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Abstract. In this paper, anomaly detection algorithms are studied, analysed, and compared as a tool for dis-
covering new physics at colliders. Unsupervised methods utilized in semi-supervised regimes like Isolation
Forest, Autoencoder, and Variational Autoencoder were trained only on simulated events from the Standard
Model, representing the background, and then tested on simulated signals, new physics phenomena, to assess
their ability to identify such events as anomalies. To benchmark the semi-supervised approach, fully supervised
neural networks were also trained. The contamination of the background of the semi-supervised methods, the
effect of the latent space on the performance of the Variational Autoencoder, and the correlation between these
algorithms were also aspects of the study. The findings show AUC scores ranging from 0.9358 to 0.9994 de-
pending on the type of signal and method used, which is a promising prospect for applying semi-supervised
methods to detect collider data anomalies.
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1 Introduction
1.1 The Standard Model and Beyond

The Standard Model (SM) of particle physics is the pre-
vailing theory that accurately describes, considering the
available experimental data, three out of the four funda-
mental forces in the Universe, namely electromagnetic,
weak, and strong interactions. Moreover, it classifies all
elementary particles that are currently known. Although it
is the most successful theory of particle physics to date, the
SM could be better as there are many open questions, such
as the nature of dark matter, the possibility of unification
of all four fundamental forces, and the matter-antimatter
asymmetry. These problems may be solved with physics
beyond the Standard Model (BSM). With this said the re-
search on this topic can be assisted by using anomaly de-
tection methods on colliders’ data, finding possible signals
that might hint at new physics.

1.2 ATLAS/LHC Experiment

ATLAS is the largest Large Hadron Collider (LHC) detec-
tor for particle colliders. It is built with many layers of
detection instruments wrapped concentrically around the
collision point to record highly electrically charged ener-
getic particles, allowing them to be individually identified
and measured. A compact and highly sensitive innermost
detector measures their direction, momentum, and charge
in each proton-proton (pp) collision. It consists of three
different systems of sensors, all immersed in a magnetic
field parallel to the beam axis that bends the paths of the
charged particles so that their momenta is measured as pre-
cisely as possible. Beams of particles travel at LHC with
energies up to seven TeV or speeds up to 99.999999% that
of light and collide at the centre of the ATLAS detector,
producing new particles that fly out in all directions. Only
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one in a million collisions are labelled as potentially excit-
ing and recorded for further analysis. The ATLAS is vi-
tal to investigate a wide range of physics phenomena that
might one day establish particle masses’ origin, have good
prospects for discovering dark matter, and cast light on
unification and even quantum gravity [1].

Figure 1. The ATLAS detector and its subdetectors [2].

1.3 Simulated Dataset

To study the anomaly detection (AD) methods, the
datasets used for training and testing were based on pp
collision data recorded at a centre-of-mass energy of

√
s =

13 TeV with the ATLAS detector during 2015 and 2016.
Monte Carlo events were simulated for all processes of in-
terest [4], both the background and new physics type of
signals datasets. (Fig. 2). This paper aims to assess how
AD methods differentiate signals from the background,
potentially leading to new discoveries in physics.

In order to use these datasets in the study, some com-
mon variables between them were selected as features
to train the AD learning algorithms, such as the missing
transverse momentum (MET), which is the negative vecto-
rial sum of the transverse momenta of calibrated electrons,
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muons, small-R jets, and unassociated tracks [7], repre-
sented in Fig. 3, 4-momentum (px, py, pz, e) of the jets
and large-jets, scalar momentum sum of all objects (HT),
and Delta represents higher-level features which can be
derived from more basic ones. Thirty-one features were
selected in total.

Background

This dataset simulates events predicted by the SM on pp
collisions. These events include W and Z boson produc-
tion in association with jets, top-quark production (both
top-quark pair, tt̄, and single-top-quark), non-resonant di-
boson production (WW, WZ and ZZ), and multijet produc-
tion [7].

Resonant Dark Matter particles (S1)

The first type of signal is based on the production of reso-
nant Dark Matter (DM) particles. An effective BSM model
in which new mediators connect the SM particles and the
DM candidates is usually considered. One production
mechanism of new mediators is resonant. It produces a
new scalar mediator ϕ decaying into a top quark and a DM
candidate χ̄ [3].

Dark Matter production by two Higgs doublets (S2)

The second type of signal is based on the production of a
heavy particle by the two Higgs doublets model (2HDM).
There are two scenarios, but the one simulated is the
2HDM+a. This scenario is the most straightforward renor-
malizable and gauge-invariant extension of a simplified
pseudoscalar mediator model. It adds a new pseudoscalar
singlet that mediates the interactions between the SM and
a singlet fermion χ̄ identified as the DM candidate [5].

Gluino pair (S3)

The third type of signal is based on the supersymmet-
ric partners of quarks and gluons (squarks and gluinos).
Squarks and the fermionic partners of the gluons, the
gluinos (g̃), could be produced in strong-interaction pro-
cesses at the LHC and decay via cascades ending with the
stable lightest supersymmetric particle (DM candidate),
which escapes the detector unseen, producing substantial
missing transverse momentum [6].

Heavy Vectorial Triplet (S4)

Finally, the fourth type of signal is based on one kind of
diboson resonance. It’s the heavier version of the SM W
and Z bosons, W ′ and Z′ bosons, as parameterized in the
Heavy Vector Triplet (HVT) framework, which can decay
through W ′ −→ WZ and Z′ −→ WW [7].

Figure 2. Feynamn diagrams of the signals: a) Resonant Dark
Matter particles (S1), b) Dark Matter production by two Higgs
doublets (S2), and c) Gluino pair (S3).

Figure 3. Missing transverse momentum (MET) of all back-
ground components and signals.

2 Anomaly Detection Methods
2.1 Supervised Neural Networks

In supervised learning, each event in the datasets is la-
belled 0 for background and 1 for each signal type. The
goal consists of implementing an algorithm capable of
high accuracy in predicting the label of an event when
given its features. The algorithm in question is a deep
neural network (NN). It’s an algorithm whose architecture
comprises layers with many neurons, leading to an output
[8].

Figure 4. Schematic of a
deep neural network.
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Each layer is a mathematical function, where the output of
one layer is the input of the next, which takes the following
form:

fl(z) = gl(Wlz + bl)

Where z is the input from the previous layer, l is called the
layer index and can span from 1 to any number of layers,
the function gl is called an activation function. The pa-
rameters Wl (a matrix) and bl (a vector) for each layer
are learned via gradient descent. ReLu activation func-
tions were used in the hidden layers except on the output
layer, where a sigmoidwas mandatory to truncate the val-
ues between 0 and 1. The loss function used was Binary
Cross-Entropy (BCE), typically used in binary classifica-
tions. The goal is to find a set of W which minimises it via
gradient descent. The BCE takes the following form:

minW,b
1
N

N∑
i

[yi log2[NN(xi,W,b)]+

(1 − yi) log2[1 − NN(xi,W,b)]]

Where W is the weight and b the bias learned by the NN,
xi the feature vector of the ith event, yi is the correspondent
true label and N the total number of events.

2.2 Semi-Supervised Methods

In semi-supervised learning, the datasets are not labelled.
The algorithms are only trained on the background dataset
and then tested on both the background and the signals.
Theoretically, this allows the algorithms better to under-
stand a background event than an unseen signal and then
convert this process into an anomaly score.

Isolation Forest

The Isolation Forest (IF) algorithm [9] randomly selects
a feature and then selects a split value between the maxi-
mum and minimum values of the selected feature. Since
a tree structure can represent recursive partitioning, the
number of splittings required to isolate a sample is equiv-
alent to the path length from the root node to the terminat-
ing node. This path length averaged over a forest of such
random trees is used to measure the anomaly score. The
shorter the path, the bigger the anomaly score.

Autoencoder

The Autoencoder (AE) [10] is a deep architecture that
learns to compress (encode) and then decompress (decode)
data through a bottleneck intermediate layer with a smaller
dimensionality than the data, also called latent space. In
this paper, the AE is trained by minimising the reconstruc-
tion error between the decoded dataset and the original
through Mean Squared Error (MSE) that takes the follow-
ing form:

loss = minW,b
1
N

N∑
i

∥AE(xi,W,b) − xi∥
2

Where AE(xi,W,b) = x̂i is the decoded dataset. These
reconstruction errors can be used as a measure for the

anomaly score since, in theory, this algorithm better recon-
structs the background and, therefore, has smaller anomaly
scores than the signals.

Figure 5. Schematic of a deep Autoencoder architecture.

Variational Autoencoder

The Variational Autoencoder (VAE) architecture also
comprises an encoder and a decoder trained to minimise
the reconstruction error between the decoded and initial
data. However, a slight modification of the encoding-
decoding process is applied to introduce some regularisa-
tion of the latent space. The algorithm is trained as fol-
lows: The input is encoded as a distribution over the latent
space, and a vector (z) is sampled from that distribution:

z = µx + σx ⊙ ζ

Where µx is the mean vector, and σx is the deviation vec-
tor. A reparametrisation trick (ζ ∼ N(0, 1)) is applied
to permit backpropagation of error through the network.
Then, the sampled vector is decoded, and the reconstruc-
tion error can be computed. Another difference to the AE
is that the loss is a sum of the MSE and the Kullback-
Leibler Divergence (KL). P(z|X) is the probability distri-
bution that projects the data into latent space. But since
we do not have that distribution, we estimate it using its
simpler estimation Q(z|X). Now while training, the en-
coder should try to learn the simpler distribution Q(z|X)
such that it is as close as possible to the actual distribu-
tion. This is where KL divergence is used as a measure of
the difference between two probability distributions. The
loss function then takes the following form:

loss = MSE(x, x̂) + βKL[N(µx, σx),N(0, 1)]

Where MSE and KL functions are used, and β is a constant
to make sure both outputs from these functions are in the
same order of magnitude.
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Figure 6. Schematic of a Variational Autoencoder architecture.

3 Implementation and Analysis of the
Methods

The background and signals datasets were split into train,
validation, and test datasets with equal statistical weights
to ensure equal representativity. A standard scaler then
transformed the datasets to ensure the individual features
look more or less like standard normally distributed data
(Gaussian with 0 mean and unit variance), as this is a com-
mon requirement for many machine learning estimators.

Neural Networks

Four similar algorithms were created for the NN, one for
each signal type. They were all trained with the back-
ground and the respective signal train datasets and labels
as a supervised binary classification problem. During this
phase, the respective validation datasets were also intro-
duced to provide an unbiased evaluation of the model fit on
the training dataset and to be used as early stopping. Af-
ter the algorithms were trained, the respective test datasets
were used to make predictions. Since the outputs of the al-
gorithms were a continuous float between 0 and 1 to each
event on the test datasets, thanks to the sigmoid activa-
tion function of the output layer, they served as a measure
of the anomaly score. These anomaly scores, in this case,
four arrays, one for each algorithm, were then plotted in
histograms, also called model scores, to study if the al-
gorithms could distinguish the background from the sig-
nals successfully. To assess the performance, the anomaly
scores were also used to plot a receiver operating char-
acteristic curve (ROC curve). The area under the curve
(AUC) for each ROC curve was also recorded—the closer
to the unit, the better the performance.

The performance of NN does not significantly degrade
when they are applied to another signal type than the one
used for training, as long as these signals are similar from a
topological point of view [10]. The algorithm trained with
the signal S1 was then used to predict the other signals and
repeat the analysis process to verify this statement.

Semi-Supervised Methods

For semi-supervised learning, all algorithms were trained
only on the background and its validation datasets and then
tested on the background mixed with each signal type in-

dividually. To analyse the results from the IF, since its
anomaly scores go from -1 to 0, they were renormalized
to go from 0 to 1. After that, they were used to plot the
model scores and ROC curves for each signal.

Since AE and VAE are similar, they were studied simi-
larly. Firstly, the algorithms, after training, encoded and
decoded the background, originating the reconstructions.
These were then plotted in histograms for each feature in
the dataset against the original background features. Sec-
ondly, the algorithms also encoded and decoded each sig-
nal type. The MSE function was then applied between
the reconstructions and the original datasets, obtaining the
reconstruction losses. The logarithm of base 10 of the re-
construction losses was calculated, to avoid huge intervals
between reconstruction losses and then renormalized from
0 to 1 as a metric for the anomaly scores. Finally, the usual
model scores and ROC curves were plotted for each signal.

Contamination

In a real-life scenario, the datasets produced at the ATLAS
detector might contain a new physics phenomenon hidden.
To simulate this aspect, an algorithm must be trained with
the background and a signal type but with the respective
normalised combined weight, as this new physics phe-
nomenon has very little statistical representativity. This
approach was applied to the IF and VAE algorithms and
tested like before. Degraded performances compared to
uncontaminated algorithms were expected.

Latent space dimensionality

VAE being the most complex AD method, more profound
research was put into it. Its latent space’s smaller dimen-
sionality than the other layers directly affects how well the
algorithm reconstructs the original data. A study was con-
ducted where the number of neurons of the latent space
was varied, and the AUC score and the reconstruction loss
were recorded to determine the most optimal latent space
dimensionality.

4 Results
This section presents the results from the testing phase of
these algorithms and further analysis. It is important to
emphasise that the algorithms were optimised to produce
better results, such as distinguishing accurately between
background and signals.

4.1 Neural Networks

The four algorithms trained, one for each signal type,
had similar architectures. The best architecture was
shallow, with just one hidden layer and 128 neurons.
The activation function that got the best results was the
regular ReLu function, which filters only positive values
to the next layer. This architecture also benefitted from
a learning rate scheduler ReduceLROnPlateau whose
callback monitored a quantity. If no improvement is seen
for a patience = 25 number of epochs, the learning rate
is reduced by a factor of 10. The quantity monitored in
this case was the AUC, which needed to be maximised.
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Table 1. Gridsearch for the NN.

Variable HP Possible Values
Number of Layers [1,2,3]
Number of Neurons [128,256]
Fixed HP Fixed Values
Max Epochs [200]
Batch Size [4096]
Learning Rate (LR) [0.001]

Figure 7. Model score for the NN trained on each signal. The oc-
currences are on a logarithmic scale. The filled colour blue rep-
resents the background predicted by the algorithm trained with
S1, and the coloured lines are the signal types.

Figure 8. ROC curve for the NN trained on each signal.

The histogram from Fig. 7 shows that the NN could
precisely predict the anomaly scores. The signals S2,
S3, and S4 were almost entirely classified closely to the
unit’s score, while S1 spanned from 0 to 1. As for the
background, all NN algorithms predicted scores that also
spanned the entire spectrum. However, the number of
occurrences above a threshold calculated by the average
score of a background predicted by its algorithm plus
one standard deviation would be statistically insignificant.
This can be verified by Fig. 8 with perfect ROC curves

and AUCs of 1.0 to the least troublesome signals S2, S3,
and S4, while S1 got an AUC of 0.9922.
The algorithm trained with the S1 was then tested on the
other signals, reproducing the results from Fig. 9 and
Fig. 10. The performance of the NN was degraded as
the anomaly scores it gave spanned the entire spectrum for
the other signals, resulting in a lower distinguishing ability
from the background. This also led to lower AUC values,
suggesting that the signals are different from a topological
point of view, mainly the signal S4.

Figure 9. Model score for the NN trained on signal S1. The
occurrences are on a logarithmic scale. The filled colour blue
represents the background, and the coloured lines are the signal
types predicted by the algorithm trained with S1.

Figure 10. ROC curve for the NN trained on the signal S1.

4.2 Isolation Forest

The IF algorithm lacks customisation ability like the other
algorithms studied. The only hyperparameter optimised
was n-estimators, which represented the number of
trees in the classification and was set to a maximum
(100). Another hyperparameter mandatory to its use,
called contamination, was left to default since its only
purpose is to act as a threshold for classification on the
anomaly scores.
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Figure 11. Model score for the IF. The occurrences are on a log-
arithmic scale. The filled colour blue represents the background,
and the coloured lines the signal types.

Figure 12. ROC curve for the IF.

As the NN, from Fig. 11, IF also gave the background and
S1 both low and high anomaly scores, while the other sig-
nals got a smaller range but with higher average anomaly
scores. The overlap between the background and the sig-
nals’ distributions is relatively small, which led to high
AUC scores, shown in Fig. 12. However, there was still
a degradation compared to the NN AUC scores, as was
expected when shifting from fully supervised learning to
semi-supervised.

4.3 Contaminated Isolation Forest

Four IF algorithms were trained with the background and
its respective signal type to simulate the contamination.
The algorithms had the same hyperparameters as the orig-
inal IF algorithm tested above. During the training phase,
the normalised combined weight of the background and
signals was used to get the right statistical representativity.

Figure 13. Model score for the contaminated IF. The occurrences
are on a logarithmic scale. The filled colour blue represents the
background, and the coloured lines represent the signal types.

Figure 14. ROC curve for the contaminated IF.

Compared to IF, the model score of contaminated IF in
Fig. 13 showed a slightly better anomaly score range for
the background and smaller intervals with higher averages
of anomaly scores for the signals S2, S3, and S4, while the
signal S1 remained practically the same. These changes
can be noticed in the AUC scores represented in Fig. 14
14, which increased slightly, except for S1, compared to
the scores given by IF.
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4.4 Autoencoder

The latent space dimension most suitable was 8 neurons.
To sustain this hourglass-shaped architecture and use 2n

number of neurons, the encoder was built with an input
layer of 32 neurons and a hidden layer with 16 and, on the
other side, the decoder was built symmetrically but with
its output layer being made of 31 neurons, which is the
number of features. Similarly to the NN, every layer had
the ReLu function, except for the output layer, which had
none.

Table 2. Gridsearch for AE.

Variable HP Possible Values
Number of layers (Encoder=Decoder) [2,3,4]
Number of Neurons [16,32,64]
Fixed HP Fixed Values
Max Epochs [2000]
Batch Size [4096]
Learning Rate (LR) [0.001]

As the AE was trained only on the background training
dataset, it learned to reconstruct its input accurately. Fig.
15 shows the background test dataset reconstructions of
MET, one of the most critical features since its background
and signal distributions are significantly different Fig. 3,
and a 4-momenta large jet (px, py, pz, e).

Figure 15. Original background and its reconstruction of the
features MET and a large jet. The filled colour blue represents
the original background test dataset, while the thick blue line
represents the reconstructed background.

Figure 16. Reconstruction loss for background and all signals in
logarithmic scale.

Figure 17. Model score for the AE. The occurrences are on a log-
arithmic scale. The filled colour blue represents the background,
and the coloured lines the signal types.

Figure 18. ROC curve for the AE.

This algorithm didn’t reconstruct all the signals’ features
with the same accuracy as the background. These expected
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results can be seen in Fig. 16, which shows the reconstruc-
tion loss for all datasets using MSE as a metric. Compar-
ing these AUC scores to both IF algorithms, the overlap
between the background and the signals’ distributions is
considerably smaller. AE performed better on the signals
S2, S3, and S4, while S1 was harder to distinguish from
the background, giving it a smaller AUC score.

4.5 Variational Autoencoder

A difference between VAE and AE is the optimization
function, now Adadelta instead of Adam used on the AE,
which provided slightly better reconstructions. For the
latent space study, the architecture remained the same
throughout the cases, only varying the number of neurons
of the mean and deviation vector layers. As usual, the
algorithm was trained on the background training dataset
and tested on the background and all signals testing
datasets, producing their reconstructions. Its effect on
the AUC scores for each signal type and the background
reconstruction loss was recorded in Fig. 19 and Fig. 20.
From these results, it is possible to conclude that the
11 number of neurons seemed the best choice as it got
the second-highest average AUC score and the lowest
reconstruction loss.

Table 3. Gridsearch for VAE.

Variable HP Possible Values
Number of layers (Encoder=Decoder) [2,3,4]
Number of Neurons [16,32,64]
Latent Space Dime. [5 to 12]
Learning Rate (LR) [0.01,0.1,1.0]
Fixed HP Fixed Values
Max Epochs [5000]
Batch Size [4096]

Figure 19. AUC scores vs number of neurons of the latent space
layers for each signal (on the left) and their average (on the right).

Figure 20. Reconstruction loss vs number of neurons of the la-
tent space layers for the background.

The same study was conducted with the new optimised
VAE to obtain its reconstructions of the background in Fig.
21. VAE’s reconstructions of the same features compared
to AE’s were slightly more accurate on the large jet, while
AE still prevailed on the MET. These better reconstruc-
tions led to better distinctions between the background and
the signals due to the lower reconstruction loss against the
original background, shown in Fig. 22.

Figure 21. Original background and its reconstruction of the
features MET and a large jet. The filled colour blue represents
the original background test dataset, while the thick blue line
represents the reconstructed background.
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Figure 22. Reconstruction loss for background and all signals in
logarithmic scale.

It is possible to verify that VAE reconstructed better the
background and more poorly the signals S2 and S4 com-
pared to AE, while S1 improved slightly (Table 4). The
conversion of these results to the model score in Fig. 23
and the ROC curve in Fig. 24 show that VAE performed
better than AE in all signals except on S1. This is possibly
due to the MET feature, as S1’s distribution is closer to the
background’s. VAE didn’t reconstruct the MET as accu-
rately as AE, leading to a lower anomaly score distinction
between the signal and background.

Table 4. Reconstruction loss for both AE and VAE on the
background and all signals.

Rec. loss - AE Rec. loss -VAE
Background 0.434 ± 0.127 0.349 ± 0.103
Sinal S1 0.738 ± 0.109 0.593 ± 0.113
Sinal S2 0.758 ± 0.033 0.797 ± 0.087
Sinal S3 0.790 ± 0.052 0.781 ± 0.076
Sinal S4 0.705 ± 0.021 0.860 ± 0.065

Figure 23. Model score for the VAE. The occurrences are on
a logarithmic scale. The filled colour blue represents the back-
ground, and the coloured lines the signal types.

Figure 24. ROC curve for the VAE.

4.6 Contaminated Variational Autoencoder

Similarly to the contaminated IF, four VAE algorithms
were trained with the background and a respective sig-
nal type to simulate the contamination. The algorithms
had the same hyperparameters as the original VAE algo-
rithm tested above. Once again, the normalised combined
weight of the background and signals was taken into ac-
count to get the right statistical representativity.

Compared to VAE, the model score of contaminated VAEs
in Fig. 25 showed a slightly worse anomaly score range
for the background and more considerable intervals with
lower averages of anomaly scores for the signals S2 and
S3. The signal S4 also showed a lower average of the
anomaly scores but with a similar interval between mini-
mum and maximum scores, while the signal S1 boosted its
average. These changes can be noticed in the AUC scores
represented in Fig. 26, which decreased slightly, except
for S1, compared to the scores given by VAE.

Figure 25. Model score for the contaminated VAE. The occur-
rences are on a logarithmic scale. The filled colour blue repre-
sents the background, and the coloured lines the signal types.
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Figure 26. ROC curve for the contaminated VAE.

4.7 Correlation Between algorithms

Different AD algorithms might see various anomalies,
leading to uncertain results. Scatter plots with the anomaly
scores of each semi-supervised method were made for
each signal type to see if this is the case. These scat-
ter plots represent two-dimensional distributions of the
anomaly scores for the different AD methods and, on the
diagonal, the distribution of the model score per method.

Figure 27. Scatter plots of anomaly scores on the signal S1.

Figure 28. Scatter plots of anomaly scores on the signal S2.

Figure 29. Scatter plots of anomaly scores on the signal S3.

Figure 30. Scatter plots of anomaly scores on the signal S4.
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The signal S1 led to lower correlations between algorithms
as there appear to be no repeating scattered patterns of its
anomaly scores. For the other signals, similarities in the
shape and location of the two-dimensional plots could be
seen. Also, these clusters are smaller than signal S1, which
almost takes the same shape as the background. For the
signals S2, S3, and S4, it’s safe to assume that one AD
algorithm is enough to uncover the correct outliers in the
dataset; on the other hand, for the S1 signal, it is perhaps
better to use more than one AD algorithm to ensure the
proper detection.

4.8 AD Algorithms Score

To summarize the results from this study, the AUC scores
of every semi-supervised method for each signal type were
compared in the graph in Fig. 31.

Figure 31. AUC scores by every semi-supervised method for
each signal type.

All AD algorithms showed an overall excellent perfor-
mance, some even at the same level as NN. Deeper al-
gorithms like AE and VAE presented to be the best at dis-
tinguishing signals like S2, S3, and S4 but fell short on
signal S1 to a shallow algorithm like IF, which got a more
constant performance throughout the signals. While VAE
got the highest AUC scores, the contaminated IF scored
the highest average.

5 Conclusion
In this paper, three distinct semi-supervised AD algo-
rithms were studied, one shallow and two deep, which
were trained on simulated pp collision data at

√
s = 13

TeV. Compared to fully supervised algorithms, these AD
algorithms performed well with different types of anoma-
lous events achieving the top AUC scores: 0.9803 (IF),
0.9988 (VAE), 0.9989 (VAE), and 0.9994 (VAE) for the
signals S1, S2, S3 and S4, respectively. However, there
were some discrepancies: some types of signals are harder
to distinguish from the background, leading these algo-
rithms to have different notions of outlyingness. Contami-
nation was also considered, which seemed to favour shal-
low algorithms and degrade deeper ones.

Distinct algorithms for AD are highly effective in isolat-
ing diverse types of BSM physics. Furthermore, these
algorithms can complement each other in unsupervised
searches for new physics, making them potential tools in
particle physics research.
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