
LIP-STUDENTS-25-9

Development of an atomic spectra database and accompanying website

Carolina Gomes Freitas1,a and João Rodrigo Pinto Jasmins de Freitas2,b

1Escola de Engenharia da Universidade do Minho, Braga, Portugal
2Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal

Project supervisors: L. Leitão, R. Ferreira da Silva, J. Pires Marques, T. Campante September 30, 2025

Abstract. Data on the atomic spectra of heavier ions is not widely available due to several factors. Some of
those include a historical lack of necessity as well as a large cost and difficulty to acquire such data experimen-
tally. As such, at the Nuclear Reactions, Instrumentation and Astrophysics (NUC-RIA) research group, part of
Laboratory of Instrumentation and Experimental Particle Physics (LIP), there is a large amount of work being
done to calculate the levels, transitions and electron-ion collisions data for the ions belonging to the lanthanide
group of the periodic table. Currently, most of this data is inaccessible to the wider scientific community despite
the publishing of several works, requiring direct contact with the authors of these works. The goal of this work
is the creation of a relational database (DB) and accompanying website to facilitate access to this data.

Keywords: Database, Calculated atomic spectra, Lanthanide and actinide ions

1 Introduction

While the question of the origin of all atoms has persisted
ever since the known elements were organized into the pe-
riodic table, the tools and collective wealth of knowledge
required to answer this fundamental question were not al-
ways available. Answers to parts of this question have
been given by astronomy and astrophysics and their ad-
vancements over the years, namely the origin of lighter
elements. But the same question about heavier elements,
elements heavier than iron, remained unanswered. Many
heavier elements were theorized to be present in the same
events that produced large amounts of lighter elements,
with the understanding that there was a significant mis-
match between the expected and observed abundances of
these elements. An answer to this question was presented
with the detection of the first neutron star merger in 2017
by the LIGO and Virgo Collaborations [1].

Currently, our collective best understanding is that the
answer on the origin of most elements lies with the death
of stars of varying sizes as well as other cosmic events like
merging neutron stars [2], with kilonova being the name
given to the electromagnetic transient powered by the ra-
dioactive decay of the newly synthesized r-process ele-
ments emitted by these mergers. The identification of the
elements that are present in these events relies on the ob-
servation and registration of the full emission of the elec-
tromagnetic spectrum, creating a need for the supporting
atomic spectra data on the elements that would possibly be
present [3].

This data is gathered by studying the electromagnetic
radiation that is emitted and/or absorbed by atoms with
the movement of electrons between different orbitals, with
each atom and each of its ions having different and unique
emission spectra. This uniqueness is the essential charac-
teristic that is used to determine the material compositions
of unknown samples and is the foundation of the entire
branch of spectroscopy. Since this data is foundational to
the work of astronomers that use it to identify the elements

present in these cosmic events, as well as other physicists
working in other branches of physics, access to reliable
data is of utmost importance.

In an attempt to solve this problem of accessibility,
there are several different repositories containing data on
atomic spectra. These repositories usually contain data
obtained experimentally and compiled into a centrally ac-
cessible point. The repository that is considered the gold
standard is the National Institute of Standards and Tech-
nology (NIST) Atomic Spectra Database (ASD) [4]. This
is due to several factors such as a wide range of covered
ions with very complete data, while being easily accessible
and scientifically traceable by linking the various sources
it uses and their corresponding published works. Further-
more, the criteria for acceptance and inclusion of data on
this DataBase (DB) is very rigorous.

However, despite being considered one of the best col-
lections on this type of data available, it is not complete.
Heavier ions, such as those from the lanthanide and ac-
tinide groups of the periodic table, are not well represented
in this DB. This is visible in figure 1:

Figure 1. Number of spectral lines registered for each element
present in NIST ASD version 5.7.1 (released in October 2019);
Image retrieved from [5].

ae-mail: carolinagfreitas@sapo.pt
be-mail: joaorpjfreitas@gmail.com

LIP-STUDENTS-25-9 2

Some of the most relevant reasons for this lack of
availability are both historical and economical. Histori-
cally, there has not been much interest in gathering this
data for heavier elements, in comparison with lighter el-
ements, due to a perceived lack of necessity for the data.
Economically, due to the relative rarity of these elements
on earth, the acquisition costs for the material will be
higher than more common elements. The result is that
since 2017 there is a need for this data for further scientific
work, while there is very little of it available. The solution
to this problem has been to obtain this data theoretically
by use of calculation frameworks. This is the work that is
being done by several members of NUC-RIA, with some
publications having already been made detailing this work.
[6–9] Several methods have existed to make these calcula-
tions, while the bulk of the data currently stored by NUC-
RIA pertains to data generated with Flexible Atomic Code
(FAC) [10], with the rest of the data having been generated
with other methods for comparison purposes and other on-
going work.

Currently, even though the publications are already
part of the academic ecosystem and contributing to the
work of other scientists, this data is not easily accessible
to the wider scientific community. The goal of this intern-
ship is to develop a relational DB to efficiently organize
and store this data, and develop a website to facilitate ac-
cess to the data.

2 Technical Glossary

Due to quite the heavy use of technical programming ter-
minology and details in the following sections of this re-
port that might not be commonly known, this section is
dedicated to the identification and clarification of what
most of this terminology means. It is recommended to
read and familiarize yourself with these terms for proper
understanding of the report.

API (Application Programming Interface): A set of
HTTP endpoints that external programs can call to re-
quest data. In this case, /api/transitions, /api/collisions,
etc. allow the browser to fetch atomic data without know-
ing Structured Query Language (SQL).

Asyncio: Python’s built-in library for handling thousands
of simultaneous tasks without creating separate threads.
In the platform, it lets one FastAPI process serve multiple
physicists’ queries concurrently.

CORS (Cross-Origin Resource Sharing): Browser se-
curity rules that will normally block web pages from
accessing APIs on different domains. Without CORS
setup, the browser would block all the data requests with
"blocked by CORS policy" errors.

CPU (Central Processing Unit): The main computa-
tional chip in a computer. The platform is CPU-bound
when performing a linear regression on 50000 collision
points or generating heat-map matrices.

CRUD (Create, Read, Update, Delete): The four basic
operations on data. The admin dashboard implements
CRUD for tables like users, datasets. Administrators can
add new collaborators, edit dataset metadata, etc.

Endpoint: A specific URL path in the API that serves one
purpose. For example, /api/transitions is the endpoint that
returns radiative transition data; /auth/token issues authen-
tication tokens.

JavaScript (JS): Client side programming language,
commonly used for web development, improving the UI
and interactivity of the websites where it is used.

JSON (JavaScript Object Notation): The text for-
mat the API uses to send data. Example:
{"wavelength_nm": 256.15, "TR_rate": 3.2e6}.
Both Python (dict) and JavaScript (object) can easily con-
vert to/from JSON.

FastAPI: The Python web framework used to build the
REST API. It automatically generates documentation, val-
idates inputs, and converts Python objects to JSON re-
sponses.

Fetch: JavaScript’s built-in function for mak-
ing HTTP requests. For example, neo.js uses
fetch(’/api/transitions? atomic_number=26’)
to request data on iron from the server.

Flask: An alternative Python web framework (FastAPI
was chosen instead). Flask is older and simpler but lacks
automatic API documentation and built-in async support.

Gunicorn (Green Unicorn): A Python WSGI (Web
Server Gateway Interface) server that can run multiple
worker processes. It might be used in the future to scale
the API horizontally: gunicorn -w 4 api:app creates
4 FastAPI workers.

Injection: A programming pattern where functions re-
ceive their dependencies as parameters rather than creating
them internally. The API routes use get_db() injection to
receive DB sessions.

JWT (JSON Web Token): A security token that contains
encrypted user information. When physicists log in, they
receive a JWT that proves their identity for 15 minutes
without needing to check the DB on every request.

ORM (Object-Relational Mapping): Software that lets
you work with DB tables as if they were Python classes.
Instead of writing SELECT * FROM transitions,
db.query(Transition) can be used with SQLAlchemy.

Parsing: Converting text into structured data. The plat-
form parses JSON responses from the API into JavaScript
objects, and parses user input like "Fe II" into atomic num-
ber 26, charge +1.

Pydantic: A Python library that ensures data has the cor-
rect shape and types. The API uses Pydantic models to
guarantee that wavelength_nm is always a positive num-
ber, preventing unit errors.

LIP-STUDENTS-25-9 3

Query: DB query: A SQL command like
SELECT wavelength_nm FROM transitions WHERE
atomic_number=26. API query: Parameters in a URL
like ?atomic_number=26&wavelength_min_nm=200.

Routers: FastAPI modules that handle different parts of
the API. There are separate routers for levels, transitions,
collisions, and admin functions in order to keep the code
organized by physics domain.

SQLAlchemy: Python’s most popular ORM library. It
converts the Python classes (Level, Transition) into
SQL table operations and handles connection pooling to
MySQL.

TCP (Transmission Control Protocol) socket/packet:
The network communication method between the API
and the DB. Each DB query travels in TCP packets over a
socket connection (usually port 3306 for MySQL).

Token: A piece of data that proves identity. The JWTs
are bearer tokens sent by the browser in HTTP headers to
prove the user is authenticated without sending passwords
repeatedly.

UI/UX (User Interface / User Experience): UI is what
physicists see (buttons, tables, plots). UX is how it feels to
use (fast loading, intuitive workflows, helpful error mes-
sages). The design prioritizes scientific workflow effi-
ciency.

Uvicorn: The Python server that runs the FastAPI applica-
tion. Command uvicorn api:app starts the server on lo-
calhost:8000. It handles HTTP requests and converts them
to Python function calls.

3 Methodology

Considering all of the requirements of this project, a three-
tier approach was settled on. This approach consists of the
DB (back-end) itself, the website (front-end) and an API
making the connection between both and serving as an in-
terface layer. This approach was chosen over a more inte-
grated website and API due to a multitude of factors, such
as:

Scientific Productivity: In the future, the hot-swaping of
visual tools without re-deploying the server can be done.
With a separate UI it is possible to edit static/js/neo.js, re-
fresh the browser, and see the change instantly. If the API
and UI were bundled, every tweak would require rebuild-
ing the container or restarting the process, interrupting col-
leagues’ ongoing long-running queries.

Reproducibility and Peer Review: Keeping the API
stateless and version-tagged means every published pa-
per can cite the API version for exact query semantics.
For example, UI bug-fixing might silently change query
behavior and invalidate historic results.

Security Surface Reduction: The DB listens only to the
API on a localhost socket and never listens to browsers.

The browser receives only pre-sanitised JSON. Even if
malicious JS code is injected, it cannot reach raw creden-
tials or the DB port. When the web interface is bundled
with the API into a single application, the HTML templat-
ing engine and the DB drivers all run in the same process.
This makes the system more complex to review and gives
attackers more potential entry points, increasing the risk
and complicating security audits.

Optimized Resource Usage: Right tool for the right job
approach; The back-end is CPU-light, but the server
spends more time waiting for responses from the DB
(queries, inserts, updates) than performing complex cal-
culations on the CPU; The front-end is CPU heavy. By
running in separate processes they can be pinned to differ-
ent cores, distributing the workload.

Upgrade and update modularity: Since each of the
three main components use different tools for different
purposes, the rate of releases for updates on each tool is
different. The website can have an update cadence that is
much more frequent than the API, which in turn is more
frequent than the DB. Once the DB is established, the
only updates it is likely to receive are related to adding or
removing data, with the internal structure remaining un-
changed. This means that everything else that is built with
this foundation will not require frequent changes. The
API however, is reliant on tools and processes that evolve
very frequently for security reasons. The website may be
updated whenever necessary, as long as the communica-
tion pathway to the API, and subsequently the DB, is not
changed. This is important in order to maintain the core
functionality available, as has been verified by testing.

Scalability Path: Due to the sheer amount of data,
when/if users begin batch-fitting 107 collision rows, the
API can be scaled horizontally while each user still loads
the UI locally. In a merged design, horizontal scaling du-
plicates the heavy UI code, wasting memory and compli-
cating cache invalidation. As previously mentioned, en-
tangling layers would only slow the feedback loop and fur-
ther burdening the user´s computational resources.

Due to handling large amounts of data for use by the
scientific community, some care was also taken to abide by
the Findability, Accessibility, Interoperability, and Reuse
of digital assets (FAIR) guiding principles for scientific
data [11].

For the DB (back-end), the tools used on this project
consisted of MySQL 8.0 for the DB Management System
(DBMS) due to familiarity with it and because it fit the
requirements. Python was used for parsing and reformat-
ting the raw data into the same structure defined in the DB,
as well as for the ingestion of new data and querying the
DB with the use of the pandas, MySQL-connector-python
and SQLAlchemy packages. Some existing python code
from members of the group was used as a baseline upon
which the rest of the features were built on. For the web-
site (front-end), HTML5, CSS3 and JavaScript ES6+ are
the main tools that were used, in order to create a website
that was both aesthetically pleasing and functional.

LIP-STUDENTS-25-9 4

For the API and other tasks, such as hosting the web-
site locally for testing purposes and performing those same
tests, the main tools that were used are Uvicorn as an API
server, Browser DevTools for debugging and monitoring,
Postman, FastAPI and Insomnia for several API features.

4 Full system architecture

To properly explain the full architecture of the prototype
and the communication pathways between each of the
components, all of the individual pieces themselves and
their purposes need to be fully explained first.

4.1 The database

The schema for the DB that was settled on after testing
several different designs can be seen in figure 2.

Figure 2. Schema for the DB. Schematic made with dbdiagram.
io.

The work on the schema was started by analyzing the
raw data that was output by the calculation codes. The
output consists of three files per ion; the levels, transitions
and collisions files. After further analysis, some patterns
were identified with the first of these patterns being that
the transitions and collisions are always being identified
by two different levels that were registered in the levels
file. The second pattern is that the cross sections of each of

the electron-ion collisions are averaged over a maxwellian
velocity distribution and so, the rates are given for a set
of temperatures. Each of these set temperature values is
repeated for each collision in the raw data. For example,
if there are 10 temperatures and 50000 collisions, each of
the 10 temperatures will be repeated 50000 times.

Some of the most important design considerations for
the DB were the storage efficiency and the scalability, with
several things being done in pursuit of those goals. The
two main things being the creation of the temperatures and
level_pairs tables, and the optimization of the data types
being used for all fields throughout the DB. By normal-
izing the level pairs, the need for an additional JOIN op-
eration in every query that links transitions or collisions
to their specific level energies was introduced. This was
tested and it was considered an acceptable performance
trade-off for the significant gains in storage efficiency and
data integrity.

The final design consists of 9 interlinked tables with
several different identifiers (IDs) being attributed to im-
portant things within each table and being used in other
tables. These tables and their purposes are:

Elements table Stores basic information on each element,
linking the element’s name with its atomic number and
symbol. This is intended to be used on the website for
search flexibility. Links to the ions table.

References table Stores the information on the published
work associated with the data entries and attributes an ID
to it. Uses the name references_table name due to ref-
erences being a reserved keyword for SQL. Links to the
datasets tables.

Datasets table Stores the information on the method used
for acquisition of data and is different than the references
due to the possibility of different methods being used in
the same work, attributing an ID for each dataset. There
is also an is_active boolean flag that allows older datasets
to be deprecated in favor of newer versions without delet-
ing the original data, ensuring that past research citing the
older data remains reproducible. Links to the references
and ions tables.

Ions table Stores the information for the specific ion, at-
tributing an ID to the triplet consisting of the atomic num-
ber, the charge and the dataset ID that acquired the data.
This way, there can be data on the same ion originating
from multiple datasets from different publications, or even
from the same publication. Links directly to the datasets,
elements, levels, transitions, collisions tables, and indi-
rectly to the level pairs table.

Levels table Stores the levels information, directly parsed
from the output files. The pair of atom ID and the level in-
dex uniquely identify any level, with the level index being
created after sorting the data with increasing energy. The
different energy values are conversions from the output file
using the Committee on Data of the International Science
Council (CODATA) internationally recommended values
of the fundamental physics constants from NIST [12] for

dbdiagram.io
dbdiagram.io

LIP-STUDENTS-25-9 5

consistency and accuracy. Links to the ions table, and to
both the collisions and transitions tables through the level
pairs table.

Transitions table Stores the transitions information, di-
rectly parsed from the output files. Every transition is
uniquely identified by the combination of atom ID and pair
ID. Links to the ions and the level pairs tables.

Collisions table Stores the collisions information, directly
parsed and reformatted from the output files. Every colli-
sion is uniquely identified by the triplet of atom ID, tem-
perature ID and pair ID. Links to the ions, temperatures
and level pairs tables.

Level pairs table Stores the upper and lower levels by use
of the level index identifier, from the levels table, by at-
tributing a unique level pair ID. Does not rely on specific
atom IDs, effectively serving as an index for the levels ta-
ble’s level index field. This solution was reached to reduce
the amount of repeated information (upper and lower lev-
els) in the transitions and collisions tables. Links to the
transitions and collisions tables.

Temperatures table Stores the temperatures used to make
the calculations on the collisions, assigning a unique ID to
each value. This table also stores the temperature con-
verted to Kelvin for easier readability on the website.

The ingestion of the data into the MySQL server was
done using several python scripts that parsed the raw data

and, after reformatting into the appropriate structure, in-
serted the data in the DB itself.

4.2 API

The communication flow works as follows: MySQL uses
the binary protocol to exchange data between storage
and Python, next the interaction between Python and the
browser occurs through HTTP/JSON and finally the com-
munication between the business logic and the visualiza-
tion libraries is handled via in-memory JavaScript objects.

Table 1 summarizes the transport layers that move in-
formation through the stack: from the MySQL binary pro-
tocol that carries raw query results, through HTTP/JSON
for the REST API, to the direct file-system reads that de-
liver the static HTML and JavaScript to the browser.

Next, in table 2 the main Python entry points can be
seen, which are primary modules that the application im-
ports at start-up and through which the rest of the codebase
is accessed, explaining how each module contributes.

In table 3 the software bridges are identified. These
play a fundamental role in this project due to bearing the
responsibility of translating functionality and communica-
tion between different tools, languages and protocols.

Finally, a router layer is the part of the FastAPI back
end that defines the actual HTTP endpoints, which means
the URLs that the browser can call to get data or perform
actions. FastAPI organizes endpoints into separate router
modules, each one focused on a specific scientific domain
or task. A summary of this can be found in table 4.

Table 1. Physical & Logical Transport Layers.

Layer Protocol Purpose
DB↔ API TCP socket and MySQL

binary (InnoDB engine)
Execute SQL generated by SQLAlchemy; return result-sets or
write acknowledgements.

API↔ Front-End HTTP 1.1 over localhost
(127.0.0.1)

Deliver REST JSON responses; receive filter parameters, auth
credentials, CRUD payloads.

Static Assets→
Browser

file:// URI scheme (direct disk
read)

HTML, CSS, JavaScript, images are loaded straight from the
filesystem. No web server required because the content is static.

Table 2. Top-Level Python Entry Points.

File Purpose
api.py Main FastAPI application: CORS, router registration, custom OpenAPI, DB-session dependency.
auth.py JWT authentication: password hashing (bcrypt), token creation, first-login password set.
app_database.py SQLAlchemy ORM models + get_db() generator.
schemas.py Pydantic response/request models (LevelsResponse, TransitionsResponse, etc.).
api_functional.py Minimal FastAPI variant used in some test scripts (functional sandbox).

LIP-STUDENTS-25-9 6

Table 3. Software Bridges & Their Responsibilities.

Bridge Technology Encapsulated
Data

Key Responsibility

SQLAlchemy ORM Python
package

Python objects↔
SQL rows

Translates high-level query expressions in routers into
parameterised SQL. Ensures type safety, prevents injection.

Pydantic / FastAPI
Serialiser

Pydantic
BaseModel

ORM models↔
JSON

Converts Python types (Decimal, datetime) to JSON-safe
primitives; validates outgoing schema for every endpoint.

Fetch API (browser) native JS
fetch()

JSON↔ JS
objects

Adds Authorization header, parses JSON, converts to JS
arrays/objects for UI rendering.

Plotly / Tabulator JS libraries JS objects↔
SVG/Canvas DOM

Visualise data; reflect user edits back into JSON for
PATCH/POST.

SheetJS (xlsx) JS library JS objects↔
binary .xlsx

Client-side Excel export.

JWT Bearer Token RFC 7519 Base64-encoded
JSON

Carries username + role flags; attached to every API call for
stateless authentication.

Table 4. Router Layer.

Router Key Endpoints Why It Exists
levels.py GET /levels Paginated energy-level groups.
transitions.py GET /transitions, /expand, helpers Radiative-transition data delivery.
collisions.py GET /collisions, /series, /pairs Electron-collision tables + diagram series.
auxiliary.py GET /auxiliary/elements, /datasets Lightweight look-ups for element metadata.
admin.py CRUD endpoints for users User & role management by admins.
admin_dashboard.py Generic CRUD for whitelisted tables Powers Tabulator dashboard.
__init__.py Re-exports nothing; marks directory as package. Empty but required for Python import.

4.3 Website

For the website, several interconnected HTML pages were
built using JS modules and CSS styling. Some opera-
tional and utility scripts were also necessary to ensure
proper functionality of the website and the admin dash-
board. These are detailed in the tables below.

Table 5 lists the HTML pages that form the user-facing
website, each page tailored to a specific task such as ex-
ploring transitions or visualizing collision strengths.

Next, in table 6 a description of the role of the files that
handle data fetching, plotting, and role-controlled editing.

With table 7, identification of the CSS files being used
can be seen. The usage of a consistent styling across the
whole website gives the interface a cohesive appearance
and identity. It also ensures the dashboards and plots re-
main readable. More details about specific files are shown
in this table.

Lastly, in table 8, all of the scripts that are currently
implemented and that perform specific actions can be seen
listed, along with their individual functions.

Table 5. HTML pages currently available on the website.

File Role
index.html Landing splash; links to Levels / Transitions / Collisions pages.
levels.html UI for energy-level browsing & Excel export.
transitions.html UI for transition filters, heat-map, hot-levels logic.
collisions.html UI for collision tables and Ω(T) diagram.
admin.html Admin dashboard container (Tabulator grids).
login.html Simple login form acquiring JWT.

Table 6. JavaScript Modules (static/js/).

File Purpose
neo.js Unified front-end logic for Levels, Transitions, Collisions pages: fetch helpers, UI wiring,

Plotly plots, Excel export.
admin.js Builds Tabulator grids, handles CRUD and role checks.
login.js Performs /auth/token, stores JWT in localStorage, redirects on success.
libs/xlsx.full .min.js SheetJS library (bundled) for client-side .xlsx creation.
libs/tabulat or.min.js Tabulator grid engine used in admin.js.

LIP-STUDENTS-25-9 7

Table 7. CSS styles used for UI design.

File Role
static/css/neo.css Global styling (buttons, tables, colour maps).
static/css/tabulator.min. css Table theme required by Tabulator.
static/config.js Defines window.__API_BASE__ (switch dev vs. prod API URL).

Table 8. Operational & Utility Scripts (ops/ and root).

File Purpose
ops/bootstrap_admin.py Create first admin user.
ops/ensure_admin_role. py Verifies at least one user has is_admin.
ops/test_protected_endp oints .ps1 PowerShell smoke test for 401/403 flow.
ingest/ingest_data.py Bulk importer for CSV atomic tables.

4.4 How These Pieces Fit Together

When the platform is launched with the command
uvicorn api:app the server loads the file api.py which
imports all DB models from app_database.py and regis-
ters every API router so that each functional area such
as levels transitions and collisions is ready to receive re-
quests. A user then opens, for example, transitions.html in
a web browser and because the interface is fully static the
browser reads the JavaScript logic in static/js/neo.js and
the styling in static/css/neo.css directly from the local disk
without needing a separate web server or build step. After
the page has loaded neo.js, it sends HTTP requests to the
endpoints defined in the router files. When the responses
come back, they are structured as JSON that follows the
data structures described in schemas.py, which keeps field
names and types consistent. For administrative tasks, an
administrator opens admin.html which loads admin.js and
these scripts call the endpoints with access controlled by
the authentication and role checking logic in auth.py. All
routes that touch the DB use the same session genera-
tor defined in app_database.py, which ensures that every
query and transaction relies on a single connection pool
configuration and behaves consistently throughout the ap-
plication.

4.5 Typical Request Life-Cycle

As in section 4.4, using the transitions page as an exam-
ple, the typical process for a processed request is as fol-
lows. After authenticating the browser session, the user
navigates to the Transitions page and selects the desired
filters. For example, selecting iron (Fe, atomic number
26), singly-ionized (charge 1), with wavelengths between
200 nm and 400 nm.

When the Load button on the page is pressed, the
browser executes a JavaScript routine that assembles these

criteria into a structured query string, including a re-
quest for oscillator-strength values and a limit of 50000
records. The routine issues a single HTTP request to the
locally running FastAPI service on port 8000, carrying
the user’s authorization token in the header. Upon re-
ceiving this request, the FastAPI application matches the
path /api/transitions to the function get_transitions()
in routers/transitions.py.

Next, a DB session is obtained through the shared
get_db() dependency, which either re-uses a pooled
MySQL connection or opens a new one as required.
SQLAlchemy then constructs an optimized SELECT state-
ment that joins the relevant tables, which in this example
are the levels, transitions, pairs, ions and datasets tables,
while enforcing the wavelength limits and record thresh-
old. The MySQL engine then sends the resulting rows
back to the Python layer in an efficient, buffered fashion.

Each row is mapped into strongly typed Py-
dantic data models such as TransitionItem and
LevelBrief. FastAPI’s encoder converts these mod-
els into a standard JSON document, translating numer-
ical fields to floating-point values and time stamps to
ISO-8601 (YYYY-MM-DD and hh:mm:ss format) strings.
The server returns this document with the appropri-
ate Content-Type: application/json header and the
browser then resolves the response. The client-side
JavaScript parses the JSON payload and injects the data
into the interactive table and the Plotly visualization com-
ponents.

If everything works as intended, within a second the
user is presented with a fully filterable list of radiative
transitions and corresponding spectral plots, all generated
from the connected DB. The way some of the most com-
mon sources of errors are dealt with, across the differ-
ent layers of a web application, are described in table 9.
Whether through automatic error codes, middle-ware con-
figurations, or library-level optimizations, all of this en-
sures reliability and a smooth user experience.

LIP-STUDENTS-25-9 8

Table 9. Error & State Handling Across Layers.

Stage Possible Failure Detection &Mitigation
Validation Missing query param Pydantic automatic 422 response; JS displays “invalid input”.
Auth Expired token python-jose.JWTError→ 401 JSON; JS clears LocalStorage, redirects to login.
Network CORS blocked FastAPI CORS middleware adds permissive headers; browser accepted.
Client JS plot overflow The goal is to keep the graph interactive and fast while plotting up to hundreds of

thousands of points in the browser, which could make the page slow or even crash.
So if the dataset is larger than 50 000 rows, Plotly internally keeps only a
representative subset of the data to display, while the full dataset remains
unchanged on your side.

4.6 Additional Communication Details

4.6.1 SQLAlchemy Connection Pool

Pool size defaults to 5; overflow 10; recycle after 1 h.
Each FastAPI request receives its own session via yield

from get_db().
On response completion the session is closed by the

.close() function, returning the underlying connection
to the pool. The benefit of this process is that dozens
of concurrent Plotly requests won’t spawn uncontrolled
MySQL threads.

4.6.2 Token Refresh Logic for Long Sessions

Client polls /auth/me every 10 minutes; The server re-
turns "exp": <unix> in claims.

If remaining life is <2 min, browser silently reuses
cached username/password combo on the /auth/token
to refresh the session.

Failure to refresh will give a “Session expired; please
log in again” error.

4.7 Practical Engineering Concerns Addressed
While Building Code-Base

• Numeric Precision vs. Front-End Rendering

– Problem: The stored atomic data can have up to
20 orders of magnitude of precision in storage, so
performing consecutive conversion from decimal →
float→ string could introduce rounding errors or a JS
1e+308 overflow error.

– Fix: Kept decimal format inside API, converted to
float only at JSON serialization, then formatted in the
browser with a custom formatNumber()(scientific
notation).

• CORS under file://

– Problem: Browsers treat pages loaded via file:// as
having a null origin. By default, this blocks cross-
origin requests unless specific headers are set.

– Solution: The CORS middleware is configured with
allow_credentials=False (since credentials cannot be
sent from a null origin). Now, authentication can be
handled via JWT in the HTTP headers rather than not
cookies, avoiding the blocked credential issue.

• MySQL Connection Credentials

– Problem: Hard-coded fallback connection strings
(DSNs) could accidentally expose production pass-
words if used in the wrong environment.

– Solution: The .env file must define
SQLALCHEMY_DATABASE_URL, so the fallback
string is now clearly marked as “development-only”.
If the placeholder is detected, Uvicorn aborts the
startup, preventing accidental exposure of sensitive
credentials.

• First-Login Password Setting

– Requirement: New user with NULL
hashed_password sets password on first login.

– Implementation: In authenticate_user(), if
hashed_password is "None" then hash supplies the
password and commits it to the DB in the same re-
quest; Prevents race where two logins could hash dif-
ferent passwords.

• Logging Convention _logger.LogWithContext

– Uniform Class.Method prefix enforced to help cor-
relate UI requests with API traces. This is used to
organize and better track system logs, making debug-
ging and monitoring easier.

– Class.Method prefix also identifies which class and
method each log entry comes from, leading to a cor-
relation between a UI action with the correspond-
ing API processing. This method makes it easier to
quickly locate where and why an error or behavior
occurred.

Next, endpoints are a fundamental part of an API be-
cause they define how clients interact with the system.
Each endpoint represents a specific resource or action. The
main groups of endpoints that were used are specified in
table 10.

And finally, due to this DB being accessed through the
internet and being available as an online resource, secu-
rity was also a large concern. The implemented security
measures start with binding services to localhost. This
ensures that only local processes can reach them, reduc-
ing exposure to external threats. Meanwhile, configuring
CORS allows to explicitly control which domains can in-
teract with the API. Together, these measures prevent un-
wanted traffic, limit attack surfaces, and provide a safer

LIP-STUDENTS-25-9 9

environment for client-server communication. More de-
tails can be found in table 11.

Input validation and injection defense are critical to
protecting applications like this one from malicious data.
By enforcing strict rules on incoming requests, SQL injec-
tion attacks can be prevented, where attackers attempt to

manipulate queries to access or alter DBs. Similarly, vali-
dating data against a JSON schema helps detect and block
tampering, ensuring that only properly structured and ex-
pected input is processed. These safeguards maintain data
integrity, protect sensitive information, and are shown in
the table 12.

Table 10. Endpoint Groups in the API.

Route Prefix Representative Endpoints Primary Functionality
/auth • POST /auth/token

• GET /auth/me
Issue and validate JSON-Web-Tokens; first-login password
initialization.

/levels • GET /levels Returns energy-level groups with dataset provenance;
supports limit, offset, element and ion filters.

/transitions • GET /transitions

• GET /transitions/expand

• GET /transitions/visible-range

• GET /transitions/top-by-region

Delivers radiative transitions; fine filters (λ-range, method, g
f), grouping by dataset; expansion endpoint provides deep
metadata; helper endpoints supply visible-band and “top-5
per region” subsets.

/collisions • GET /collisions (paginated Ω rows)

• GET /collisions/series

Supplies electron-collision strengths Ω and temperature
series for a chosen level pair; server limits protect memory.

/auxiliary • GET /auxiliary/elements
• GET /auxiliary/datasets

Lightweight look-ups: periodic-table metadata, list of
dataset methods/sources.

/admin • GET/POST/ PATCH/DELETE
/admin/users

Strictly user-account management; change roles, disable
accounts.

Table 11. Transport & Network Hardening.

Aspect Measure Why
Localhost Binding uvicorn api:app –host

127.0.0.1 by default.
Prevents remote machines from even opening a TCP connection
unless explicitly re-configured.

CORS allow_origins="*" but
allow_credentials= False.

Works with file:// front-end while ensuring browsers still need the
bearer token header.

Table 12. Input Validation & Injection Defence.

Attack vector Mitigation
SQL injection All dynamic queries use SQLAlchemy parameter substitution

(query.filter(User.name == supplied_name)). Raw text() statements are
parameterized via :name bindings.

JSON schema
tampering

Pydantic models (schemas.py) enforce type (e.g. wavelength_nm: float > 0);
Invalid payloads trigger automatic error 422 responses.

4.8 User-Centered Front-End Design Choices

Lastly, some detail on the design choices that were cho-
sen is essential. Beyond technical functionality, a primary
goal was to create a tool that is intuitive and efficient for
its target audience of research physicists, to guarantee that
this is a tool that people want to use, rather than a tool
they reluctantly need to used due to specific data not be-

ing available anywhere else, as is the current status quo of
data and DBs in the field. To achieve this, a user-centric
design approach was adopted, by identifying several key
work habits and potential pain points for scientists inter-
acting with atomic data. Then specific UI/UX solutions
were engineered to address them. The process is summa-
rized in table 13, linking what was observed to the result-
ing design choices in the application.

LIP-STUDENTS-25-9 10

Table 13. Website design choices and reasoning.

Concern Observation of Physicists’
Work Habits

Design Response in the UI

Unit awareness Physicists switch between nm,
Å, eV; unit mistakes are costly.

• Column headers include units (“Wavelength [nm]”, “Energy
[cm-1]”).
• Tooltip on wavelength field reminds “input values in nm”.

Visual pattern
recognition

Scientists spot anomalies faster
in color plots than in tables.

• Visible-band rows are color-coded against the rainbow
(UV→IR).
• Heat-map for transition connectivity uses perceptually
uniform “Viridis” palette.

Provenance &
Metadata

Papers require citing data
source, method, DOI.

• Dataset badge appears above every table, for example:
Method: R-Matrix · Source: Smith 2025. Hovering over it
shows full reference information.

Minimal clicks
to first plot

Demonstrations should produce
a graph in <15 s.

• “Show Diagram” button appears immediately after data load;
default sample size and linear fit are pre-selected.

Edge-case
safeguards

Blank tables are discouraging. • If query returns zero rows, the page shows a muted “No data
for current filters” instead of an empty grid.

5 Working system showcase

This section showcases live results from a locally hosted
website server and MySQL server populated with real
data. In figure 3 the populated back-end can be seen being
accessed by MySQL workbench. This is not visible to the
website user.

Figure 3. Populated test DB in MySQL workbench.

In figure 4, the landing page for the website can be
seen. There is a login button at the top, intended for ad-
ministrative purposes, as well as large boxes for each of
the three main data types available on the website. The
first one is for the levels data, the second one for the tran-
sitions, and the third one for the collisions.

Figure 4. Landing page for the website.

For administrators, valid credentials are necessary.
This is done through logging in by pressing the login but-
ton, upon which a small window will pop up, visible in
figure 5. After the login, the administrator dashboard is
available, seen in figure 6.

Figure 5. Administrator login popup.

Figure 6. Administrator management dashboard and options.

For every other user of the DB, no login is required.
Upon clicking each of the boxes, for the levels, transitions
and collisions, the user will be taken to the correct page,
as seen in figures 7, 8 and 9 respectively. Upon reaching
the intended page, the required user inputs are the element
they want to check, as well as the ion charge, with these in-
puts being the same for the three pages. The other features
in common between all three pages are the download but-
ton, the identification of a level (levels) or level pair (tran-
sitions and collisions), the option to click on the headers
of any column to sort the shown data, the details button for
information on the reference associated with the data and
the methods button, to allow the user to choose what data
they want to see based on the method that was used.

LIP-STUDENTS-25-9 11

Figure 7. Example of levels page.

On the levels page, seen in figure 7, the user can also
specify a level range, the energy unit (options are cm-1,
eV and Ry), a toggle button for whether the columns with
the configuration and/or relativistic configuration for each
level is shown, and a toggle button for the diagram show-
ing the levels.

Figure 8. Example of transitions page.

On the transitions page, seen in figure 8, it is possible
to narrow the search to specific wavelengths and/or spe-
cific levels, as well as toggling the column for gF. The
transfer rate is also available in the column TR (s-1).

Figure 9. Example of collisions page.

On the collisions page, seen in figure 9, the Bethe co-
efficient and Born approximation columns are toggleable
by button as is the diagram of the collision strength vs tem-
perature with filtering. It is also possible to filter by tem-
peratures and energy/level ranges.

6 Conclusions and future work

At this time, all of this work has culminated in a working
prototype that has yet to be deployed. In the hopefully near
future, the intention is to see this work to be made avail-
able and for it to become a tool for the usage of the rest
of scientific community. Some things may require mod-
ifications depending on the tools used by the future host
for this DB and website, as well as continual maintenance
work due to the dependencies used being ever evolving
with continued updates.

For the initial deployment, the data from NUC-RIA on
a range of ions is a good starting point due to being mostly
done with the same method (FAC [10]). Since this data
on lanthanides is currently mainly used in astrophysics,
the most useful application of this initial state of this DB
would be to astrophysicists that need it. But the eventual
expansion of this DB to accept data from different sources
is a loose long term goal. A possible differentiating factor
of this DB compared to others could be the acceptance of
data from theoretical computer calculations, exclusively,
or from both experimental datasets as well as theoretical.
There are other groups doing this same type of work with
various calculation tools and frameworks, as seen on [13].
As such, it would be feasible to receive data from other
sources since the data exists.

An important piece of feedback that was received
when starting this project on why there are so many dif-
ferent DBs, each with very sparse data available on it, is
that there is a significant hassle involved to do the pars-
ing and conversion of data from different sources into one
singular place and structure. From what was also men-
tioned in this information, this happens due to those same
DBs expecting the submitters to write the code to make
the data compatible with the DB’s structure. This may
present a significant amount of work to scientists that al-
ready have busy schedules. Which effectively leads to the
stranding of datasets to the most convenient repositories,
or in a worst case scenario, this data never being made
available to those that may need it. Feedback like this was
received quite early in this work, so an easy structure to
implement for the schema was paramount.

It may be necessary for the future maintainers of this
resource to have the ability to write these scripts for each
reliable and proven method in order to diminish the work-
load on the side of the data submitters, requiring them only
to submit the raw data along with the reference the data be-
longs to and some proof of identity. This may be what is
required to reduce the inertial barrier for the submission
of new data in order to have a reliable and wide reaching
scientific resource.

Acknowledgements

We would like to thank our advisors for all the help they
provided during this internship, from the answers to our
relentless barrage of questions about this and that, the lots
of helpful tips they provided us whenever necessary, to all
they collectively, and individually, taught us about atomic
physics. Further, we would also like to thank the rest of

LIP-STUDENTS-25-9 12

the NUC-RIA team for the companionship during this in-
ternship, as well as professor Jorge Sampaio and professor
Daniel Galaviz for helping us in searching for a possible
future host for this DB and website.

References

[1] LIGO Scientific Collaboration and Virgo Collabo-
ration. GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral. Physi-
cal Review Letters, 119(16), 2017.

[2] Jennifer A Johnson, Gail Zasowski, David Weinberg,
Yuan-Sen Ting, Jennifer Sobeck, Verne Smith, Vic-
tor Silva Aguirre, David Nataf, Sara Lucatello, Juna
Kollmeier, et al. The Origin of Elements Across Cos-
mic Time: Astro2020 Science White Paper. arXiv
preprint arXiv:1907.04388, 2019.

[3] Albert Sneppen, Darach Watson, Rasmus Damgaard,
Kasper E Heintz, Nicholas Vieira, Petri Väisänen,
and Antoine Mahoro. Emergence hour-by-hour of
r-process features in the kilonova AT2017gfo. As-
tronomy & Astrophysics, 690:A398, 2024.

[4] A. Kramida, Yu. Ralchenko, J. Reader, and
NIST ASD Team. NIST Atomic Spectra Database
(version 5.12). Online, https://physics.nist.gov/asd,
2024. Accessed 2025-09-22.

[5] Yuri Ralchenko and Alexander Kramida. Develop-
ment of NIST Atomic Databases and Online Tools.
Atoms, 8(3), 2020.

[6] A Flörs, R F Silva, J Deprince, H Carvajal Gallego,
G Leck, L J Shingles, G Martínez-Pinedo, J M Sam-
paio, P Amaro, J P Marques, S Goriely, P Quinet,
P Palmeri, and M Godefroid. Opacities of singly and

doubly ionized neodymium and uranium for kilo-
nova emission modeling. Monthly Notices of the
Royal Astronomical Society, 524(2):3083–3101, 07
2023.

[7] Andreas Flörs, Ricardo Ferreira da Silva, José P
Marques, Jorge M Sampaio, and Gabriel Martínez-
Pinedo. Calibrated Lanthanide Atomic Data for
Kilonova Radiative Transfer. I. Atomic Structure and
Opacities. 2025.

[8] Ricardo Ferreira da Silva, Andreas Flörs, Luís
Leitão, José P. Marques, Gabriel Martínez-Pinedo,
and Jorge M. Sampaio. Systematic Bayesian opti-
mization for atomic structure calculations of heavy
elements. Phys. Rev. A, 112:012802, Jul 2025.

[9] Ricardo F. Silva, Jorge M. Sampaio, Pedro Amaro,
Andreas Flörs, Gabriel Martínez-Pinedo, and José P.
Marques. Structure Calculations in Nd III and U
III Relevant for Kilonovae Modelling. Atoms, 10(1),
2022.

[10] Ming Feng Gu. Flexible Atomic Code. Online; Open
source code available on Github: https://github.com/
flexible-atomic-code/fac.

[11] M. Wilkinson, M. Dumontier, and I. et al. Aalbers-
berg. The FAIR Guiding Principles for scientific
data management and stewardship. Scientific Data,
3, 2016.

[12] NIST. CODATA Internationally recommended val-
ues of the fundamental physics constants. On-
line, https://physics.nist.gov/cuu/Constants/energy.
html. Accessed 2025-07-28.

[13] Sultana N. Nahar. Theoretical Spectra of Lan-
thanides for Kilonovae Events: Ho I-III, Er I-IV, Tm
I-V, Yb I-VI, Lu I-VII. Atoms, 12(4), 2024.

https://physics.nist.gov/asd
https://github.com/flexible-atomic-code/fac
https://github.com/flexible-atomic-code/fac
https://physics.nist.gov/cuu/Constants/energy.html
https://physics.nist.gov/cuu/Constants/energy.html

	Introduction
	Technical Glossary
	Methodology
	Full system architecture
	The database
	API
	Website
	How These Pieces Fit Together
	Typical Request Life-Cycle
	Additional Communication Details
	SQLAlchemy Connection Pool
	Token Refresh Logic for Long Sessions

	Practical Engineering Concerns Addressed While Building Code-Base
	User-Centered Front-End Design Choices

	Working system showcase
	Conclusions and future work

