Ralph Engel Karlsruhe Institute of Technology (KIT)

# The Universe at the Highest Energies







# Astroparticle physics

Very rapidly developing field Largely driven by observations

Enormous diversity

- Cosmic rays
- Gamma rays
- Neutrinos
- Gravitational waves
- Dark Matter
- Axions etc.
- Astrophysical objects
- Quantum gravity &Space-time fluctuations

Multi-messenger physics



(J. Blümer)

## This talk: The Universe at the highest energies











# The first cosmic particle of ultra-high energy

(Received 10 January 1963)



## Cosmic rays of 10<sup>20</sup> eV energy exist !

15 FEBRUARY 1963

VOLUME 10, NUMBER 4

#### PHYSICAL REVIEW LETTERS

(Received 10 January 1963)





FIG. 1. Plan of the Volcano Ranch array in February 1962. The circles represent 3.3-m<sup>2</sup> scintillation detectors. The numbers near the circles are the shower densities (particles/m<sup>2</sup>) registered in this event, No. 2-4834. Point "A" is the estimated location of the shower core. The circular contours about that point aid in verifying the core location by inspection.



## How to accelerate particles to 10<sup>20</sup> eV



Large Hadron Collider (LHC), 27 km circumference, superconducting magnets



Need accelerator of size of Mercury orbit to reach 10<sup>20</sup> eV with LHC technology

Hillas plot (1984)



(Kotera & Olinto, ARAA 2011)



## Examples of astrophysical source candidates

#### **Diffusive shock acceleration**



#### Inductive acceleration



#### **Rapidly spinning neutron stars**

$$\frac{\mathrm{d}N_{\mathrm{inj}}}{\mathrm{d}E} \sim E^{-1} \left(1 + \frac{E}{E_g}\right)^{-1}$$

#### Single (relativistic) reflection





**Tidal disruption events (TDEs)** 







## Fermi acceleration – a simplified view



**First order Fermi acceleration** at large-scale shock fronts

(shown is second order Fermi acceleration)

 $\frac{\mathrm{d}N_{\mathrm{inj}}}{\mathrm{d}E} \sim E^{-2}$ 



## **Cosmic rays** at the highest energies: extragalactic sources









## Neutrino production due to cosmic ray propagation





## Neutrino production due to cosmic ray propagation





11

## How to identify sources of ultra-high-energy cosmic rays



## How to detect ultra-high-energy cosmic rays







## Pierre Auger Observatory and Telescope Array

#### **Telescope Array (TA)**

Delta, UT, USA 507 detector stations, 680 km<sup>2</sup> 36 fluorescence telescopes

#### **Pierre Auger Observatory**

Province Mendoza, Argentina 1660 detector stations, 3000 km<sup>2</sup> 27 fluorescence telescopes

Auger:  $6.7 \times 10^4 \text{ km}^2 \text{ sr yr}$  (spectrum) 9 x 10<sup>4</sup> km<sup>2</sup> sr yr (anisotropy)

#### **Together full sky coverage**



TA:

8.1 x  $10^3$  km<sup>2</sup> sr yr (spectrum)  $8.6 \times 10^3 \text{ km}^2 \text{ sr yr}$  (anisotropy)







(24+3 telescopes in total)









# **Telescope Array (TA)**

#### Middle Drum: based on HiRes II



#### Northern hemisphere: Utah, USA

#### Talk by Abu-Zayyad











## Results: Flux strongly suppressed, change of mass composition

(RE, Nijmegen Summer School, 2004)

| <b>Events per year</b><br>(based on AGASA spectrum) |         |            |
|-----------------------------------------------------|---------|------------|
|                                                     | SD only | SD + ≥1 FD |
| > 6 x 10 <sup>17</sup> eV                           | 0       | 45000      |
| > 10 <sup>18</sup> eV                               | 0       | 30000      |
| > 3 x 10 <sup>18</sup> eV                           | 15000   | 4700       |
| > 10 <sup>19</sup> eV                               | 5150    | 515        |
| > 2 x 10 <sup>19</sup> eV                           | 1590    | 159        |
| > 5 x 10 <sup>19</sup> eV                           | 490     | 49         |
| > 10 <sup>20</sup> eV                               | 103     | 10         |
| > 2 x 10 <sup>20</sup> eV                           | 32      | 3          |
| > 5 x 10 <sup>20</sup> eV                           | 10      | 1          |
| FD *2 tanks with 4 VEM and                          |         |            |
| SD *5 tanks with each 4 VEM                         |         |            |

zenith angle >60°: + 50%

Expected 1100, have ~14 events



Composition could be explained by disintegration of ~ C or Si nuclei, very hard energy spectrum at injection favored (  $\sim E^{-1}$  )





## Results: Particles are of extragalactic origin





## Intermediate-scale anisotropy: over-densities ~20° size



Centaurus Supercluster (D=60Mpc)  $E > 6 \times 10^{19} \,\mathrm{eV}$ 

Perseus-Pisces Supercluster (D=70Mpc)

> Eridanus Cluster (D=30Mpc)

Fornax Cluster

Huchra, et al, ApJ, (2012)





## Anisotropy – Correlation with catalogs (Auger data)

#### **Starburst galaxies**



#### **AGNs**



(Giaccari ICRC 2017)





### Results: Hints for sources or source regions?

Star-forming or starburst galaxies





Significance of correlation with starburst galaxies



# Upgrade of Auger Observatory: AugerPrime







100% duty cycle

- Composition measurement up to 10<sup>20</sup> eV

- Composition selected anisotropy
- Particle physics with air showers

(AugerPrime design report 1604.03637)













## **TAx4 Project**

TA SD (~3000 km<sup>2</sup>): Quadruple area

Approved in Japan 2015

500 scintillator SDs

2.08 km spacing

3 yrs construction, first 173 SDs have arrived in Utah for final assembly, next 77 SD to be prepared at Akeno Obs. (U.Tokyo) 2017-08 and shipped to Utah

#### 2 FD stations (12 HiRes Telescopes)

Approved US NSF 2016 Telescopes/electronics being prepared at Univ. Utah Site construction underway at the

northern station.

#### Get 19 TA-equiv years of SD data by 2020

Get 16.3 (current) TA years of hybrid data

(Kido, Matthews ICRC 2017)



# The quest for an instrument of ultimately large aperture





## Neutrino production due to cosmic ray propagation





# Propagation distances of different messenger particles



Not visible in in cosmic rays (energy loss effects)

**Cosmological evolution** of sources important

**Magnetic horizon for cosmic rays** (diffusion time exceeds lifetime of Galaxy / Universe)





## Distance ranges and matter distribution in the Universe



Cosmic rays, gamma-rays







## High-energy neutrino telescopes

#### ANTARES, Mediterranean Sea, V ~1/100 km<sup>3</sup>







## IceCube measurement techniques







ICRC 2017: Haack for IceCube C.



## Results: Neutrino arrival directions (i)



(Ahlers & Halzen, PTEP 2017)





## Results: Neutrino arrival directions (ii)



HESE 4yr with  $E_{dep} > 100$  TeV (green) / Classical  $v_{\mu} + \tilde{v}_{\mu}$  6yr with  $E_{\mu} > 200$  TeV (red)

**Assumption: IceCube flux is diffuse**, no local source seen

(Ahlers & Halzen, PTEP 2017)

Some neutrinos are background events **Different detection techniques for different sky regions** No obvious clustering with Galactic plane or Center **First source candidates can be excluded** 









## Results: Neutrino flavor mixture as observed at Earth



(Bustamante, MIAPP 2018)

 $\pi^+ \longrightarrow \mu^+ \nu_\mu \longrightarrow e^+ \nu_e \nu_\mu \bar{\nu}_\mu$ 

Neutrino oscillations from source to Earth

- 0:1:0 only pion decay, strong muon cooling
- 1:2:0 classic pion and muon decay
- 1:0:0 neutron decay (anti-neutrinos\_e)

IceCube: 2.83 tau-neutrinos expected, 0 observed

$$f_{\nu_e} = 0.51^{+0.12}_{-0.13}$$

$$f_{\nu_{\mu}} = 0.49^{+0.12}_{-0.13}$$

$$f_{\nu_{\tau}} = 0.00^{+0.16}_{-0.00}$$

(IceCube, ICRC 2017)





## **IceCube Generation 2 (Gen-2)**



(Karle, MIAPP 2018)

#### Air shower event

- IceTop:  $E_{\mu} \sim 1 \text{ GeV}$
- IceCube:  $E_{\mu} \sim 500 \text{ GeV}$

#### Astrophysical neutrino event (simulation)

- IceTop: veto array
- IceCube: neutrino track or cascade

#### **Importance of veto array**









# KM3NeT: ARCA and ORCA

ORCA could be first experiment to determine neutrino mass hierarchy









KM3NeT





## Detection of neutrinos of ultra-high energy

#### **ANITA** balloon flights





#### **Different concept in ice: ARIANNA**

**POEMMA** neutrino detection







## Gamma-ray production due to cosmic ray propagation





![](_page_37_Picture_3.jpeg)

# Gamma-ray cascading down to ~ 100 GeV

![](_page_38_Figure_1.jpeg)

**Em. Cascade of** pair production and synchrotron radiation in external magnetic fields

![](_page_38_Picture_3.jpeg)

Photons "pile up" at low energy

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

![](_page_39_Picture_0.jpeg)

#### Cherenkov Telescopes

![](_page_39_Picture_2.jpeg)

(slide by Ruben Conceição)

# Detection methods

![](_page_39_Picture_5.jpeg)

## Results: Examples of measurements

![](_page_40_Picture_1.jpeg)

# ----

#### Fermi Large Area Telescope

![](_page_40_Figure_5.jpeg)

![](_page_40_Picture_7.jpeg)

![](_page_40_Picture_8.jpeg)

![](_page_40_Figure_10.jpeg)

![](_page_40_Picture_11.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

(slide by Ruben Conceição)

![](_page_41_Picture_4.jpeg)

![](_page_41_Picture_5.jpeg)

![](_page_41_Picture_6.jpeg)

![](_page_41_Picture_7.jpeg)

![](_page_41_Picture_8.jpeg)

Built IACT Built Array Planned IACT Planned

![](_page_41_Picture_10.jpeg)

# Cherenkov Telescope Array (CTA)

![](_page_42_Picture_1.jpeg)

Northern site: - 4 LST - 15 MST Southern site: - 4 LST - 25 MST - 70 SST

![](_page_42_Picture_4.jpeg)

![](_page_42_Picture_5.jpeg)

![](_page_42_Picture_6.jpeg)

## HAWC, LHAASO, Southern Gamma-Ray Observatory

![](_page_43_Picture_1.jpeg)

300 tanks, 5m x 7m 22 000 m<sup>2</sup> 4100 m

![](_page_43_Figure_3.jpeg)

2HWC catalog 2017

![](_page_43_Picture_5.jpeg)

LHAASO in China (under construction)

![](_page_43_Picture_7.jpeg)

LATTES concept for southern observatory (LIP) 3600 stations (very compact) Total area ~20 000 m<sup>2</sup>

![](_page_43_Figure_9.jpeg)

![](_page_43_Picture_10.jpeg)

# Multi-messenger astrophysics with gravitational waves

Publication 16 Oct 2017 in ApJL 70 collaborations, 953 Institutes, 3500+ Autoren Auger: limits on neutrinos (and photons)

#### FIRST COSMIC EVENT OBSERVED IN GRAVITATIONAL WAVES AND LIGHT

Colliding Neutron Stars Mark New Beginning of Discoveries

Collision creates light across the entire electromagnetic spectrum. Joint observations independently confirm Einstein's General Theory of Relativity, help measure the age of the Universe, and provide clues to the origins of heavy elements like gold and platinum

ℤLIGO

Georgia Cente Tech Astro

On August 17, 2017, 12:41 UTC, LIGO (US) and Virgo (Europe) detect gravitational waves from the merger of two neutron stars, each around 1.5 times the mass of our Sun. This is the first detection of spacetime ripples from neutron stars.

Within two seconds, NASA's Fermi Gamma-ray Space Telescope detects a short gamma-ray burst from a region of the sky overlapping the LIGO/Virgo position. Optical telescope observations pinpoint the origin of this signal to NGC 4993, a galaxy located 130 million light years distant.

![](_page_44_Figure_8.jpeg)

![](_page_44_Figure_9.jpeg)

![](_page_44_Picture_10.jpeg)

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20 0 2017. The American Astronomical Society. All rights reserved.

#### OPEN ACCESS

#### Multi-messenger Observations of a Binary Neutron Star Merger

LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zine Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordie Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT (See the end matter for the full list of authors.)

Received 2017 October 3; revised 2017 October 6; accepted 2017 October 6; published 2017 October 16

#### Abstract

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The *Fermi* Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of  $\sim 1.7$  s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg<sup>2</sup> at a luminosity distance of  $40^{+8}_{-8}$  Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  $M_{\odot}$ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with

#### https://doi.org/10.3847/2041-8213/aa91c9

![](_page_46_Picture_8.jpeg)

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

# GW170817: Neutrino flux limits by Auger Observatory

![](_page_47_Figure_1.jpeg)

## First source of astrophysical neutrinos at high energy?

![](_page_48_Picture_1.jpeg)

GCN CIRCULAR TITLE: NUMBER 21916 SUBJECT: IceCube-170922A - IceCube observation of a high-energy neutrino candidate event 17/09/23 01:09:26 GMT DATE : Erik Blaufuss at U. Maryland/IceCube <blaufuss@icecube.umd.edu> FROM: Claudio Kopper (University of Alberta) and Erik Blaufuss (University of Maryland) report on behalf of the IceCube Collaboration (http://icecube.wisc.edu/). On 22 Sep, 2017 IceCube detected a track-like, very-high-energy event with a high probability of being of astrophysical origin. The event was identified by the Extremely High Energy (EHE) track event selection. The IceCube detector was in a normal operating state. EHE events typically have a neutrino interaction vertex that is outside the detector, produce a muon that traverses the detector volume, and have a high light level (a proxy for energy). After the initial automated alert (https://gcn.gsfc.nasa.gov/notices\_amon/50579430\_130033.amon), more sophisticated reconstruction algorithms have been applied offline, with the direction refined to:

Date: 22 Sep, 2017 Time: 20:54:30.43 UTC RA: 77.43 deg (-0.80 deg/+1.30 deg 90% PSF containment) J2000 Dec: 5.72 deg (-0.40 deg/+0.70 deg 90% PSF containment) J2000

We encourage follow-up by ground and space-based instruments to help identify a possible astrophysical source for the candidate neutrino.

![](_page_48_Figure_5.jpeg)

IceCube 1709922A, publications in preparation

![](_page_48_Picture_7.jpeg)

# **APPEC Roadmap for Astroparticle Physics**

#### **APPEC – AstroParticle Physics European Consortium**

![](_page_49_Figure_2.jpeg)

#### Very rapid progress in understanding Largely driven by observations

#### **Actively observed messengers**

- Cosmic rays
- Gamma rays
- Neutrinos
- Gravitational waves

**Multi-messenger physics of** transient phenomena is the next step

**Powerful detectors for all messenger** particle needed to optimally use scientific and financial investment

![](_page_49_Picture_13.jpeg)

![](_page_49_Picture_15.jpeg)