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Abstract

As the High-Luminosity upgrade of the Large Hadron Collider approaches, the ATLAS experiment faces increasing
computational demands that surpass the capabilities of traditional CPU-based systems, with the use of hardware
accelerators such as GPUs being a possible alternative. In response, this project explores the integration of Marionette
— a declarative C++ framework designed to abstract and decouple data interface from memory layout, enabling
optimized, customizable, and accelerator-aware data structures — into the ATLAS software to support efficient data
transfer between CPU and GPU environments. Focusing on calorimeter reconstruction, two GPU implementations
were developed and analyzed: a proof-of-concept reimplementing the simple data structures that are currently used
in GPU code and a more complex integration of the full CPU data structure CaloCluster. Both implementations
achieved numerical correctness, matching the CPU reference outputs across key physical quantities such as E, E,
n, and ¢. Performance measurements confirmed that Marionette introduced no measurable overhead, with average
execution times of 0.110 £ 0.007 ms (simple case) and 0.114 £ 0.008 ms (complex case), compared to the baseline
provided by the pre-existing handwritten data structures of 0.111 £ 0.006 ms. Furthermore, a detailed comparison of
the generated PTX assembly verified the functional equivalence of the GPU instruction sets. This work constitutes the
first concrete prototype of Marionette within the Athena framework and demonstrates its potential as a robust, zero-
cost abstraction for heterogeneous memory environments. By enabling flexible, GPU-optimized data structures while
preserving compatibility with legacy code, Marionette positions itself as a valuable asset for future high-performance
computing in ATLAS and beyond.

1 The ATLAS Experiment

Founded in 1954, The European Organization for Nuclear Research (CERN) is the world’s leading center for high-
energy physics research. Located on the Franco-Swiss border near Geneva, CERN operates the Large Hadron Collider
(LHC), the biggest particle accelerator built to date [1]. The LHC, constructed between 1998 and 2008, is a 27-kilometer
underground tunnel where protons and heavy ions are accelerated to nearly the speed of light and collide at extremely
high energies. These collisions allow physicists worldwide to study, analyze, and discover fundamental interactions,
testing well-established theories and exploring new ones beyond the Standard Model (SM)?* [2].

Among the major experiments at the LHC, ATLAS (A Toroidal LHC Apparatus) stands as one of the largest
and most complex particle detectors ever constructed. The device itself provides precise measurements of a particle’s
properties, such as trajectory, momentum, and energy. The LHC, in its current Run 3 phase (2022-2026), is focused on
proton-proton collisions at 13.6 TeV and heavy-ion collisions at 5.36 TeV. The ATLAS detector is composed of several
key components: an Inner Detector for tracking, a Muon Spectrometer for detecting muons, and Eletromagnetic and
Hadronic calorimeters to measure eletromagnetic and hadronic energy, respectively. With its cylindrical geometry and
a forward-backward symmetry, the detector provides almost full coverage of the solid angle around the collision point
through a set of sub-detectors structured in layers [3, 4].

With collisions occurring every 25 ns, corresponding to data rates of up to 60 TB/s, current computational capabilities
are insufficient to record all the information from these events. To address this challenge, the ATLAS experiment employs
a Trigger System to filter and process relevant events in real time. This system incorporates a Level-1 hardware trigger,
which reduces the initial 40 MHz bunch crossing rate? to around 100 kHz by performing a coarse filtering using simpler
algorithms. The Level-1 also identifies potential regions of interest for a more targeted scan in the subsequent phase.
Following this, the High-Level Trigger (HLT) utilizes more sophisticated, offline-like software-based selection algorithms
running on a CPU-based computing farm to further reduce the rate to 3 kHz. The selection is based on generic
physical signatures, such as high transverse momenta, energetic electrons and muons, jets, photons, among others.
These algorithms are designed to perform detailed event reconstruction, enabling the efficient storage and analysis of
relevant data [3].

1.1 GPUs in ATLAS

The development of efficient data processing techniques is crucial for handling the vast datasets generated by ATLAS,
particularly as the LHC prepares for its High Luminosity upgrade (HL-LHC), which will significantly increase its
luminosity (i.e. collision rates). To address this challenge, new approaches based on hardware accelerators, which may

ITheoretical model /framework that describes the electromagnetic, weak, and strong fundamental forces, as well as the elementary particles

they act upon.
2The bunch crossing rate refers to how often particle bunches pass through the detector.



offer better computational performance for certain classes of problems, have been proposed to optimize event processing.
Before discussing specific applications, it is important to introduce the concept of calorimeter reconstruction. This
process involves converting raw detector signals into calibrated energy measurements, clustering energy deposits, and
ultimately identifying particle candidates. Calorimeter reconstruction is computationally intensive due to the high
granularity of the detectors and the complexity of the underlying algorithms [5].

For the particular case of calorimeter reconstruction, a GPU-based approach implemented using the CUDA (Compute
Unified Device Architecture) programming language, which will be further explained, has demonstrated a significant
improvement in processing times. However, the underlying structures, in which the data generated is stored, still reside
in both CPU and GPU memory and pose a critical bottleneck for code efficiency, requiring costly data transfer and
transformation between the CPU structures and GPU ones during execution [5].

1.2 Objectives of this work

To fully exploit the benefits of GPU-based processing, it is necessary to rethink how data is structured and accessed.
The ATLAS software, built around the Athena® Framework, currently consists of a mix of legacy CPU-based code,
newly ported GPU-based code, and eventually future code, creating a fragmented software environment. Without a
unified data representation, maintaining compatibility across different implementations becomes increasingly complex.

With this problem in mind, CERN researcher and PhD student, Nuno dos Santos Fernandes, created Marionette
(Memory Abstracted Representation with Interfaces in Objects Necessitating Extensively Templated Types EDM), a
framework for describing general data structures, designed to provide both CPU and GPU-compatible representations
of the event data with optimized transfers and conversions, while ensuring an intuitive and accessible implementation
for both new and experienced programmers.

This project aims to achieve the first integration of Marionette in ATLAS, specifically within calorimeter reconstruc-
tion, to assess its effectiveness in reducing bottlenecks, optimizing performance, and evaluating its potential to unify
implementations.

2 GPU Fundamentals

To better understand the discussions in this paper, it is helpful to first grasp the basics of GPU technology and its
relevance in high-energy physics data processing.

The standard CPUs our computers use to process data and run daily are optimized for sequential, low-latency tasks,
employing a small number of fully independent threads, whereas GPUs are designed to perform thousands of operations
simultaneously. To achieve this, GPUs employ a parallel architecture that excels at handling large volumes, making them
ideal for some kinds of problems involving complex computations, including the analysis of collision data in experiments
such as ATLAS [7].

A GPU is composed of many smaller, simpler cores. In NVIDIA GPUs, these are known as CUDA cores, which
will be used in this work. These cores are organized into groups called blocks, and each block is composed of multiple
threads, which are basic units of execution capable of running simultaneously. The threads within a block have their
own private memory and are able to share memory in order to work on the same task in parallel, and the blocks are
then grouped together into a grid. The execution model for these parallel tasks is defined through kernels, which specify
the operations that each thread will perform. GPUs follow the Single Instruction, Multiple Threads (SIMT) model,
meaning that threads within a warp (subset of threads within a block) execute the same instructions synchronously,
maximizing efficiency. Kernels are, concunrrently, executed by multiple threads, allowing GPUs to process vast amounts
of data efficiently [7].

Another important aspect of GPU performance is efficient data access. Regarding memory organization, GPUs
outperform when using Structure of Arrays (SoA) instead of Array of Structures (AoS). In AoS, each structure stores
all the attributes for a single entity, which can lead to inefficient memory access. On the other hand, in SoA, each
attribute is stored in a separate array, allowing threads to access contiguous memory locations. This improves coalesced
reading from memory?, where threads can efficiently access data in a way that minimizes waiting time and maximizes

data throughput, leading to faster computations and fewer delays due to memory access bottlenecks [9].

3 Athena is the software framework used by the ATLAS experiment at CERN for event processing, reconstruction, and analysis. It is built
on top of the Gaudi architecture and supports both C++ and Python components. [6]

4Memory coalescing refers to the process of combining multiple memory read accesses into a single transaction, reducing latency and
improving throughput by optimizing how threads access data in memory. [8]
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3 Introduction to Marionette

As stated before, this work aims to integrate Marionette into the ATLAS experiment, not only to generalize the
structures in which our data resides and optimize the memory transfers between CPU-GPU but also to efficiently port
them for GPU processing. Before diving into the actual integration, we first illustrate a simple example to demonstrate
Marionette’s behavior and implementation, using a scenario where two particle structures are declared.

struct Particle_Cartesian { //One single particle observed in the real world
float px, py, pz, mass, charge;

};

struct Particle_Detector { //One single particle captured by the detector
float pt, eta, phi, energy, charge;

};

Listing 1: Handwritten Data Structure (AoS)

MARIONETTE_DECLARE_PER_ITEM_PROPERTY (energy, Energy, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY (charge, Charge, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY(mass, Mass, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY(eta, Eta, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY (phi, Phi, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY (px, Px, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY (py, Py, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY(pz, Pz, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY (pt, Pt, float);

using Marionette::InterfaceDescription: :PropertyList;
using Particle_Cartesian = PropertyList<Px, Py, Pz, Mass, Charge>;
using Particle_Detector = PropertyList<Pt, Eta, Phi, Energy, Charge>;

Listing 2: Marionette-Optimized Structure

In a typical c++ data structure, attributes are explicitly defined within each structure, making it difficult to sys-
tematically handle or reuse property definitions across different data types. In contrast, Marionette organizes data
using property description classes, which allow attributes to be specified programmatically and reused across multiple
structures, enabling a more flexible and modular approach. This abstraction helps maintain consistency and allows
specifying the behaviour of data structures in a completely generic way.

While Marionette was implemented to support a broad spectrum of memory contexts, to fully support the end
developer needs, we will use the SoA format, as it optimizes performance and memory access. However, traditional
programming paradigms and human intuition are more accustomed to an AoS organization. To align these approaches,
the author leveraged programming techniques, such as metatemplate programming and CRTP®, that allow developers
to write code as if they were working in an AoS framework, while the underlying data is efficiently managed in a SoA
structure. In order to properly compare both implementations, we will now, also, consider a SoA approach for the
Handwritten version.

//std::vector<T> is a standard class that allocates an array of type T on the struct
struct VectorCPU_Cartesian { // Structure for storing multiple particles
std::vector<float> px, py, pz, mass, charge;
};
struct VectorCPU_Detector {
std::vector<float> pt, eta, phi, energy, charge;
};

//GPU_vector<T> is a class we could write that allocates an array of type T on the GPU
struct VectorGPU_Cartesian {
GPU_vector<float> px, py, pz, mass, charge;
};
struct VectorGPU_Detector {
GPU_vector<float> pt, eta, phi, energy, charge;
};

5CRTP (Curiously Recurring Template Pattern) is a technique where a class template takes its derived class as a parameter, allowing the
base class to call functions in the derived class at compile time. This can improve efficiency by avoiding runtime overhead. As this concept
can be abstract and nontrivial to understand initially, a more detailed explanation can be found in the following website [10].
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Listing 3: Handwritten Data Structure (SoA)

using CPUParticle_Cartesian = Marionette::Collection<CPULayout, Particle_Cartesian>
using CPUParticle_Detector = Marionette::Collection<CPULayout, Particle_Detector>
using GPUParticle_Cartesian = Marionette::Collection<GPULayout, Particle_Cartesian>
using GPUParticle_Detector = Marionette::Collection<GPULayout, Particle_Detector>

Listing 4: Marionette-Optimized Structure

This comparison highlights the redundancy in the handwritten implementation, where four separate structures and
boilerplate code are required to manage data storage across CPU and GPU. In contrast, Marionette simplifies this process
by allowing us to specify only the data structure (second parameter) and the desired layout (first parameter), which
will specify how the underlying content will be stored in memory. In Marionette’s implementation, CPULayout would
be equivalent to storing the attributes in separate std::vectors, while GPULayout would store them in the hypothetical
GPU _vector used before.

cudaMemcpy (VectorGPU_Cartesian.px, VectorCPU_Cartesian.px, size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (VectorGPU_Cartesian.py, VectorCPU_Cartesian.py, size * sizeof (float), cudaMemcpyHostToDevice);
cudaMemcpy (VectorGPU_Cartesian.pz, VectorCPU_Cartesian.pz, size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (VectorGPU_Cartesian.mass, VectorCPU_Cartesian.mass, size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (VectorGPU_Cartesian.charge, VectorCPU_Cartesian.charge, size * sizeof(float), cudaMemcpyHostToDevice);

Listing 5: Handwritten Data Transfer

GPUParticle_Cartesian = CPUParticle_Cartesian

Listing 6: Marionette-Optimized Data Transfer

Another fundamental aspect of Marionette, as mentioned earlier, is the optimization of data transfers between CPU
and GPU. The traditional approach requires explicitly requesting the copy of all attribute arrays using cudaMem-
cpy(), which is both error-prone, since one might accidentally omit an attribute, and difficult to scale across multiple
classes or when modifying the data structure. In contrast, Marionette abstracts these operations, making the requests
automatically for each attribute, enabling seamless and implicit memory transfers within a single assignment.

As expected, this simple example doesn’t showcase all of Marionette’s functionalities, but throughout this paper,
more aspects will become evident. However, it is important to bear in mind that the focus is on the integration of
Marionette, rather than providing a comprehensive description of the framework itself. For a more detailed overview of
Marionette’s design and capabilities, an upcoming dedicated paper will provide a full technical description.

4 Analysis

With the foundations of GPU computing and the Marionette framework established, we now turn to the core objective
of this report: evaluating the framework’s implementation and its impact within the ATLAS software.

4.1 Proof of Concept

Given the inherent complexity of the ATLAS software environment, particularly due to its extensive pre-existing
codebase, integrating a new library under active development necessitates careful consideration. To minimize potential
issues and expedite debugging, it was essential to select a file that would allow for clear and manageable testing. For
that, the first prototype implementation was conducted in the following file: BasicGPUClusterInfoCalculatorImpl.cu,
containing four well-defined kernels®, that interact with cluster” properties, thereby providing an accessible framework
for evaluating Marionette’s functionality.

The original file implementation stored the cluster-related data in a simple Structure of Arrays (SoA) format, where
an object of type struct holds multiple arrays, each representing an attribute of said cluster. The structure was defined
as follows:

SRefer to section 2 where the concept was first introduced.
7A cluster refers to a group of adjacent calorimeter cells with energy deposits, originating from a single particle’s interaction with the
detector material.
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struct ClusterInfoArr {
int number;
float clusterEnergy[NMaxClusters];
float clusterEt[NMaxClusters];
float clusterEta[NMaxClusters];
float clusterPhi[NMaxClusters];
int seedCellID[NMaxClusters];

Listing 7: Original Implementation

In line with the objectives of this report, this structure is redefined using Marionette to enable a more flexible
design. The reimplementation involves declaring each attribute independently and subsequently organizing them into a
templated collection that behaves similarly to a structure. Marionette facilitates this approach through its declarative

macros® and generic collection interfaces. The equivalent implementation using the framework is shown below:

MARIONETTE_DECLARE_PER_ITEM_PROPERTY_SIZED(clusterEnergy, ClusterEnergy, NMaxClusters, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY_SIZED(clusterEt, ClusterEt, NMaxClusters, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY_SIZED(clusterEta, ClusterEta, NMaxClusters, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY_SIZED(clusterPhi, ClusterPhi, NMaxClusters, float);
MARIONETTE_DECLARE_PER_ITEM_PROPERTY_SIZED(seedCellID, SeedCellID, NMaxClusters, int);

using Marionette::InterfaceDescription::PropertyList;
using CollectionProperties = PropertyList<ClusterEnergy, ClusterEt, ClusterEta, ClusterPhi, SeedCellID>;

template <class Layout>
using OurCollectionBase = Marionette::Collections::Collection<Layout, CollectionProperties>;

template <class Context>
using OurCollection = OurCollectionBase<Marionette::LayoutTypes::DynamicStructInContext<Context, int, int>>;

using GPUCollection = OurCollection<Marionette::MemoryContexts::CUDAStandardGPU>;

Listing 8: Marionette Implementation

The GPUCollection now provides a memory-efficient abstraction of all cluster attributes, with explicit GPU allo-
cation through the memory context CUDAStandardGPU (specifically designed for seamless integration with CUDA).
Despite abstracting and optimizing data transfers between structures and execution environments, since the original
implementation already employed a Structure of Arrays (SoA) format and the kernel logic in this context is relatively
self-contained, Marionette is expected to achieve comparable execution times by internally utilizing a similar SoA layout.

These restructured collections can now be utilized within the computation kernels. As aforementioned, Marionette
provides an intuitive programming interface by preserving an AoS organization while operating within a SoA framework.
This design simplifies the integration process, since the resulting implementation closely resembles the structure of the
legacy code. Nonetheless, ensuring correct functionality requires careful attention to framework-specific implementation
details.

To really grasp the impact of Marionette’s implementation, the initial step is to verify that its output matches that
of the original CPU version, which serves as the reference, ensuring the program’s correctness has been preserved. With
this in mind, with the assistance of the ROOT tool, the following four graphs were generated regarding the 4 attributes
of the structure in question, Energy (E), Transverse Energy (Et — energy perpendicular to the beam axis), Eta (n —
a coordinate describing the particle’s angle relative to the beam axis), and Phi (¢ — the azimuthal angle around the
detector’s axis)?:

8Macros are preprocessor directives that define patterns to be expanded into code before compilation, enabling code reuse and reducing
boilerplate. For more information refer to the following paper [11].
9In order to visualize the variables mentioned, section A.1.1 provides a diagram of the ATLAS coordinate system and respective variables.
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Through these graphs, we can infer that both implementations produce results that are consistent up to differences
due to floating-point error accumulation, which arise from the limited precision in representing decimal numbers in
computer calculations.

Following the output validation, we now proceed to compare the execution times of both versions. This allows us
to determine whether the framework introduces any performance overhead or compromises the efficiency of the system.
The following table holds the total execution time, after undergoing outlier removal and data treatment for 3000 events

of type tt'9 :

Implementation | Mean Execution Time (ms)
Original 0.111 + 0.006
Marionette 0.110 £ 0.007

Table 1: Per-event total kernel execution time: Original vs. Marionette (Proof-of-Concept)

By examining the table shown, the execution times prove to be similar and therefore serve as an indicator of
the expected behavior of the framework. One important remark regarding the presented data is that the observed
discrepancies mainly stem from the execution environment, rather than from differences in the actual performance, due
to the number of users that could be simultaneously executing code within the CERN server.

To achieve a bulletproof analysis shielded from externnal factors, we can look at the .ptx!'! files from both legacy
and Marionette versions. Given the intrinsic complexity of PTX assembly, said files will not be explicitly displayed in
this report. Nevertheless, a careful comparison of the instruction sequences confirms that the GPU receives identical
instructions in both implementations, ensuring equivalent performance. This allows us to confirm that Marionette
operates as intended with zero-cost abstraction.

10A I event refers to the production of a top quark and its antiparticle (antitop quark) in a proton-proton collision, commonly studied
at the LHC due to their relevance in testing the Standard Model [12]. This type of events was chosen due to the large number of particles
produced in their decay, which results in a greater number of clusters and allows for a more complete and robust testing of Marionette’s

framework.
HPTX (Parallel Thread Execution) is an intermediate assembly-like language used by NVIDIA’s CUDA platform. It defines low-level

instructions that are later translated into executable GPU code. The following NVIDIA blog, offers a more detailed explanation with a clear
example [13].



4.2 Deeper Implementation

With this prototype showcasing promising results, while noting that the previous test case used was intentionally
simplistic, we now logically proceed to refactor deeper and more complex structures with broader codebase impact, to
further validate the framework.

Before diving into the technical details, it’s important to clarify the context surrounding this implementation. In the
ATLAS calorimeter reconstruction chain, clustering algorithms are used to group together neighboring energy deposits
(cells) that likely originate from the same particle shower. One such method is the Topo-Automaton Clustering (TAC),
a GPU-optimized algorithm that classifies calorimeter cells based on their signal-to-noise ratio: cells with strong signals
are marked as seeds, moderate signals as growing cells, and low signals as terminal cells. Clusters are formed by starting
from seeds and recursively adding adjacent growing and terminal cells. TAC implements this logic using a sequence of
GPU kernels, organized into four main stages: Cluster Growing, Basic Cluster Property Calculation, Cluster Splitting,
and Cluster Moments Calculation [14].

The focus of this work lies specifically on the calculation of the basic kinematic properties of the clusters, such as total
energy (E), transverse energy (Er), pseudorapidity (1), and azimuthal angle (¢). By concentrating on this specific stage,
we ensure that the computational benefits and abstractions introduced by Marionette are applied where they can have
real analytical impact, without needing to reimplement the entire clustering pipeline at once. This modular approach
also makes debugging and validation significantly more manageable. As a continuation of the previous proof-of-concept,
this implementation will impact the same source file — BasicGPUClusterInfoCalcImpl.cu — now adapted to handle
a broader data structure.

Building on this foundation, the next step involves reimplementing the CaloCluster!? structure, which encapsulates
not only the previously refactored ClusterInfoArr structure, but also a wide range of attributes and functionalities
associated with individual clusters in the calorimeter. More specifically, it includes geometric properties that describe
the position and spread of the cluster within the detector; energy-related quantities, such as the total and peak energy
deposits; and detailed data from the various calorimeter sampling layers'?. Additionatlly, CaloCluster also stores timing
information, useful for distinguishing between different interactions, as well as several derived variables — known as
moments — that help characterize the cluster’s shape and internal structure. This structure is central to ATLAS’s
calorimeter reconstruction process, making it an ideal candidate for a more comprehensive test of Marionette’s capabil-
ities.

The adopted protocol followed the same principles previously discussed. It began with a thorough review and
understanding of the legacy code, which was already structured in a SoA format, to accurately emulate the required
behaviour. This was followed by a decomposition of the implementation into logical blocks, grouping together functions
that served related purposes or operated on common data. Next, each block was carefully examined to determine the
most suitable strategy for reimplementation using Marionette. Implementation then proceeded by leveraging techniques
such as CRTP, metatemplate programmming, and macros (introduced earlier in Section 3 and Subsection 4.1), with
functions organized into a templated collection defined by a clear set of properties, resulting in a final implementation of
approximately 1141 lines, which represents a reduction of nearly 25% compared to the 1523 lines of the original version.
As a final stage, the target file was adapted to interface with the newly constructed collection—a minor adjustment,
given that the major necessary kernel-level changes had already been addressed during the proof of concept phase.

Beyond the implementation, a significant portion of the work focused on testing and debugging. Given the structure’s
complexity and the library’s early-stage development, CaloCluster posed integration challenges suggesting new use cases
that were not yet fully supported by the library and revealing some bugs and edge cases that require further consideration.
Resolving some of these issues required persistent debugging and iteration, often adjusting both the framework and the
implementation of the data structure within it. Progress came incrementally, with challenges gradually uncovered
and addressed through careful testing. Additionally, the limitations found currently prevent a subset of the structure’s
properties from being fully supported with the intended semantics, such as - keeping links to elements of other collections,
since support for such functionality is nontrivial in the context of hardware acceleration and the author is still developing
a solution for this. Nevertheless, all essential behaviors required to ensure the code executes correctly, on the target file,
were successfully implemented. This phase was essential not only for ensuring correctness and providing feedback to the
author, but also for building a thorough understanding of the framework.

12Given it’s dimensions, it is not possible to showcase the full original data structure in this report. For a complete reference, please consult
[15].

13 A sampling layer (or sample) refers to one of the multiple segmented layers of the calorimeter detector, each designed to record energy
deposited by particles as they traverse different depths of the detector.



Moving onto the analysis itself, analogous to the validation procedure carried out ealier, the priority is to verify that
the Marionette-based implementation of the full CaloCluster structure yields results consistent with the original CPU
reference. Using the ROOT tool, a comparison over the same set of cluster-level properties previously analyzed (E,
Et, n and ¢) was performed, reproducing the same four exact plots shown beforehand. The linear correlation between
the two implementations exhibits a strong numerical agreement, confirming that despite the structural complexity, the
core behavior that analyzes the physical phenomena is preserved. As before, any minor deviations can be attributed to
floating-point precision limits, which are inherent to numerical computations. For a detailed view of the plots obtained,
refer to A.2.1

With output validated, following the same methodology, we now focus on performance. Employing the previously
established dataset of 3000 t¢ events and consistent runtime conditions, execution times were recorded for both imple-
mentations.

Implementation | Mean Execution Time (ms)
Original 0.111 +£ 0.006
Marionette 0.114 £ 0.008

Table 2: Per-event total kernel execution time: Original vs. Marionette (Deeper Implementation)

With the execution times remaining closely aligned, the results obtained further reinforce the previously drawn
conclusions - Marionette introduces no significant performance overhead and maintains efficiency. The minor variations,
still within the uncertainty, observed can be explained due to fluctuations in the shared execution environment, rather
than actual performance differences, as aforementioned. For a detailed breakdown of the execution times, see A.2.2.

Moreover, a renewed inspection of the generated PTX files unequivocally validated the framework’s efficiency. By
comparing said files from both implementations, it was confirmed that the set of GPU instructions remained functionally
equivalent. The same arithmetic operations, memory access patterns, and control flow were preserved, ensuring that no
major unintended transformations were introduced during compilation.

The only variations observed were memory offsets - small differences in where data is allocated in memory - which
are expected due to internal structural rearrangements dictated by the goal of replicating the entirety of the CPU data
structures. These limited differences do not affect the behavior or performance of the kernel, as confirmed above, thereby
substantiating that Marionette works with zero-cost abstraction, even in the context of more complex and feature-rich
structures. To better understand the comparison that was conducted, consult A.2.3.

5 Conclusion & Main Insights

As the High-Luminosity era of CERN approaches, the computational demands placed on the ATLAS experiment
continue to grow. Meeting these challenges requires not only hardware acceleration, particularly through GPUs, but
also a thoughtful redesign of the surrounding software system. In this context, porting algorithms alone is insufficient;
the data structures in which the essential retrieved information lies must also be reimplemented for GPU compatibility
and performance. Since portions of legacy CPU-based code will remain in use, and given that developers have diverse
approaches to organizing and implementing code, the need for a flexible, modular, and efficient interface between CPU
and GPU becomes imperative.

Marionette emerges as a response to these needs. It introduces a declarative, abstraction-oriented framework that
allows developers to define data structures using an Array of Structures (AoS) interface while internally adopting the
memory layout best suited to the target architecture.

To evaluate Marionette, a two-stage implementation strategy was employed. First, a simple, isolated kernel logic
example was selected to ensure an accessible debugging environment. This initial test demonstrated that Marionette
could reproduce the original algorithm’s behavior with no loss of correctness or performance, confirming its zero-cost
abstraction. Subsequently, a more complex structure—CaloCluster—was ported, further testing Marionette’s capabil-
ities. Despite the increased complexity of the structure and its embedded logic, Marionette successfully supported the
full execution of the target file, validating its core functionality while also exposing key areas for future improvement
within the framework. Execution time measurements further corroborate the framework’s efficiency. Also, a detailed
comparison of the generated PTX code confirmed that the GPU instructions issued by both the legacy and Marionette
implementations are equivalent, ruling out any hidden overhead at the low-level execution stage. This demonstrates
that the abstraction introduced by the framework enables a powerful and future-proof design.



In summary, the results of both the simple and complex implementation scenarios confirm that Marionette maintains
correctness and performance levels, enabling a flexible and GPU-optimized data handling strategy. These qualities
validate its integration into the evolving ATLAS software, particularly as demands for heterogeneous computing continue
to grow.

The work carried out throughout this report, ranging from analysis and debugging to implementation, has also
revealed potential enhancements to Marionette that could improve the end developer experience and extend its applica-
bility. More broadly, this project represents the first concrete use case of Marionette within the Athena framework, as
such, it not only serves as a prototype but also provides a valuable proof of concept that validates the library’s design
goals under realistic conditions.

Overall, Marionette has proven to be a robust and efficient tool for abstracting heterogeneous memory models and
managing cross-device data structures, establishing itself as a valuable asset for the future of high-performance computing
in ATLAS and beyond.
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A Appendix

A.1 Proof of Concept

A.1.1 ATLAS Coordinate System
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Figure 5: ATLAS Coordinate System and variables associated.

A.2 Deeper Implementation

A.2.1 Plots
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A.2.2 Execution Time Histogram

The following histogram provides a full visualization of the execution time distributions for both implementations.
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Figure 10: Histogram comparing the execution times of the Original and the Marionette-based versions.

A.2.3 Kernel Comparison: Original vs Marionette

The following listing show a minimal GPU kernel — seedCellPropertiesKernel — which is one of the four kernels
implemented. This specific kernel is responsible for initializing cluster properties. Given its simplicity and direct logic,
it offers a clear view of the set of GPU instructions.

Listing 9: Legacy PTX Kernel Listing 10: Marionette PTX Kernel

.entry seedCellPropertiesKernel ( .entry seedCellPropertiesKernel (
.param .align 8 param_O0[8], .param .align 8 param_0[8],
.param .align 8 param_1[8], .param .align 8 param_1[8],
.param .align 8 param_2[8] .param .align 8 param_2[8]

) )

{ {
ld.param.u64 Y%rdi9, [...]1; 1d.param.u64 %rd22, [...]1;
1d.param.u64 %rd20, [...]; 1d.param.u64 %rd23, [...];
1d.param.u64 %rd21, [...1; 1d.param.u64 %rd24, [...1;
cvta.to.global.u64 %rdl, Yrd21; cvta.to.global.u64 %rdl, Y%rd24;
cvta.to.global.u64 %rd2, %rd20; cvta.to.global.u64 %rd2, %rd23;
cvta.to.global.u64 %rd3, %rdi9; cvta.to.global.u64 %rd3, %rd22;
mov.u32 %r18, %ntid.x; mov .u32 %r18, %ntid.x;
mov .u32 %r19, Yctaid.x; mov .u32 %r19, Yctaid.x;
mov.u32 %r20, %tid.x; mov.u32 %r20, %tid.x;
mad.lo.s32 %r38, %ri19, %ri18, %r20; mad.lo.s32 %ral, %ri19, %ri18, %r20;
mov.u32 %r21, %nctaid.x; mov.u32 %r21, %nctaid.x;
mul.lo.s32 hr2, %r21, %ris; mul.lo.s32 hr2, %r21, %ris8;
1d.global.u32 %r3, [hrdil; 1d.global.u32 %r3, [hrdil;
setp.ge.s32 %pl, %r38, %r3; setp.ge.s32 %pl, %r4l, %r3;
@%pl bra $L__BBO_17; Q@%pl bra $L__BBO_17;
add.s32 %hr22, %r3, %r2; add.s32 %hr22, %r3, %r2;
add.s32 %r23, %r38, %r2; add.s32 %r23, %hrdl, %hr2;
not.b32 %r24, %hr23; not.b32 %hr24, %r23;
add.s32 %r25, %hr22, %r24; add.s32 %r25, %hr22, %r24;
div.u32 %rd, %r25, %hr2; div.u32 %hrd, %r25, hr2;
add.s32 %r26, %hrd, 1; add.s32 %r26, %hrd, 1;
and.b32 %r37, %hr26, 3; and.b32 %rd0, %r26, 3;
setp.eq.s32 %p2, %»r37, 0; setp.eq.s32 %p2, %r40, 0;
@%p2 bra $L__BBO_6; Q@%p2 bra $L__BBO_6;
mul .wide.s32 %rd22, %r38, 4; mul .wide.s32 %rd25, %ra1, 4;
add.s64 %rd40, %rd2, %rd22; add.s64 %rd26, %rd2, %rd25;
mul .wide.s32 %rd5, %r2, 4; add.s64 %rddd, %rd26, 262144;
add.s64 %rd23, %rdl, %rd22; add.s64 %rd27, %rdl, %rd25;
add.s64 %rd39, %rd23, 524292; add.s64 %rd43, %rd27, 5242888;

} }

Even without fully comprehending this type of low-level PTX code, one can abstract away from its semantics/meaning
and simply compare both kernel versions line by line. By doing so, it becomes evident that the sequence of GPU
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instructions remains functionally equivalent. The arithmetic operations and control flow are preserved across both
implementations. The only noticeable differences lie in the memory offsets used, which simply reflect small variations in
where data is allocated in memory. These changes do not impact the algorithm’s logic or performance, confirming that

the abstraction introduced by Marionette doesn’t incur performance overhead.
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