134] and references therein).

We present in this chapter the CMS capabilities to measure diffractive photoproduction
of light (p) and heavy (Y") vector mesons, as well as photon-photon production of high-mass
(M, > 5GeV /c?) dileptons (considered here as a background of the photoproduced Y).
The lowest-order diagrams of these processes are shown in figure 8.1. Diffractive vector
meson production can be viewed in the “target” nucleus rest frame, as a sequence of three
processes well separated in time: the intermediate photon fluctuates into a gg pair; the gg
pair participates in a hard interaction with the nucleus via the exchange of a colour singlet
state (a Pomeron or two-gluons); and then recombines again to form a vector meson. On
the one hand, the study of p meson photoproduction extends the measurements performed
at HERA [242] and provides new information on the interplay of soft and hard physics
in diffraction [243, 244]. A clean signature with a low background in the w*7~ invariant
mass makes this measurement relatively straightforward in UPCs, as demonstrated in AuAu
collisions at RHIC [135]. On the other hand, the production of heavier quarkonia states
(J/v, Y) provide valuable information on the gluon density in the nucleus xG(x, Q?) [133],
and extends previous studies at RHIC energies [136] in a (x, Q?) range completely unexplored
so far (see 8.4).

Table 8.1 lists the expected cross sections for p, J/¢¥ and Y photoproduction in PbPb
UPCs at the LHC, as given by the STARLIGHT model [245-248]. STARLIGHT satisfactorily
reproduces the existing UPC p [135], J/¢ [136] and low- [137] and high-mass [136]
dielectron data at RHIC energies. It is worth noting, for comparison, that the theoretical
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Table 8.1. Cross sections predicted by the STARLIGHT model [245] for exclusive vector meson
photoproduction in ultraperipheral PbPb interactions at 5.5 TeV accompanied with neutron
emission in single (Xn) or double (Xn|Xn) Pb breakup (left diagram in figure 8.1). (ox, includes

aX)l\Xn)-

Process Otot OXn OXn|Xn
PbPb — y Pb — p+X 5200mb  790mb 210 mb
PbPb — y Pb — J/y +X 32 mb 8.7 mb 2.5mb

PbPb — y Pb — T(1S) +X 173 ub 78 ub 25 ub

Table 8.2. Cross sections for dilepton production in two-photon collisions from ultraperipheral
PbPb interactions at 5.5 TeV (right diagram in figure 8.1) according to the STARLIGHT model [245],
in the mass regions of relevance for J/¢ and T measurements.

Process yy —>ete” yy—>utu”
o(M > 1.5GeV/c?) 139 mb 45 mb
o(M > 6.0GeV/02) 2.8 mb 1.2mb

Pb

Pb Pb

Figure 8.1. Lowest order Feynman diagrams for Y (left) and lepton-pair (right) production in y A
and y y processes accompanied by Pb Coulomb excitation in ultra-peripheral PbPb collisions. The
dashed lines indicate factorisation.

T cross section in inelastic pp collisions at 5.5 TeV is ~ 600 times smaller: opp_vsx ~
0.3 ub [249], and the inelastic minimum bias PbPb Y cross section (discussed in Section 6.1)
is ~100 times larger: opppp—y+x = A?. Opp—T+x ~ 13 mb.

The most significant source of physical background for these measurements is the
coherent production of lepton pairs in two-photon processes (figure 8.1, right). Table 8.2 lists
the expected cross sections for the dilepton continuum in the mass ranges of relevance for
the quarkonia measurements. The fraction of the continuum cross sections accompanied by
nuclear breakup with forward neutron emission is expected to be the same as in the case of
quarkonia photoproduction, i.e. of the order of ~50% for the high-mass dileptons.

8.2. Trigger considerations

Ultraperipheral collisions are (i) mediated by the exchange of a colour-singlet object
(the photon) with a small momentum transfer, (i) characterised by a large rapidity gap
between the produced system and the beam rapidity, and (iii) the nuclei remain basically
intact or in a low excited state after the interaction. Thus UPCs can be considered
“photonic-diffractive” processes sharing many characteristics with hadronic-diffractive
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(Pomeron-mediated) collisions. An optimum UPC trigger is usually defined based on these
typical signatures:

(1) A large rapidity gap between the produced state and the interacting nuclei.

(2) Forward emission of neutron(s) from the deexcitation of one or both nuclei: (mutual)
Coulomb excitation — indicated by the soft y exchanged in the diagrams of figure 8.1
— occurs in about 50% of the UPCs and generates a Giant-Dipole-Resonance (GDR)
oscillation of the nucleus which subsequently decays via neutron emission.

(3) Very low global multiplicities: the central detector is virtually empty apart from the few
tracks/clusters originating from the photo-produced system.

(4) Relatively narrow do/dy centered®’ at mid-rapidity (narrower for larger My).

Given these general properties of UPC events and based upon our previous experience
on the J/y photoproduction studies in AuAu UPCs at RHIC [136], we will use the following
CMS L1 primitives as part of the UltraPeripheral Trigger:

e To ensure a large rapidity gap in one or in both hemispheres, we reject events with signals
in the forward hadron calorimeters towers (3 < |n| < 5) above the default energy threshold
for triggering on minimum-bias nuclear interactions (H F*.OR.H F~). Pure y pb coherent
events have rapidity gaps in both hemispheres but we are also interested in triggering in
the “incoherent” y N photoproduction, which usually breaks the target nucleus and lead to
particles partially filling one of the hemispheres.

e To tag Pb* Coulomb breakup (via GDR neutron deexcitation), we require energy deposition
in ZDC* or ZDC™ above the default threshold in normal PbPb running. It is worth noting
that having the ZDC signals in the L1 trigger decision gives CMS an advantage with respect
to the ALICE experiment [202].

8.3. p photoproduction in « Pb collisions

This section presents a preliminary feasibility study for the measurement in CMS of low mass
objects, like the p, produced in UPCs (figure 8.2). At RHIC energies, p photoproduction
has been measured by the STAR collaboration [135] in the process AuAu — Au* Au™p at
200 GeV, where the p decays into two pions and one or both nuclei deexcite by emitting at
least one forward neutron which is detected in the ZDC. Those events have been collected
with a back-to-back multiplicity trigger, requiring a signal in the ZDCs and low multiplicity
in the tracking detector. In CMS, the measurement of photoproduced p is, in principle, not
straightforward since the detector is designed to trigger on large transverse energies, and
objects with masses below a few GeV/c? decay into low pr particles which will not reach
the calorimeters. However, even for low mass objects, it should be feasible to trigger on low-
multiplicity reactions with Pb* Coulomb breakup tagged with a neutron signal in the ZDCs.
A set of 1000 p particles produced in PbPb UPCs at LHC energies was generated with
STARLIGHT and run through the detailed CMS detector simulation (cmsiM package [250]).
Events were passed through the digitisation packages using the standard reconstruction
programme ORCA 7.1.1. The p decays into two pions, with transverse momentum of the
order of a few hundred MeV/c, which are detected in the three layers of the silicon pixel
detector. The hits reconstructed by orCA were then used as input for a fast simulation tracking
programme. Only the information of the three silicon pixel layers was used. The information
from the strip layers was not taken into account because the low pr tracks of interest in this

57 Though the energies of the y and “receiver” nucleus are very different and the produced final-state is boosted in the
direction of the latter, each one of the nuclei can act as “emitter” or “target” and the sum of their do'/dy distribution
is symmetric with respect to y =0.
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Figure 8.2. Lowest order Feynman diagram for p photoproduction accompanied by Pb Coulomb
excitation in ultra-peripheral PbPb collisions. The dashed lines indicate factorisation.
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Figure 8.3. Transverse momentum and rapidity distributions of the generated and reconstructed
p mesons in PbPb UPCs at 5.5 TeV [250].

study only cross one or two strip layers, not resulting in a significant improvement of the
tracking performance. The p candidates are reconstructed by combining tracks of opposite
sign. The background from same sign tracks in UPC events was found to be negligible at
RHIC [135] and should be also minimal at the LHC. Charged pion identification via dE /dx
in the pixel detectors, as described in Chapter 3, was not included in the present analysis,
but can easily be used to further clean the signal. The transverse momentum and rapidity
distributions of the generated and reconstructed p’s are shown in figure 8.3. Assuming that
all unlike-sign pairs in the range 0.6-0.9 MeV/c? are p mesons, an overall reconstruction
efficiency of 35% is obtained.

8.4. Quarkonia photoproduction in ~ Pb collisions

At leading order, diffractive y A photoproduction of heavy vector mesons (J/v, Y') proceeds
through a colourless two-gluon (Pomeron) exchange (figure 8.1-left). After the scattering,
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Figure 8.4. Available ¢ A and d A measurements in the (x, Q%) plane used to constrain the nuclear
PDFs [253]. The approximate (x, Q2) range covered by Y photoproduction in PbPb UPCs at the
LHC is indicated.

both nuclei remain intact (or in a low excited level) and separated by a rapidity gap from the
produced state. Such hard diffractive processes are thus a valuable probe of the gluon density
since their cross sections are proportional to the square of the gluon density, xG(x, Q%)
[251,252]:

doypasvpn| _ &Tee oo [xG(x, 0)]° . with Q> = M2/4 and x = M2/ W?

dr -0 oM} ’ ’ Y sV TreA
The x values probed in y A — Y A processes at y =0 are of the order of x ~ 21073 (but
can be a factor ~ 10 lower/higher at rapidities y = +2.5) therefore probing the nucleus
PDFs in a (x, Q?) range unexplored so far in nuclear DIS and/or in lower energy nucleus-
nucleus collisions (figure 8.4). Photoproduction measurements help thus to constrain the low-
x behaviour of xG in the nucleus in a regime where gluon-saturation effects due to non-linear
QCD parton evolution are expected to set in [30, 254].

The expected cross sections for p,J/¢¥ and Y photoproduction in PbPb UPCs at the
LHC, as given by the STARLIGHT model, are listed in Table 8.1. They do not include feed-
down contributions (at the ~10-20% level) from excited S states (Y’,Y"”), nor do they include
contributions from incoherent y-nucleon (y N) processes, which should produce ~50% more
J/yr, Y yields [255] (the latter can be separated experimentally as the produced Y have larger
pr and the “target” nucleus breaks up with a higher probability). Other y Pb theoretical
predictions for LHC give comparable results (o = 135 ub) [256]. Inclusion of leading-twist
shadowing effects in the nuclear PDFs reduces the yield by up to a factor of two, o (LT-
shadowing) = 78 ub [256]. Even larger reductions are expected in calculations including
gluon-saturation (Colour Glass Condensate) effects [257]. The motivation of our measurement
is precisely to pin-down the amount of low-x suppression in the Pb PDF compared to the
(known) proton PDF in the studied (x, 0?) range.

The coherence condition results in very low transverse momenta and the decay electrons
or muons from the J/v, produced basically at rest, have lower energies (E.+ ~ M,y /2 ~
1.6GeV) than those needed to reach the ECAL or muon chambers without significant
energy losses in the intermediate material. We will therefore concentrate our efforts in the
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measurement of the T, whose decay leptons have larger energies close to 5 GeV and can, in
principle, reach both detectors. We consider, in particular, the CMS barrel+endcap regions
(In] <2.5) in the dielectron and dimuon decay channels, to search for diffractive photo-
production of the Y (figure 8.1-left) [258]:

(1) PbPb (— y Pb) = Y + Pb*Pb™, with Y — e*e~ measured in the ECAL;
(2) PbPb (— y Pb) = Y + Pb*Pb™, with Y — u*u~ measured in the muon chambers.

The most significant source of physical background for these measurements is the
coherent production of (high-mass) lepton pairs in two-photon processes (figure 8.1-right):

(1) PbPb (— y y) — Pb*Pb™ + e¢*e measured in the ECAL;
(2) PbPb (— y y) — Pb*Pb™ + 11~ measured in the muon chambers.

Table 8.2 lists the expected cross sections for the dilepton continuum in the mass ranges of
relevance for the quarkonia measurements. Those are actually interesting pure QED processes
proposed as a luminometer in pp and ion-ion collisions at the LHC [259, 260], and will
likely be used to get the absolute cross-section normalisation of this and other heavy-ion
measurements.

8.4.1. Trigger rates

As briefly discussed in Section 8.2, we propose to use the following CMS L1 primitives as
part of the quarkonium UltraPeripheral Trigger:

e Veto on signals in the forward hadron calorimeters (3 < || <5), HF* .OR. HF~ (ie.
requirement of a large rapidity gap in one or both hemispheres);

e One or more neutrons in at least one ZDC (Xn), in order to tag Pb* Coulomb breakup (via
GDR neutron deexcitation);

e Isolated ECAL tower with Ef™" > 3 GeV in order to select e* from the Y decay (E,+ ~
M~y /2 = 4.6 GeV) depositing at least Er =3 GeV ina5 x 5 ECAL trigger tower (the ECAL
towers are defined at L1 in terms of transverse energy Ert);

e Hit(s) in the muon RPCs (|n] <2.1) or CSCs (0.8 < |5] < 2.4); no track momentum
threshold is required since the material budget in front of the chambers effectively reduces
any muon background below ~4 GeV, whereas the Y decay muons have E, 2 My/2 ~
4.6 GeV.

Schematically, the following two dedicated L1 UPC triggers are proposed:

UPC —mu — L1 = (ZDC + .OR. ZDC—).AND.(HF + .OR. HF—).AND. (muonRPC. OR. muonCSC)
UPC — elec — L1 =(ZDC+ .0R. ZDC—).AND.(HF+ .OR. HF —).AND.ECALtower(Er < 2.5GeV)

The genuine y Pb — Pb* Y — [*]~ counting rate (assuming perfect trigger, full
acceptance, no efficiency losses) for the nominal PbPb Iuminosity of (L)=35-
10%cm™2s7! =0.5mb~'s™!, yielding / £dt =0.5nb~" for 1 month (10° s) of PbPb running
and 50% efficiency, is

Nypc—v = (L) 0pbpb—y Po*—>1 BR(YT = I717)

=0.5mb~'s7! x 0.078mb x 0.024 = 0.001 Hz

Obviously, not only the signal but several backgrounds which share a few characteristics with
UPC events, will generate an accept of the UPC-L1 triggers defined above:

1. Beam-gas and beam-halo collisions: no good vertex, (comparatively) large particle
multiplicity, asymmetric dN /dy, ZDC signal, low Et.
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2. Accidental coincidence of cosmic muon(s) with (mutual) Pb electromagnetic dissociation,
y A — Pb*+Pb® — Xn (ZDC): no vertex, track(s) only in muon chambers with large
net pt, ZDC signal from Pb dissociation.

3. Peripheral nuclear collisions (A A — X): (comparatively) large particle multiplicities,
mainly pions, large total pr, ZDC signal.

4. Two-photon electromagnetic collisions (y y — [*[7) are virtually indistinguishable from
our signal at the level-1 trigger as defined above. Still such a background can be
significantly removed with an asymmetry cut in the pair decay, and any final residual
contribution below the Y invariant mass peak can be statistically subtracted in the final
offline analysis (see Section 8.4.4).

5. Hadronic diffractive collisions (/P Pb, IPIP — X): larger multiplicities than e.m.
diffractive (y Pb) collisions, pr(IPIP) > pr(y IP) > pr(yy), like-sign pairs, ZDC signal.

6. Other hard diffractive photoproduction processes (y pb — X, with X = dijets, open
heavy-flavour, ...), interesting in their own right as they address the same physics topics
as the Q Q measurement discussed here [132, 148], are characterised by: (comparatively)
larger multiplicities, ZDC signal, removable offline with e* and u* PID cuts and standard
invariant mass subtraction techniques.

7. Two-photon hadronic collisions (y y — X): mainly pions (removable with e* and u* PID
cuts), ZDC signal.

Among the backgrounds mentioned above, #1 will be significantly suppressed by the
(H F+ .OR. H F—) rapidity-gap requirement and will not be discussed further. Backgrounds
#2 and #3, however, are likely to generate high L1 background rates. Backgrounds #4 — #7 are,
on the other hand, interesting low-counting rates diffractive and photonic physics processes
that can be studied offline as a “by-product” of the UPC trigger. An example of a process
that can trigger UPC-L1 is exclusive . production (IPIP — y. — J/¥y) [261], of which
candidate events have been measured in CDF at the Tevatron [134].

The cross section for EM dissociation of Pb nuclei at the crossing point of the two beams
at LHC energies is huge, opypr—gp = 215 b [262], becoming de facto the main limiting factor
for the maximum luminosities reachable at the LHC in the ion-ion mode. Such large cross
sections translate into very large counting rates: Npypp—gp = (L) X Opbpb—ED = 10° Hz, and
thus accidental coincidences with cosmic muons traversing the muon chambers and activating
the UPC-mu-L1 trigger are possible. The typical rate of cosmic muons on the ground level is
about 60 Hz/m? with (E w) A 4GeV [263]. At the IP5 cavern level (~80 m underground) this
rate is reduced by a factor 10, down to approximately 6 Hz/m? (typical muons which traverse
the rock overburden above CMS have a surface energy of at least 10 GeV) [264]. Since the
total muon chambers area is roughly 20 x 15 m?, the total rate of cosmic muons above 4 GeV
crossing is N, _cosmic ~ 2 kHz. The accidental coincidence rate of two detectors with counting
rates Ny and N, and trigger time window At iS Npye = 2N N, At. For a time window of
Atyig = 10 ns around the nominal bunch crossings of 25 ns, this translates into:

backgd ~ 5 8¢~
NPbe—ED+p_—cosmic =2 Npppb_ED Np.—cosmic Attrig ~ 2 x 10°Hz x 2kHz x 10"°s &~ 4 Hz

Only very few of the cosmic muons will have a chance to give a trigger if we require the
tracks to be pointing to the vertex: the reduction factor is 2500 when requiring z;;; < 60 cm,
Rpir <20 cm. At higher trigger levels this background can be thus reduced by requiring vertex
reconstruction.

At RHIC energies, usually a fraction €peripnh & 5% of the most peripheral (grazing)
nuclear AA collisions (i.e. the centrality class corresponding to 95—-100% of the total AA
cross section) do not generate activity within 3 < |n| < 4 but still produce a signal in the
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ZDC [265]. Assuming that the same fraction of PbPb collisions at the LHC will be accepted
by the (ZDC + .0R.ZDC—) .AND. (H F+.0R. HF —) L1 condition, such grazing PbPb collisions
will fire UPC — elec — L1 (and/or UPC —mu — L1) provided that an electron (and/or a muon)
above E‘ThrEC AL =3 GeV (ELhr =4GeV) is also produced. According to PYTHIA 6.4 about
€high—pr /e ~ 1% of the pp events at 5.5TeV produce at least one electron (muon) within
|n| < 2.5 with energy above the UPC-L1 threshold. We will assume that the same relative
fraction will hold for the peripheral PbPb reactions. The corresponding counting rate for the
type #3. background is, therefore:

Nt heriph = {£) Giot PbPb €periph €nigh— T €=0.5 mb~'s ™! x 7800 mbx0.05x 102 ~ 2 Hz

If the zero-activity in both HFs is not sufficient to reduce these background rates at level-
1 we may consider in addition an extra L1 primitive such as the total energy in ECAL-HCAL,
requiring only a few GeV’s above the noise in the calorimeters. This will suppress peripheral
nuclear events which have (much) larger multiplicity than UPCs.

Out of the #4—#7 “interesting” physics backgrounds that will likely trigger our UPC-L1
trigger, we will consider in more detail #4 in the following. The known QED cross sections
for two-photon processes leading to lepton pair production are quoted in Table 8.2. We have
determined from the Monte Carlo generated y y — [* [~ data (see Section 8.4.2), that the
fraction of those two-photon events producing an electron above the ECAL trigger threshold
of E‘ThfECAL =3GeV and within |5| < 2.5, and thus potentially triggering UPC-elec-L1, is
only of the order epigh—p, . ~ 5% (the corresponding fraction, and cross-section, for muons
triggering the UPC-mu-L1 is even lower and we do not discuss it in our counting rates
estimates here). Thus, the expected counting rate for the type #4. background for the design
average PbPb luminosity is:

N = (L) 0y yrere Pxn €nign—pre=0.5mb~'s™! x 139 mb x 0.5 x 0.05 = 1.7Hz
To summarise, the sum of all backgrounds considered here, Ni; = Npppb—ED+u—cosmic +
Npopb—periph + Ny y—em + Nothers 18 in the 7 Hz ballpark range, whereas the T physics signal
is ~7000 smaller. It is therefore important not to have any significant trigger dead-time and
not to remove good events while further reducing the L1 rates at the high-level-trigger (HLT).
At the PbPb running mode luminosities, the CMS L1 can consider all triggered events
(~3kHz in average) and send them without reduction to the HLT (see Chapter 5). The
allocated UPC-trigger bandwidth in the HLT for the PbPb running is 2.25 MBytes/s (1%
of the total logging rate) i.e. ~ 1-2 Hz for an UPC event size of 1-2 MBytes (see Tables 5.2,
5.3). The estimated event size of a very peripheral PbPb nuclear event (with impact parameter
b > 12fm) is 0.3 MBytes plus a conservative 1 MByte “noise” overhead. Since events
triggering the UPC-L1 trigger have, by design, very low multiplicities they will certainly
be below the 2 MBytes size already at L1. Logging UPC-HLT rates at the allocated 1-2Hz
rate, implies that we need a reduction factor of up to 5 from the expected UPC-LI rates. In
order to do so we will need to apply (one or more of) the following simple algorithms at the
HLT level, until the HLT-output rate matches the allocated bandwidth:

1. Verification of the L1 electron/muon candidates.

2. Event vertex within e.g. |z| < 15 cm of (0,0,0) (note that the intrinsic low tracks/clusters
multiplicity of UPC events results in a rather wide vertex distribution).

3. Low total transverse momentum of all particles in the event (performing a rough
determination of the net transverse momentum of all muons/electrons HLT candidates).

4. Back-to-back dimuons/dielectrons (both objects exist as part of the Global Calo and
Global Muon Triggers).
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Figure 8.5. Typical STARLIGHT distributions for photo-produced Y and dilepton continuum in
PbPb UPCs at 5.5 TeV. Left: pt spectrum of the photoproduced Y (note the diffractive-like peaks).
Right: Rapidity distributions of the single leptons u* (red, dashed line) and e* (blue, solid line)
from the continuum. The dashed lines indicate approximately the CMS acceptance.

Condition 1. is just an improved software cross-check of the level-1 accepts which will
remove part of the fake signals. Condition 2. with an even looser cut, |z| < 60 cm, is expected
to reduce by a factor of 2500 the cosmic-muon triggers, as well as any remaining accepts
generated by beam-gas or beam-halo collisions. The hadrons emitted in peripheral nuclear
events at 5.5 TeV, have an average transverse momentum of order (pr) &~ 600 MeV /c which
is much larger than the (pr) &~ 70 MeV /c expected for coherent photoproduction events. Thus,
applying Condition 3. should significantly reduce the background #2. However, we may want
to look at other hard photo-produced processes with larger pr which can trigger the UPC-L1,
so Condition 4. is probably more appropriate. Again, all these considerations can be taken
when setting the final L1 thresholds and HLT algorithms and do not affect the quantitative
conclusions of the T measurement described here.

8.4.2. Input Monte Carlo

Event samples for the physical signal (Y — e*e™, u*™) and the dilepton continuum are
generated with the STARLIGHT Monte Carlo [245], which computes the equivalent photon
flux of the interacting ions and determines the corresponding QCD (for quarkonia) and QED
(for the dilepton continuum) cross sections (Tables 8.1 and 8.2). The coherence condition
results in Y mesons and lepton pairs produced almost at rest. The Y pr distribution is
even sensitive to the form factor of the nuclear charge distribution in the colliding ion and
shows a diffractive-like pattern with several local maxima. The mass spectrum of the dilepton
continuum decreases in a exponential or power-law way. The rapidity distributions of signal
and background are both peaked at y = 0, but the continuum has a wider shape (figure 8.5,
left). The rapidity spectrum of the decay single leptons is much narrower for the T than for
the [* [~ continuum (figure 8.5, right). Events with one or both leptons emitted outside of the
CMS rapidity coverage will not affect the Y invariant mass reconstruction.

8.4.3. Acceptance, trigger and reconstruction efficiencies

The total number of STARLIGHT UPC events generated was 10° for the dilepton continuum
and 50000 for the T, in each (dielectron and dimuon) decay channel. They were used as
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Figure 8.6. Generated and reconstructed rapidity spectra of the Y measured in the e*e™ (left) and
w* ™ (right) channels.

input for the CMS simulation package (cmssw 1.1.0 sim+digi+hit+reco chain) [258]. The
yields were chosen to match their relative total production cross-sections. The input vertex
of the simulated events was smeared with a o, = 5.3 cm resolution. The simulation of the
detector response was invoked with the default configuration with nominal magnetic field,
CMS geometry, and without any kinematics or geometry cuts. Digitisation was activated for
all relevant detectors in this analysis (tracker, calorimeters and muons) in the zero-pileup mode
and with ECAL zero suppression. The reconstructed global-muons are a combination of stand-
alone muons measured in the muon chambers and tracker tracks obtained with a stepping-
helix propagator, and have a final ~2% momentum resolution. Isolated electron objects
combine tracking and electromagnetic (clustering) calorimetry information for efficient
energy reconstruction (collecting and/or correcting for the pre-showering in the tracker
material) and electron identification [266]. The electron objects are created by combining
the tracks measured in the three pixel layers (using a Kalman filter method) with the ECAL
information, properly correcting for the energy lost by the e* and y’s while crossing the
tracker material, before reaching the ECAL.

Figures 8.6 and 8.7 show, respectively, the rapidity and transverse momentum spectra
of the T — e*e™ (left) and u*u~ (right) measurements. The differences between the
generated and reconstructed spectra are basically due to geometric acceptance and detector
responses, since the only kinematics cut applied in both analyses is the requirement that both
reconstructed leptons have energy (or momentum) above 3 GeV. This cut, which automatically
includes the L1 trigger condition, does not have a very important effect on the reconstruction
efficiencies of the Y (€155 & 8%) but reduces considerably the contributions from the dilepton
continuum (€155 = 95% of the yield) and other possible backgrounds present in the real
data. Interestingly, although the rapidity acceptances of both analyses are different and
complementary — the muon events are peaked around |y| =2 and the electrons at |y| < 1
— the measured pr efficiencies are quite similar. The reconstructed spectrum is higher than
the generated one for py values above ~ 130 MeV /c. This “artifact” is due to the combination
of a steeply falling spectrum and a reconstruction which yields pt values for the Y larger than
the input ones. Figure 8.8 shows the obtained efficiency times acceptance as a function of the
T rapidity and transverse momentum, in the u*u~ (red, dashed line) and e*e™ (blue, solid
line) analyses.

The overall integrated geometric-acceptance and reconstruction efficiencies of both anal-
yses are: € X Alq+- = 26 % for the e*e™ analysis; and € x Al ,+,- =21% for the u* 1~ one.
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Figure 8.8. Efficiency x acceptance for the UPCs T measurement in the ppu (red, dashed line)
and e*e™ (blue, solid line) decay modes obtained from a full CMS simulation (CMSSW 1.1.0) of
the input starlight Monte Carlo as a function of the Y rapidity (left) and pr (right) [258].

8.4.4. Mass distributions (Y — e*e™, u*u~) and expected rates

In order to determine a realistic invariant mass distribution for the T measurement it is
necessary to include the lepton pair continuum. Any other residual combinatorial background
can be removed by directly subtracting the like-sign (I*I* or /[7]7) from the unlike-sign
pairs. The generated input signal and continuum background events are mixed according to
their relative theoretical cross section ratio (Tables 8.1 and 8.2) and taking into account the
corresponding Y branching-ratio into dileptons (B R & 2.4%). The signal-to-background ratio
integrated over all phase-space is rather low,

Nignat _ 0(yPb— 1) x BR(Y — I*17)
Necontinuum B U(]/ Yy — )6 <M< IZGCV/CZ)

~0.35% (0.15)%
for u*n~(e*e),

but, as aforementioned, coherent lepton pairs are emitted more forward than the Y
(figure 8.5 right), and the corresponding single leptons fall often outside the CMS |n| < 2.5
acceptance.
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Figure 8.10. Invariant mass e*e™ (left) and u* ™ (right) distributions in CMS for photo-produced
T (after subtraction of the dilepton continuum background) expected in PbPb UPCs at 5.5 TeV,
for a nominal integrated luminosity of 0.5nb™".

Figure 8.9 shows the combined signal plus background mass spectra in the dielectron
and dimuon channels. The signal over background is roughly 1 (0.67) for the uu (e*e™)
analysis. The combined reconstructed mass spectra are fitted to a Gaussian (for the YT peak)
plus an exponential (to account for the underlying lepton pair contribution). The exponential
fit to the continuum is then subtracted from the signal+background distribution. The resulting
background-subtracted Y mass plots are shown in figure 8.10 fitted to a Gaussian alone.
The final peak positions and widths are: M, =9.52GeV/c* (0,, =0.090 GeV/c?) and
Mo =9.34GeV/c? (0o =0.154GeV/c?), very close to the nominal My = 9.46 GeV/c?
mass [263]. In the dimuon channel, the good mass resolution of our measurement would allow
for a clean separation of the Y’ (10.02 GeV/c?) and Y” (10.36 GeV /c?) which are also vector
mesons and can be photoproduced (but were not included in the current simulation).

The extracted yields, integrating the counts within 3¢ around the Y peak after subtracting
the continuum background, are computed for both decay modes. The efficiency of the yield
extraction procedure is €yicld—exiract = 85%, 90% for the e*e™ and u*u ™ analyses (lower in the
dielectron channel due to the larger background). The total Y production yields expected
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with the design PbPb integrated luminosity of [ £dt=0.5 nb~! are Ny_ e 2220415
(stat) and Nvy_,,,, =~ 180 £ 14 (stat) in the e*e™ and u* ™ channels, respectively. Systematic
uncertainties related to the continuum background subtraction and yield extraction procedure
have been estimated to be of the order of 10%, using different continuum functional forms
(exponential and power law) and extracting the yield by directly counting the number
of entries or by integrating the Gaussian fit within +30. Conservatively, the luminosity
normalisation uncertainty will be of the order of £5% since the concurrent measurement
of the lepton pair continuum provides a direct calibrated cross-section to compare against
the QED theoretical expectations [259, 260]. Combining the statistics of both channels, the
YT y and pt spectra will test different theoretical model predictions for the amount of low-
x saturation in the nuclear PDFs. Even reducing the Y yields by a factor of 4, as predicted
by different gluon saturation (Colour-Glass-Condensate) calculations [257] of the non-linear
parton evolution at small x, would not prevent us from having a statistically significant data
sample to compare with the theoretical expectations.

8.5. Summary

We have presented the possibilities of carrying out the measurement of p — "7~ and T —
e*e”, u*pu” produced in ultra-peripheral PbPb collisions at /s, = 5.5 TeV in CMS, tagged
with forward neutron detection in the Zero Degree Calorimeters. In both analyses, signals and
backgrounds are generated with the STARLIGHT Monte Carlo which reproduces satisfactorily
lower-energy UPC data. The fast simulation study of p photoproduction, based on similar
analyses done at RHIC, confirms the feasibility of the measurement in the silicon pixel
detector with a 30% efficiency. This analysis extends the measurements performed at HERA
and provides new information on the interplay of soft and hard physics in diffraction. The Y
study is based on a full Monte Carlo simulation for the signal and lepton pair background.
Two dedicated level-1 triggers have been defined and their expected (signal and background)
counting rates have been estimated. A high-level trigger configuration strategy has been
discussed in order to adjust the L1 counting rates to the available HLT PbPb bandwidth.
The input MC files have been analysed with the full CMSSW 1.1.0. chain. The geometrical
acceptance, detector response and resolutions, and reconstruction efficiency losses, have been
determined for the dimuon and dielectron decay modes. The rapidity distributions in both
analyses are complementary, with the dimuons peaked around |y| =2 and the dielectrons at
|y| < 1. The final invariant mass plots, including appropriately scaled contributions from the
dilepton continuum, have been obtained. The signal over background is around unity for the
ut ™ mode and around 0.67 for the e*e™ mode. After subtracting the continuum background,
the reconstructed Y peak positions are M,+,- = 9.5GeV/c? and M+~ = 9.3GeV/c?, with
resolutions of 13% and 24%, respectively. The total Y production yields are obtained from an
integration within 3o of the corresponding peak maxima. The final acceptance and efficiencies
are €rec X A X €yicld—extract = 21% for the e*e™ analysis and 19% for the pu one. The total
expected number of Y events, normalised to the nominal PbPb integrated luminosity of
0.5nb™!, are 220 + 15 (stat) and 180 =+ 14 (stat) in the e*e~ and uu channels, respectively,
with a ~ 10% systematic uncertainty. With a total yield of ~ 400 Y, detailed studies of pr and
rapidity dependences can be carried out, which will significantly constrain the gluon density
at small values of parton fractional momentum in the Pb nucleus.
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Chapter 9. Other heavy-ion observables

In this last chapter of the report we summarise a few heavy-ion observables whose
measurement is feasible in CMS but for which a final analysis result is lacking (or a detailed
simulation is not available) at the time of closing this report. The following topics are under
consideration:

e Hard probes at forward rapidities: Exploratory studies of the measurement of
perturbative probes at very forward rapidities (such as Drell-Yan and jets in the CASTOR-
TOTEM and HF acceptances) have been presented in Ref. [148] for proton-proton
collisions. Those measurements provide valuable information on the parton distribution
functions in a regime of very low x, where non-linear QCD evolution should appear.
Extension of these studies (including other hard probes such as e.g. inclusive high-pr
hadrons or photons) could be tried in PbPb and, certainly, pPb reactions, where the gluon
saturation effects are expected to be much stronger.

e Detailed Z° studies: CMS has very strong capabilities to reconstruct the Z° in the dimuon
and dielectron channels. The large p of its decay leptons allows for a clean identification
of the gauge boson over the underlying heavy-ion event background. Apart from the jet-
tagging discussion in Section 7.4, the inclusive measurement of the Z° provides very
valuable information on the nuclear PDFs at intermediate and moderately large values of
parton momentum fraction, x [49, 267]. In this kinematic regime, nuclear modifications
(anti-shadowing and EMC effect) have been observed at much lower Q? scales [268].

e Study of jet algorithms in heavy-ion collisions Tests of the performance of the FASTIET
algorithm [269] for full jet reconstruction are currently ongoing in CMS. Such a kr-based
jet finder uses a new geometrical algorithm that reduces the computational time from a
typical N3 law (N being the number of particles in the event) to a N In N form. FASTJET is
a very promising substitute of the standard jet-finder codes in the high multiplicity events
found in PbPb collisions at the LHC [270].

e High-pr D,B meson identification: The measurement of heavy-quark jets via secondary
vertex tagging has been discussed in several sections of this document. Such an observable
provides a stringent test of jet quenching models based on parton energy loss. The
possibility to measure the high-pr suppression and elliptic flow parameter of leading
heavy mesons (D,B) is an interesting complementary measurement that has yielded
precise insights on the nature of the strongly interacting plasma at RHIC energies (see
Sections 1.4.3 and 1.4.5). Studies of the identification in CMS of open charm and beauty
mesons (e.g. via their K w and J/¢ K decays) produced in heavy-ion collisions are a
priority.

o Single inclusive direct photons: Direct photons provide a handle on the temperature of the
produced plasma as well as an unbiased reference for jet-tagging studies. The identification
of hard photons in a heavy-ion environment has always been very challenging [271] due to
the difficulties of applying isolation criteria (there is always hadronic activity surrounding
any photon) and due to the large background of photons from 77 and 7 decays (the observed
large suppression of high-p; mesons at RHIC [272] has somehow reduced this problem).
Nonetheless, the standard statistical measurement of prompt y’s in AA collisions [273]
should be possible in CMS.

e Strangelets and cosmic-ray-related studies: In Section 1.4.8 we have presented several
intriguing observations related to the hadronic composition of ultra-high-energy (UHE)
cosmic-ray events in the upper atmosphere (p,« ,Fe-Air collisions). One of the main physics
motivations behind the conception of the CASTOR calorimeter is precisely to carry out
detailed studies of the QCD interactions that dominate the hadronic and electromagnetic



CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions 2443

cascade development of the forward particles produced in ultrarelativistic nucleus-nucleus
and proton-nucleus collisions [158]. Full GEANT simulations are currently being carried
out to carefully assess the experimental capabilities of the CMS CASTOR detector for such
measurements.
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Appendix A. HYDJET event generator

A fast Monte Carlo event generator, HYDJET (HYDrodynamics plus JETs) [166, 180] has been
developed to, among other things, simulate jet quenching and flow effects in high-energy
nucleus-nucleus collisions. The final state in nuclear collisions from HYDJET is obtained as
a combination of soft hydro-type particle production and hard (mini)jets fragmentation. The
“soft” component in HYDJET is parameterised so as to reproduce known collective effects
(elliptic flow) and bulk features of the data (charged particle density, dNg,/dn) at RHIC
energies [180]. The shape of the dN.,/dn distribution for charged particles is extrapolated
from the highest RHIC energy to the LHC energy using the longitudinal scaling behaviour
observed at RHIC (see e.g. figure 1.20 left) [141]. A value of dN/dn = 3000 is used as
default charged particle density at » =0 in central PbPb events, corresponding to a total
multiplicity of ~26000 hadrons. The bulk transverse momentum spectra and the mean
transverse momentum are also consistently extrapolated from lower energies. For different
centrality classes, the number of produced particles is generated proportionally to the average
number of nucleons participating in the collision, (Npa), in agreement with RHIC data [274].
(Npart) and the number of binary nucleon-nucleon sub-collisions, (N ), are connected to the
impact parameter, b, through a standard Glauber model calculation.

“Hard” particle production in the HYDJET model is generated according to the PYTHIA
Monte Carlo event generator [165, 275]. The mean number of jets produced in AA events at a
given impact parameter b is calculated as a product of the number of binary nucleon-nucleon
sub-collisions and the integral cross section of 2 — 2 parton scattering in pp collisions
with momentum transfer pr > pin (piit &~ 7GeV/c is the default value). In the HYDJET
framework, partons produced in (semi)hard processes with momentum transfer less than pi®
are considered thermalized in the medium, so their hadronization products are “automatically”
included in the soft part of the event. The probability that a randomly generated minimum
bias PYTHIA event will fall in this hard category is p( p’T“i“). Thus, the generation of the
hard component of the heavy ion event consists in producing p X (Ncoy) proton-proton
collisions according to a binomial distribution. Parton energy loss as described in the BDMPS
approach [97], leading to the quenching of the generated jet energy can also be turned on
via the PYQUEN model [180, 211]. The approach is based on an accumulated energy loss.
The gluon radiation is associated with each parton scattering in the expanding medium and
includes the interference effect of the modified radiation spectrum as a function of decreasing
temperature as the medium expands. The simulation procedure includes the event-by-event
generation of the initial parton spectra with PYTHIA, convoluted with production vertices
according to a realistic nuclear geometry, the simulation of the parton path length in a dense
volume, radiative and collisional energy loss in each rescattering, momentum and angular
fluctuations of medium-induced gluon radiation. Final hadronization is carried out with the
Lund string model [276] for hard partons and for in-medium radiated gluons. This model
has been validated with the inclusive hadron momentum spectra and the main features of the
jet quenching phenomena observed in heavy ion collisions at RHIC energies such as the py
dependence of the nuclear modification factor, R44(pr), and the suppression of azimuthal
back-to-back jet-like correlations [180].

HYDJET was implemented in the CMKIN generator package in order to obtain the detector
responses within the OSCAR/ORCA framework, and is now included in the new CMS software
framework, CMSSW. HYDJET and PYQUEN are also part of the GENSER 2.0 (Generator Services)
subproject of the LGG (LHC Computing Grid Project) [277].
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Appendix B. HIROOT framework

The HIROOT [278] framework, developed by some of the authors of this report, provides
a convenient environment to study and compare event generators and to benchmark
reconstruction and analysis algorithms at the generator level.

HIROOT is written in C++ and based on the powerful ROOT analysis framework [279].
It incorporates (interfaces) various FORTRAN-based event generators, among them the
PYTHIA [165] and HYDJET [166] generators used in the studies presented in this report. It
provides a convenient way to generate, store and read back events, using a flexible and
extendable event data model layered on top of the highly efficient ROOT TTree mechanism. It
maintains the full information about generator parameters, tracks, vertices and decay history.
The mixing module provides a flexible way to mix events on the fly and/or using pre-generated
samples, while giving the user access to the full event information.

The user-defined analysis makes use of TAM [280], the Tree Analysis Modules facility,
an extension of the ROOT analysis tool that allows a sequence or hierarchy of TSelector-
like modules to be created and executed in a pre-defined order. This way, modules can be
used to trigger on certain events, filter data in the event, produce derived data for downstream
modules, etc. TAM provides a simple interface to select data (branches) from the TTree,
decoupling the modules from the exact tree structure.

Examples of simple usage of the HIROOT tool include generating single PYTHIA events
(high Et dijets, etc.) and mixing them into unbiased full heavy-ion events; generating heavy-
ion events with user-defined multiplicity and scaling properties; generating heavy-ion events
with one pp subevent that is restricted to have a predefined minimum pr value; etc.
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