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Abstract. In this paper, we explore two ML methods: Support Vector Machine (SVM) and Variational Quan-
tum Circuits (VQC).We compare the performance of both methods using the same dataset filled with data from
simulated particle collisions. For the SVM, we calculated an AUC of 0.78, indicating that the model has moder-
ate to strong discriminatory power in distinguishing between classes. In the VQC, we implemented a variational
quantum circuit and discussed its training process. Although the results of the VQC were similar to those of the
SVM, the AUC was slightly worse than that of the SVM.
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1 Introduction

This study was conducted throughout the month of July
2023, under the guidance of Professor Nuno Castro, co-
ordinator of LIP (Laboratório de Instrumentação e Física
Experimental de Partículas).

This paper aims to provide a brief introduction to
the fundamental concepts on Quantum Machine Learning,
where we implemented a VQC. However, recognizing the
significance of Support Vector Machine (SVM) as the clas-
sical counterpart in classification tasks, we also integrated
an SVM model into our research to learn some fundamen-
tal concepts in classical Machine Learning.

ML is a subfield of Artificial Intelligence that seeks
to develop algorithms capable of learning patterns from
data, enabling automated systems to make decisions or
predictions based on that information. By analyzing
datasets, ML models seek to identify hidden relationships
and trends, enabling the execution of complex tasks more
effectively and accurately.

An SVM model rely on finding the best separation be-
tween different data classes in a multi-dimensional space.
On the other hand, a VQC model is an emerging approach
that use methods of quantum computing to solve classifi-
cation problems.

This analysis will be conducted based on the same data
set used in the article [1].

This data set consists of a simulation of experimen-
tal results from particle collisions at CERN’s accelerators
[10]. From the experimental values of various physical
parameters obtained in this collision, our goal is to em-
ploy both ML techniques mentioned earlier to develop
an algorithm capable of learning from these values to
discern, with new experimental results, the presence of
new physics events or their absence. All events in the
dataset are categorized with labels "background" or "sig-
nal" where a "signal" event indicates a new physical event,
while "background" signifies the opposite.
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2 Data Set

The dataset events were described by 47 distinct particle
collision features such as masses, transverse momenta, an-
gles, the number of electrons present, and even the energy
lost during the collision.

To ensure the results for our models were within a rea-
sonable timeframe, considering the inherent complexity of
quantum training in the case of the VQC and the scalabil-
ity challenges associated with SVM for a large number of
events, we have chosen to focus on a dataset consisting
of 500 events. This dataset has been evenly split into 250
signal events and 250 background events from the original
dataset.

In paper [1] it was concluded that discrete features in
the SBS feature selection methodology resulted in erratic
performance except in cases where only one continuous
feature was used. Therefore, it was found that excluding
discrete variables during feature selection led to better per-
formance for VQC circuits in a limited study of 2 features,
compared to when discrete variables were included.

This indicates that the choice of input features is cru-
cial for achieving high accuracy in quantum machine
learning.

The SBS (Sequential Backward Selection) algorithm
begins with the set of all features, including the discrete
ones. At each iteration, it generates all possible feature
subsets of size n-1 and trains a machine learning model
for each of these subsets. Subsequently, the performance
is evaluated, and the feature that is absent from the subset
with the lowest performance metric is removed. This pro-
cess is repeated until the feature subset contains k features.

In Table 6 of the referenced paper, you can find the re-
sults for the features selected by the SBS algorithm and
their corresponding AUC scores on the training dataset
with all discrete features removed.

In the following section, we will introduce the concept
of AUC. For now, consider that a model with a higher AUC
indicates greater discriminative power.

With this in mind, it’s important to note that we con-
structed our models using only the top 2 input features,
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specifically the two with the highest AUC values from the
mentioned table.

It is also worth noting that these events were associated
with Monte Carlo "weights," corresponding to the theo-
retical predictions for each process at the target luminos-
ity of 150 / f b−1, which were taken into account in the
evaluation of all the considered metrics and loss functions,
making events with larger weights more influential for our
model’s learning process.

3 SVM results and Metrics

We won’t delve into the details of the SVM code, but we
will use its results to explain the metrics implemented for
evaluating a ML model.

The ROC curve is a graphical representation illustrat-
ing the relationship between the True Positive Rate (TPR)
and the False Positive Rate (FPR) at different classification
thresholds.

Mathematically, TPR, representing the proportion of
positive examples correctly classified as positive, can be
expressed as:

T PR = 1 −
FN

T P + FN

Where TP (True Positives) is the count of positive ex-
amples correctly classified as positive, and FN (False Neg-
atives) is the count of positive examples incorrectly classi-
fied as negative.

On the other hand, FPR, representing the proportion
of negative examples incorrectly classified as positive, is
expressed as:

FPR =
FP

FP + T N

Where FP (False Positives) is the count of negative
examples incorrectly classified as positive, and TN (True
Negatives) is the count of negative examples correctly
classified as negative.

In the ideal scenario, the ROC curve forms a vertical
straight line from the origin to the upper-left corner, rep-
resenting a TPR of 1, signifying that all positive instances
are correctly classified as positive (no False Negatives).
From the upper-left corner to the upper-right point, the
FPR is 0, indicating that there are no False Positives. Visu-
ally, this ideal curve resembles a square with a side length
of 1.

The AUC (Area Under the Curve) is the area beneath
the ROC curve and is another metric that tells us how good
the test or model is. In a interval between 0 and 1, a higher
the AUC represents a better performance in classification.
If the AUC is 0.5, the test is like tossing a coin, meaning
it’s not very useful. If the AUC is 1 it mean we obtain
precisely a Roc curve of an perfect classification situation

We obtained an AUC of 0.78, and the following ROC
curve for our SVM model, that is illustrated in Figure 1.

Figure 1: SVM ROC curve and AUC

4 Variational Quantum Circuits

For our initial attempt in quantum ML, we constructed a
simple model of a variational quantum circuit, and in gen-
eral, its training followed the following steps:
• Encoding classical data into a quantum state.
• Applying a parameterized model, measurement, and

comparing it with the classification.
• Utilizing optimization techniques for parameter up-

dates.
The quantum circuit used for building the VQC is il-

lustrated in Figure 2. In the following subsections, we
will break down the circuit into its respective steps in con-
structing the model as mentioned earlier.

Figure 2: Complete quantum circuit implemented in our
model.

Encoding Classical Data into a Quantum State

The encoding of classical data into quantum states (qubits)
is a fundamental step in the utilization of quantum algo-
rithms for information processing tasks, given that qubits
serve as the fundamental building blocks of quantum cir-
cuits. One commonly adopted strategy, of many ones [2],
for this encoding is referred to as Angle Embedding.

In this approach, each feature from the classical data is
associated with a rotation angle around the X-axis of the
Bloch sphere. To ensure uniformity, the feature values are
normalized to fall within a range between π and −π.

As a matter of convention, we begin with each qubit in
the |0⟩ state on the Bloch sphere and subsequently apply
logical gates that enable rotations along the X or Y-axis.
These rotations are performed to position each feature on
the Bloch sphere according to the corresponding angle.
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For an individual event, since the initial quantum state
is defined by a single angle value, and each angle is associ-
ated with the value of a specific feature, it can be observed
that each qubit effectively represents a single feature.

In our specific case, we opted to select the same two
most continuous and relevant features from a pool of 47
features within our dataset, which had been previously
chosen for our Support Vector Machine (SVM) model.
Consequently, our quantum circuit was designed to ac-
commodate only two qubits.

Figure 3: Representation of the Bloch Sphere and demon-
stration of qubit rotation about the X-axis after passing
through the X-rotation logic gate, where the initial state
was |0⟩.

Figure 4: The angle embedding of the quantum circuit
used involved two X-rotation logic gates for each qubit,
representing each feature.

Apply a parameterized model

After converting classical data into quantum states the
qubits are now incorporated into a quantum circuit. This
circuit consists of quantum gates associated with ad-
justable parameters, which will be optimized during train-
ing. These parameters have the effect of repositioning the
quantum states of the qubits on the Bloch sphere.

The implemented circuit is based on a series of quan-
tum rotation gates and CNOT gates. The parameters in
this context are the angles provided to the rotation gates.

The optimal variational circuit for a classifier has not
yet been determined. However, we decided to follow the
method described in the article [1] , adapting it for a two-
qubit circuit represented in Figure 2. We can decompose
this circuit into 3 igual layers represented on Figure 6 and
a measurement on the 0 wire as you can see on Figure 2.

Each rotation gate represents a rotation that does not
necessarily have to be a rotation about the x, y, or z-axis.

The parameters will be described by a tensor , T , of
shape

(Nlayers,Nqubits, 3)

From an algebraic perspective, the rotation gate of
layer i and qubit j is given by:

Rot(αi j, βi j, γi j) = RZ(γi j)RY (βi j)RX(αi j)

As we are working with 2 qubits and 3 layers, the
T tensor is algebraically described by a tensor of shape
(3,2,3):

T =


α11 β11 γ11
α12 β12 γ12
α13 β13 γ13


α21 β21 γ21
α22 β22 γ22
α23 β23 γ23


α31 β31 γ31
α32 β32 γ32
α33 β33 γ33




Measuring and Comparing Classification Results

As can be observed in the circuit diagram in Figure 2, a
measurement of the average value of qubit on wire 0 is
performed. Let the resultant state of this wire be |ψ⟩ =
A |0⟩ + B |1⟩, the average value will be:

|A|2 × 0 + |B|2 × 1 = |B|2 = p(T )

Since p is the probability of obtaining the state |1⟩,
which we associate with the value 1, the idea is to adjust
the angles in such a way that this probability is as close to
1 as possible when the event is classified as ’signal,’ and
close to zero when the event is labeled as ’background.’

The details of this optimization will be discussed in the
next subsection.

Figure 5: Variational quantum circuit after Angle Embed-
ding consisting of 3 identical layers, as represented in Fig-
ure 6, and a measuremen
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Figure 6: Fundamental layer of the circuit in Figure 5.

Parameter Optimization for T

The training begins with the initialization of a random ten-
sor T . In each training iteration, the circuit evaluates the
500 events and returns, for each event, the average value
of the qubit state measurement, which are values between
zero and one, as previously mentioned, and are under-
stood as probabilistic values pi. With the values pi and
the true classification yi, the Binary Cross-Entropy Loss
Function (BCE) is calculated. This is a commonly used
metric in binary classification problems in ML and Deep
Learning. It is used to measure how well a binary classi-
fication model is making predictions in comparison to the
true classes. The objective is to minimize the resulting av-
erage value BCE across all events during model training
so that it makes accurate predictions close to the actual
labels.

In our case, minimizing BCE is achieved using the
Adam Optimizer [8], which, in each iteration, takes into
account the value of BCE and the T parameters from the
previous iteration and updates the T parameters in a way
that reduces the value of BCE. The formula for BCE is as
follows:

BCE = −pi log(yi) − (1 − pi) log(1 − yi)

whose mean is given by:

BCE = −
1
N

N∑
i=1

(
pi log(yi) + (1 − pi) log(1 − yi)

)
where N is the number of events in the dataset, and yi

is the actual classification of the event.
However, we had to adjust the previous function to

take into account the sampling weights wi, which deter-
mine the impact that each event should have on training,
as discussed at the beginning of this paper. The new ex-
pression for BCE will be:

BCE∗ = wi
(
−pi log(yi) − (1 − pi) log(1 − yi)

)
Therefore, the impact of each BCE∗ on the mean,

BCE∗, is regulated by the value of the sampling weight
wi.

BCE∗ = −
1
N

N∑
i=1

wi
(
pi log(yi) + (1 − pi) log(1 − yi)

)

Figure 7 graphically represents the evolution of BCE∗
over the iterations.

Figure 7: Graphical representation of the mean Binary
Cross-Entropy Loss Function in terms of the 500 events,
BCE∗ , over the iterations.

ROC and AUC Results

Next, we present a graphical representation of the ROC
curves and the obtained AUCs from training the SVM and
the VQC, on Figures 8 and 9.

The fact that the ROC curves are not smooth is due to
the use of only 500 events, however, the AUC values are
almost identical, with a slight advantage in favor of the
SVM.

Figure 8: SVM - ROC and AUC
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Figure 9: VQC - ROC and AUC

5 Conclusions

The primary goal of this study is to explore machine learn-
ing concepts, starting with the introduction of a classical
model, SVM, and then moving on to developing a quan-
tum model. We use this model with High-Energy Physics
(HEP) datasets to demonstrate its practical application.

In future work, we will focus on investigating new ar-
chitectures for the Variational Quantum Classifier (VQC)
to improve its classification performance, allowing for
learning from more than two features in each event. Addi-
tionally, we plan to increase the size of the training event
dataset to achieve better performance and a more straight-
forward ROC curve.

We expect that these improvements will enhance the
model’s performance.
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