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AI for thin film characterization using RBS
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Abstract. One of the methods employed for thin film characterization is Rutherford Backscattering Spectrom-
etry (RBS), a potent analytical tool that lies on the detection of back-scattered ions from a sample surface,
enabling researchers to investigate material composition and properties. However, analyzing RBS data can be
a laborious and time-consuming process. The use of AI models can automate this process and make it useful
for experimental scenarios. In this work, we show that Artificial Neural Networks are able to predict with good
accuracy target’s thickness and material based on simulated RBS spectra as training data. After processing
the simulation data, we proved that the model can accurately predict gold targets developed directly in the
laboratory. Additionally, we displayed how to automatically generate simulated data in the SIMNRA software.
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1 Introduction

During the past decades, Rutherford Backscattering
Spectrometry (RBS) has become a crucial nuclear tech-
nique of Ion Beam Analysis (IBA). RBS success is due to
being fully quantitative and depth-sensitive in a range of a
few nm up to tens of µm, therefore being widely used for
thin-film characterization with high-quality analysis [1–3].

Nonetheless, analyzing RBS data is a laborious and
time-consuming process, even for an expert. It can also be
challenging to maintain a high-quality standard analysis
for big datasets due to fatigue. To bypass this, implement-
ing a fitting procedure in batch mode to automate the anal-
ysis of large amounts of data is a solution. However, this
method (or similar) are computationally expensive and can
still prove to be inadequate to analyze great quantities of
data [2, 4, 5].

Another reason that contributes to the poorness of
this procedure is the fact that automatic fitting does not
learn/take advantage of previous runs, therefore increas-
ing its running time. Manual processing RBS spectra can
be slow, but an individual might be able to learn some
information from earlier spectra analysis, which can be
exploited to process the subsequent samples. That being
said, the implementation of machine learning algorithms
to process RBS spectra can be an appropriate solution, es-
pecially Artificial Neural Networks (ANNs). [2].

Neural networks have cemented themselves as one of
the strongest supervised learning techniques during the
last decade. The basic unit of neural networks is the neu-
ron, which takes a vector of N input features and produces
a scalar output. A neural network comprises numerous
neurons organized into sequential layers, where the infor-
mation produced by one layer is utilized as input for the
subsequent layer. The initial layer within the neural net-
work is referred to as the input layer, while the middle
layers are commonly known as hidden layers, and the last
layer is denoted as the output layer [6]. Additionally, ar-
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tificial neural networks are remarkably useful in perform-
ing on-line spectral analysis after being trained. During
a RBS measurement, it can effectively assess the ongo-
ing process, swiftly indicating whether it is proceeding as
expected or encountering issues, which can be extremely
useful for the scientists in the laboratory.

In this paper, we start by developing a way to auto-
mate simulated data acquisition. After that, we test and
compare different neural network architectures. First, we
test with simulated data and, afterwards, with experimen-
tal data, more specifically gold targets produced in the lab-
oratory. Finally, we present the results for each neural net-
work, make some conclusions and give suggestions of im-
provements to be done in the future.

2 Experimental procedure

2.1 Automation

Because of the lack of substantial experimental data,
simulated data was employed in order to train the ANN.
The acquisition of data was possible with the help of SIM-
NRA, which is a software responsible for generating RBS
simulated data. SIMNRA allows to define a numerous
amount of parameters, such as the setup and target, and
after that simulate the RBS process, extracting the spec-
trum for each run.

Unfortunately, SIMNRA does not offer a feature that
allows automatic extraction of large quantities of data,
whereupon we need to develop a solution to this problem.
To our luck, SIMNRA User Guide explains OLE automa-
tion: "SIMNRA is an OLE automation server, which al-
lows other applications to control SIMNRA. All functions
accessible through the user interface are also available
through OLE functionality." [7]. Given that, we can use
Python to automate spectra generation. By assigning each
parameter to a random number withing a certain range, we
can iterate achieving multiple spectra, each with different
characteristics. The simulations were all performed under
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the same circumstances, changing only the target element
and its thickness.

2.2 Input and training data

We utilized Gold (Au), Tin (Sn), and Lead (Pb) as
single-element targets and additionally, we employed Cal-
cium Fluoride (CaF2) in a Carbon substrate and Alu-
minum (Al) in Tin (Sn) as multi-element targets. Each
element has a unique range of thickness values. This ap-
proach made more sense instead of picking random targets
because the ultimate goal of this study is to develop a tool
that is useful for the team of scientists of NUC-RIA [8]
using the Van de Graaff at CTN, represented in Figure 1
[9].

Figure 1: RBS chamber at CTN

All simulated spectra are histograms of counts with
2800 channels. The number of channels was a defined
value for all spectra, allowing us to input each channel into
an input node. This would not be possible with a variable
number of channels.

2.3 Data cleaning and ANN architecture

After generating the simulated RBS spectra, data nor-
malization was performed, which proved to achieve better
performance in comparison with raw data or even stan-
dardized data, this is in accordance to literature procedures
[5]. This could be explained by the disparity of counts in
some spectra, where the peak value of counts in one can
be much higher than in others, potentially impacting the
ANN performance.

As stated previously, each channel is given as input in
each node, meaning our input layer has 2800 nodes. We
tested and compared several network architectures to de-
termine the one that better suits our problem. The neu-
ral networks employed were only Fully Connected Neural

Networks (FCNN), which consist of a series of fully con-
nected layers [10]. In our case, the only parameters that
affect the performance of the neural network are the num-
ber of layers and neurons, because the activation function
is the same for every node (except the input and output
nodes), that being the Rectified Linear unit (ReLu). In the
output layer, we have a regression output node and multi
classification output nodes. The regression output is re-
sponsible for predicting the thickness value, as it predicts
continuous values. Its activation function is simply lin-
ear. On the other hand, the multi classification output is in
charge of predicting the target’s elements, therefore pre-
dicting only discrete values. Here, the activation function
is softmax, where it outputs the elements that have more
probability of being the real value. The multi classifica-
tion output has as many nodes as target’s elements, while
the regression output has a single output node.

Figure 2: Loss function of the regression (a) and clas-
sification (b) outputs per epoch: (a) the loss metric used
was the mean squared error (MSE). All the network ar-
chitectures almost perform equally as good; (b) the loss
metric used was the categorical cross entropy. All the net-
work architectures almost perform equally as good.

(a)

(b)
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The optimizer used was the Adaptive moment estima-
tion (Adam), which is an extension of the stochastic gra-
dient descent algorithm [11]. Early stopping was also im-
plemented to prevent overfitting. In Figure 2, graphs are
presented with the loss function of each neural network ar-
chitecture for the regression and classification output, re-
spectively. For a better context, the network 80-40-20-5,
for example, means that there are 4 hidden layers, each
having 80, 40, 20 and 5 neurons.

3 Results and discussion

In this section, the test results for simulated and exper-
imental data are presented.

3.1 Simulated data

To make sure the model could learn RBS spectra, it
was tested by giving with simulated spectra. The training
and testing size consisted of 9500 and 500 samples, re-
spectively. In Figure 3, a plot is provided with a histogram
according to the percentage deviation of the thickness pre-
diction to the real value and the number of counts of cor-
rect and wrong target’s elements predictions, respectively.
The thickness predictions appear to be highly accurate, be-
ing the greatest deviation about 5% of the real value for
the thickness, while the elements predictions are always
correct. This is a positive indication that the neural net-
work architectures can accurately recognize spectral pat-
terns and make precise predictions. Note that the tested
data contains all types of materials and thicknesses. This
means that, by looking at Figure 3, we can not differentiate
if a count in 5% corresponds to a thick or thin target, there-
fore giving us only a rough measure of the neural networks
performance.

3.2 Experimental data

After testing with the simulated spectra, the model was
tested with experimental data gathered at CTN. The first
problem that arose is the fact that the training set has no
noise introduced, while the testing set, which consists of
experimental data, has noise in the spectra. As a result, the
neural network was unable to make accurate predictions
consistently throughout each simulation. To fix this issue,
there was a need to treat the data before testing it.

The first approach was to maintain the main peak un-
touched and fit a quadratic regression to the spectra, af-
ter that subtract it to every channel. It was observed that
the model still could not predict accurately the target el-
ement, every target was predicted to be a multi elemental
one. A reason for this might be that all training spectra
are simulated, which means there is a well outlined peak
(or peaks for multi elemental targets), and the number of
counts on other channels is equal to 0 (it has low back-
ground). Even when subtracting the quadratic fit to the ex-
perimental spectra, there is still a certain amount of counts
on most channels. Because these channels do not have ex-
actly 0 counts, the model might interpret these spectra as
multi elemental targets.

Figure 3: Number of counts per percentual deviation of
the thickness (a) and number of correct/wrong counts
of the material prediction (b).

In order to fix this, we tried a less orthodox solution:
leave the peak unchanged and set the number of counts to
0 on every other channel. This way, the data gets much
more similar to the simulated one, and it proved to work.
In Figure 4, a plot of the simulated, raw experimental and
clean experimental Gold RBS spectra with approximately
the same thickness is shown.

We tested the model with 6 RBS spectra of Gold tar-
gets that were produced in the lab and, in Figure 5, results
are presented for each neural network architecture. Even
thought the thickness prediction is not as accurate as pre-
viously, the prediction was still pretty satisfactory, where
the maximum deviation reached is about 16% of the real
value.

On the other hand, the elements prediction is where
the different networks demonstrate very distinct results. It
is visible that the 80-40-20-5 architecture always predicts
correctly the gold targets, while the remaining two always
predict it wrong. For this reason, the blue network (80-40-
20-5) outperforms the red and green architectures (80-40
and 80-40-20, respectively).

(a)

(b)
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Figure 4: Simulated vs raw experimental vs clean ex-
perimental data: a cut of 200 channels was made for
better visualization. The raw experimental data contains
noise, especially low energy noise. To obtain the clean
experimental data, all the channels except the peak chan-
nels were set to 0, completely vanishing the noise. In this
way the model makes predictions more accurately since
the clean data is much more similar to the training data,
which are simulated spectra.

Although this way of treating data worked, it might not
be the ideal way of treating it, because it requires to locate
the peak manually for every spectra. Another point is that
setting channels that contain some counts to 0 might erase
relevant data that the spectra might contain. Introducing
noise, such as Poisson noise, to the training set could prove
to be a much better approach, mostly because ideally we
do not want to convert experimental spectra into perfect
simulated one, but the inverse: make the training set less
perfect in a way that resembles more the experimental data
and its imperfections, namely noise.

Something important to mention is that the results in
Figure 5 are highly dependable on the training test. For
random training sets, there were two visible result pat-
terns: the neural network would either predict the mate-
rial always correctly or always wrongly. The results pre-
sented Figure 5b) picture a run where one network always
predicts correctly (the 80-40-20-5 architecture) and the re-
maining ones always predict incorrectly. While it is un-
clear why this happens, one reason might be simply be-
cause some training sets might contain more gold targets
than others, which might lead to a neural network better
suited to predict solely gold targets.

4 Conclusions

To conclude, we evaluated the performance of neural
networks to analyze great amounts of RBS spectra. First,
we managed to automate the acquisition of simulated spec-
tra via the SIMNRA software. Afterwards, we proved
that every neural network architecture that was tested can
successfully predict the thickness and material of targets
for simulated spectra. For experimental data, we demon-
strated that for a certain training set and cleaned data, the
network architecture 80-40-20-5 managed to predict the
material correctly of gold targets, while maintaining rea-

Figure 5: Number of counts per percentual deviation of
the thickness (a) and number of correct/wrong counts
of the material prediction (b). Note: in (a), the green
network counts were multiplied by 4 while the red net-
work counts got multiplied by 2. This was done to reduce
the overlapping between the graphs, making the plot more
readable and clear.

sonably accurate thickness predictions (between 4% and
16%).

In the future, one can try to implement noise into the
training set, avoiding less radical data cleaning methods
such as the one adopted in this work. Additionally, it is
also possible to use neural networks to ensure that the RBS
measurement is proceeding as expected, by spotting pos-
sible issues that might occur (on-line analysis).

In the end, artificial neural networks proved to be a
powerful tool that can be used to facilitate scientists jobs,
especially analysing huge quantities of spectra due to its
capacity to "learn" from previous analysis, just like us hu-
mans.
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