

Animal and human RPC-PET

P.Fonte

Contributors to the RPC-PET project

Current RPC-PET team

Researchers and engineers				Technicians	
Name	Institute	Name	Institute	Name	Institute
Alberto Blanco	LIP	Michael Traxler	GSI	Americo Pereira	LIP
Antero Abrunhosa	ICNAS	Miguel Couceiro	LIP/ISEC	Carlos Silva	LIP
Custódio Loureiro	FCTUC	Paulo Crespo	LIP	João Silva	LIP
Filomena Clemêncio	ESTSP	Paulo Fonte	LIP/ISEC	Nuno Carolino	LIP
Luís A. V. Lopes	LIP	Rui Alves	LIP		
Miguel C. Branco	ICNAS	Orlando Cunha	LIP		
Nuno Dias	LIP	José Sereno	ICNAS		
Jan Michel	IKF	João Saraiva	LIP		

Past collaborators

Name	Institute	Name	Institute
Adriano Rodrigues	ICNAS/FMUC	Ana Teresa Nunes	LIP
Ângela C.S. Cruz	ICNAS	L. Fazendeiro	LIP
C. Gil	DFUC	Luís Mendes	FMUC
C.M.B.A. Correia	CEI/FCTUC	M. P. Macedo	CEI/FCTUC/ISEC
Carlos Silvestre	ISEC	M.F. Ferreira Marque	FCTUC/ISEC
Durval Costa	HPP	Miguel Oliveira	LIP
Francisco Caramelo	FMUC	Marek Palka	JU
M. Kajetanowicz	NE	Joaquim Oliveira	LIP
Grzegorz Korcyl	JU	Nuno Chichorro	ICNAS/FMUC
Isabel Prata	IBILI	Orlando Oliveira	LIP
J.J. Pedroso Lima	LIP	Paulo Martins	LIP
Jorge André Neves	LIP/FCTUC	Rui F. Marques	LIP/FCTUC
Jorge Landeck	FCTUC	Francisco Oliveira	ICNAS/UC

CEI: Centro de Electrónica e Instrumentação, Univ. Coimbra, Portugal.

ESTSP: Escola Superior de Tecnologia da Saúde do Porto, Portugal

FCTUC: Departamento de Física da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

FMUC: Faculdade de Medicina da Universidade de Coimbra.

GSI: Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

HPP: Hospitais Privados do Porto, Porto, Portugal

IBILI: Instituto Biomédico de Investigação da Luz e Imagem da Faculdade de Medicina da Universidade de Coimbra

ICNAS: Instituto de Ciências Nucleares Aplicadas à Saude da Universidade de Coimbra, Coimbra, Portugal.

IKF: Institut für Kernphysik, Goethe-Universität, Frankfurt, Germany

ISEC: Instituto Superior de Engenharia de Coimbra, Coimbra, Portugal.

JU: Jagiellonian University of Cracow, Cracow, Poland.

LIP: Laboratório de Instrumentação e Física Experimental de Partículas, Coimbra, Portugal.

NE: Nowoczesna Elektronika, Crakow, Poland

The basic idea for RPC-based TOF-PET

The converter-plate principle

S tacked

Use the electrode plates as a γ converter, taking advantage of the natural layered construction of the RPCs.

Time resolution for 511 keV photons: (our routine lab-test tool) **90 ps** σ for 1 photon **300 ps FWHM** for the photon pair

A previous work on PET with gaseous detectors (21 lead plates + 20 MWPCs = 7% efficiency)

"The Rutherford Appleton Laboratory's Mark I Multiwire Proportional Counter Positron Camera" J.E. Bateman et al. NIM 225 (1984) 209-231

Started a long time ago...

Nuclear Instruments and Methods in Physics Research A 508 (2003) 88-93

www.elsevier.com/locate/nima

Perspectives for positron emission tomography with RPCs^{\ddagger}

A. Blanco^{a,b}, V. Chepel^{a,c}, R. Ferreira-Marques^{a,c}, P. Fonte^{a,c,d,*}, M.I. Lopes^{a,c}, V. Peskov^e, A. Policarpo^{a,c}

^a LIP-Laboratório de Instrumentação e Física Experimental de Partículas, Portugal ^bGENP, Dept. Fisica de Particulas, Univ. Santiago de Compostela, Spain ^cDepartamento de Física da Universidade de Coimbra, Coimbra, Portugal ^dInstituto Superior de Engenharia de Coimbra, Coimbra, Portugal ^eRoyal Institute of Technology, Stockholm, Sweden

Excellent position resolution \Rightarrow small animal PET

Affordable in large areas

 \Rightarrow full-body field of view human PET

⇒ promising increased sensitivity at physics-limited resolution

Comparison with the standard PET technology

Disadvantages

Certainly a much smaller efficiency: 20 to 50% as compared to 70 to 80%. No energy resolution, but there is an <u>equivalent</u> energy sensitivity... more later. Detector scatter (vs. "misidentified fraction" in crystal blocks)

Advantages

Increasing system sensitivity

Inexpensive \Rightarrow large areas possible \Rightarrow large solid angle coverage Excelent timing \Rightarrow TOF-PET possible+optimum randoms rejection

Increasing position accuracy

Gaseous detectors routinely deliver 0.1 mm resolution Full 3D localization possible \Rightarrow no gross parallax error The very small gap minimizes intrinsic errors

Other

Simultaneous full body imaging (continuous uptake signal)0.51mm FWHMCompatible with magnetic field \Rightarrow PET-MRI can be considered

Possible specialized PET applications

> Whole-body Human PET

Small Animal PET

Comparison with GEANT - efficiency

- Optimum efficiency is balanced by beam absorption (thicker plates) and extraction probability (thinner plates)
- Optimum thickness depends on the number of plates and on the material.

GEANT - energy dependence

Intrinsic sources of instrumental position error

The converter-plate principle

- Electronic noise
- Angle of ejection of the electron will shift the baricenter of the avalanche.
- \Rightarrow Minimized by very thin gas gap

• Different gaps fired along an inclined trajectory cause parallax error (depth of interaction – DOI error)

 \Rightarrow Identification of the fired gap by analysis of the induced charge pattern

40310

Small animal PET

ICNAS/LIP/CTN workshop

Animal and human RPC-PET

P. Fonte

Charge-sensitive electronics allowing

Small animal PET - a first prototype

Aimed at **verifying** the concept and show the **viability** of a **sub-millimetric spatial resolution**.

16 stacked RPCs

Depth of z interaction

Transaxial

(now enjoying a second life as an exhibition item)

2D measurement of the photon interaction point

Animal and human RPC-PET

System in action

ICNAS/LIP/CTN workshop

P. Fonte

Maximum likelihood-expectation

maximization with resolution

modeling (ML-EM)

10-li

Image spatial resolution (gaussian fitting)

Filtered Back Projection FBP

~465 μm FWHM

Homogeneous spatial resolution over the entire field of view

Full scanner for mice – project

Almost 4π coverage

P. Fonte

Detector & readout

HV distribution layer (signal-transparent) kapton insulation 5 gaps 0.35 mm 6 x 0.38mm glass ~5 mm thick

Preliminary resolution tests in simplified geometry but realistic readout

Two detectors with XY localization

Needle source, $0.2 \text{ mm} \emptyset$ int.

Planar (disk) source

[P.Martins et al., JINST 2014 + PhD thesys]

P. Fonte

Preliminary resolution tests in simplified geometry but realistic readout

Joint reconstruction of the source in 2 positions separated by 1mm. ~130k LORs in 3.5M 25µm voxels. Color maps: planar profiles including peak density point. Isosufaces: 50% rel. activity Reconstructed activity profile across the black line shown in the upper left panel. Resolution ~0.4mm FWHM +background (Note: source is 0.2mm diam.)

[P.Martins et al., JINST 2014 + PhD thesys] 16

Animal and human RPC-PET

Construction at LIP (2013/14)

Auxiliary coarse Z determination

P. Fonte

All electrodes readout in parallel

24 charge channels/coordinate/head

> Time readout (for trigger)

Resolution in final geometry (2 heads only, needle source)

Installed at ICNAS (UC) in July 2014

48 channel charge amplifier boards,optimized for large input capacitance.Each animal PET head needs one such board-> 192 channels

Timing electronics 2 channels @ 3 cm pitch 2 amps + dual discriminator GHz bandwidth output: LVDS + analog sum accuracy ~few tens of ps

Readout electronics (for both PETs)

TRB3 platform developed by the *TRB collaboration* (trb.gsi.de)

ADCaddon (48 ch @ 40MSPS) (Jan Michel IKF)

Configurable trigger system (C.Loureiro/UC + F.Clemencio/ESTSP)

Animal and human RPC-PET

First client (31/7/2014)

Poor animal resting after **18FDG** injection and in the scanner tunnel (The head is central and the heart is at the edge of the field-of-view)

- Maximum intensity projection.
- The two hot spots in the head are likely the Harderian glands and the heart walls seem resolved

Harderian glands and left striatum with ¹¹C-raclopride

Some interesting images of mice

11C Raclopride (ratinho I)

ICNAS/LIP/CTN workshop

P. Fonte

Some interesting images of mice

64Cu ASTM (ratinho G)

Some interesting images of mice

64Cu ASTM (recent) Co-registration with MRI (Francisco Oliveira, José Sereno)

ICNAS/LIP/CTN workshop

Animal and human RPC-PET

Enlarged for rats (2015)

Rats A & B

P. Fonte

Biology results start to appear

New BACE1 inhibitors decrease Aβ production and accumulation in the 3xtg-AD mouse model [P7/37]

<u>Rosa Resende</u>^{1,#}, Marisa Ferreira-Marques^{1,#}, Teresa Dinis^{1,2}, Francisco Oliveira³, José Sereno³, Antero Abrunhosa³, Miguel Castelo Branco^{3,4}, Cláudia Pereira^{1,5}, Armanda E. Santos^{1,2}

¹ Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal

² Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal

³ ICNAS, University of Coimbra, Portugal

⁴ Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal

⁵ Faculty of Medicine, University of Coimbra, Coimbra, Portugal

[#] These authors contributed equally to this study

Congress of the Portuguese Society of Biochemistry, 2016

Several other studies in the pipeline

P. Fonte

Expected performance vs. other systems

Image adapted from Applications for Preclinical PET/MRI, Martin S. Judenhofer and Simon R. Cherry Semin Nucl Med 43 (2013)19-29

> Expected performance exceeds the "target"

X Experimental FLUKA simulation

100

Sensitivity is important... in some cases

Syringe with 70 uCi , 0.5 mm bins

sub-mm source 10 uCi, 0.2 mm bins, 80s in V1

(this is NOT a resolution test)

<u>i</u> Call

Full-body human RPC TOF-PET

P. Fonte

RPC TOF-PET – sensitivity advantage

Table 1: Validation of methods against measurements [4].					
	Sensitivity (NEMA NU 2-1994)				
Events	Ring	Measured	Simulation	Error	
accepted	difference	(kcps/µCi/ml)	(kcps/µCi/ml)	(%)	
Trues	11	1020	1059	3.8	
Trues + Scatter	11	1570	1624	3.4	
Trues	17	1248	1246	-0.2	
Trues + Scatter	17	1920	1928	0.4	
(GE advance)					

3.1 NEMA-like sensitivities for different scanners

Figure 1: NEMA axial sensitivities for scanners with different AFOV. Details respecting the various PET scanners are given in Table 2. The human figure at the bottom has illustrative purposes only.

Figure 2: Axial sensitivities similar to Fig. 1, but with the line source immersed in a water cylinder with 27-cm diameter.

3.2 Sensitivity with an athropomorphic phantom

RPC TOF-PET – sensitivity advantage

	PET	Biograph ^a	Biograph ^a	GE ^b	196-cm AFOV	
	scanner	TruePoint	TruePoint	Advance	LSO-based	RPC-PET
			TrueV	(3D-mode)		
	Nb. of block-rings	3 ^c	4 ^c	3^d	35 ^c	n.a.
	AFOV (cm)	16.2	22	15.2	196	240
	Ring difference	27	38	11	162	$\theta \leq 45^{\circ e}$
	Packing fraction	0.86	0.86	0.844	0.86	1.0
	Crystal depth (cm)	2.0	2.0	3.0	0.43	n.a.
	Singles efficiency at 511 keV	0.7	0.7	0.78 ^f	0.194	0.194
	Absolute sensitivity, η_a					
- E	1.5-m line source (%)	0.013	0.023	0.019	0.066	0.172
LS in water phantor	Planar sensitivity ^k , η_s					
	(% per 2-mm slice thickness)	0.239	0.327	0.342	0.079	0.158
	Time for equal image					
	quality ^l (min:sec)	2:04 [5]	1:30 [5]	1:27	6:15	3:08
	Scan of 1.5-m length object					
	Nb. of bed steps	14	11	14	1	1
	Total scan time (min:sec)	28:56	16:30	20:18	6:15	3:08
	Relative gain (no TOF) ^m	1.0	1.8	1.4	4.6	9.2
	Relative gain (with TOF) ^m	3.0 °	5.4 ^o	n.a.	13.8°	55.2 ^p

 \sim 30-fold sensitivity increase over current state-of-the art scanners \sim 10-fold if TOF (600 ps) is introduced to LSO scanners

The real benefit of the TOF information is a matter of current research In here we used the formula:

TOF sensitivity advantage \approx

object size (c/2) time resoluti

RPC TOF-PET – accepted scatter fraction

Fig. 6. Axial scatter fraction profiles obtained for the 2.4-m long RPC-PET system, and for a 17-bed scan with the GE Advance.

No apparent handicap for object-scattered photons

Detailed simulations for NECR

M. Couceiro, PhD Thesis, 2014)

- ✓ The scanner consists in a hollow parallelepiped with 4 detection heads
- ✓ Each detection head has a stack of 20 RPC detectors in the radial direction
- ✓ Each detector consists of 2 RPC modules, each with 5 gaps and independent axial electrodes, but sharing a common transaxial electrode
 ³⁷

Detailed simulations for NECR

M. Couceiro, PhD Thesis, 2014)

Detailed simulations for NECR

M. Couceiro, PhD Thesis, 2014)

Prototype of the basic human RPC-PET detector module

Characteristics:

- •6 glasses of 150±10 µm (a bit too thin)
- •5 gas gaps of 350 µm
- •active area 870x415 mm (x6=~2.4m long)
- •all high voltage and gas distribution inside

Animal and human RPC-PET

Prototype of human RPC-PET in development

40

Human PET data chain concept

P. Fonte

Reconstruction studies - Direct Time-of-Flight Whole Body 3D

NCAT Simulation (whole body)

100

-800

-1000

-300 -200 -100

0

Y (mm)

100 200 300

-800

-1000

-300 -200 -100

0

X (mm)

100 200 300

P. Fonte

100

50

X (mm)

kMartins et al

Reconstruction studies - Direct Time-of-Flight Whole Body 3D

MLEM – 45 iterations

P. Fonte

Reconstruction studies - Direct Time-of-Flight Whole Body 3D

MLEM – 45 iterations

P. Fonte

Reconstruction studies - Direct Time-of-Flight Whole Body 3D

MLEM – 45 iterations

Summary

Animal RPC-PET

- An excellent space resolution of 0.4 mm FWHM without software enhancements was demonstrated (commercial tomographs >~ 1mm)
- More than 200 mice (and 2 rats) examined so far with ¹¹C, ¹⁸F, ⁶⁴Cu for biological research
- Operated independently by a team at ICNAS
- MRI co-registration via a transfer marker
- V2 in preparation with 10x higher sensitivity and full body FOV for mice
- Simulations and measurements suggest that an extraordinary ultimate performance is possible

Human full body RPC TOF-PET

- Detailed simulations of a human RPC-PET scanner suggest improvements in Noise-equivalent count rate (NECR) up to 11 times over the most sensitive commercial tomograph
- 300 ps FWHM time resolution for photon pairs was demonstrated
- Expected physics-limited resolution (~2mm)
- Funding for a prototype was/is actively procured