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Abstract.
Our research focuses on evaluating the performance of the GN2 (2nd generation Graphical Neural Learning)
B-tagging Algorithm. To accomplish this, we conducted experiments using two Monte Carlo (MC) Genera-
tors: Pythia8 and Herwig. Both generators were tested with tt̄ and Z’samples. The main objective of our study
is to compare the outcomes of the newly implemented Herwig generator with those obtained from Pythia, en-
abling us to verify whether the effectiveness and efficiency of this novel algorithm is sensitive to different parton
shower phenomenological models. Our analysis centers around histograms that showcase a comparative evalua-
tion of various jets and tracks variables derived from the Pythia and Herwig samples. These histograms provide
valuable insights into the performance differences between the two generators and offer a comprehensive un-
derstanding of their strengths and weaknesses. Some of the variables analysed are Scores, B discriminant, jet
pT , number of tracks, impact parameter, and its significance and qOverP.
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1 Introduction

1.1 The detector

The Large Hadron Collider (LHC) at CERN is a powerful
particle accelerator. It accelerates both protons and heavy
ions to ultra-relativistic energies and causes them to col-
lide. The LHC comprises four primary detectors: ATLAS,
CMS, LHCb, and ALICE. ATLAS is a massive and intri-
cate instrument designed to study the outcomes of high-
energy proton-proton and heavy-ion collisions.

Figure 1. ATLAS Detector

In the LHC, protons are accelerated to nearly the speed
of light and then directed to collide head-on at specific
interaction points. These collisions release an enormous
amount of energy, leading to the formation of new parti-
cles that rapidly decay into other particles. The ATLAS
detector encompasses one of these collision points and is
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composed of multiple layers of different types of detec-
tors. These detectors include the Tracker, Electromagnetic
Calorimeter, Hadronic Calorimeter, and Muon Spectrom-
eter, providing valuable information about the decay prod-
ucts of the particles produced in the collisions. Simulation
(1.4) plays a pivotal role in preparing for data acquisition
at ATLAS, with a focus on simulating the ATLAS detec-
tor itself. The analysis of data derived from simulations
generated by various Monte Carlo (MC) generators con-
stitutes a fundamental step in physics analysis.

1.2 Jet Formation

In order to understand the data provided by ATLAS simu-
lations, we first need to understand its underlying physics.
The LHC accelerates protons to speeds close to c. During
the collision, and due to the ultra-relativistic involved, the
partons inside each proton interact with each other through
hard scattering processes. A parton is either a quark or
a gluon. The pair of interacting partons is usually com-
posed of a quark and an anti-quark or two gluons. As a
result of the collision/interaction between the two partons,
two sprays of particles travelling in opposite directions are
formed (the jets). The momentum of the partons is con-
served. Immediately after the collision, the parton evolves
into a cascade of partons, so-called a parton shower. A
parton is, according to the Quantum Chromodynamics, a
particle with colour charge. The partons participating in
the hard scattering have huge energy and are highly unsta-
ble because of the strong force. Therefore, they decay into
other particles very quickly. The parton shower evolves
to the hadronization process. This means that the partons
combine into hadrons. Hadrons are colourless particles
composed of quarks and gluons. These particles can be
neutrons, kaons, pions, protons, etc. The formation of new
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particles obeys to the conversion of energy (from the par-
ton) into mass (new particles) formula: E = γmc2 where
γ is the Lorentz factor. In the final stage the jets are com-
posed of hadrons. Given that before the collision the trans-
verse momentum (momentum in the perpendicular direc-
tion to the beam axis) of the system is zero the products
of the collision must have a total transverse momentum
equal to zero meaning that the main jets originated by each
part on usually go almost in opposite directions. The jet
then goes through the detector and the particles that com-
pose it are detected by the different layers of the detector
- the tracker tracks each particle’s trajectory allowing the
jet to be reconstructed and the calorimeters measure the
energy of each particle. Each jet is composed of multiple
tracks but one track can only belong to one jet. Finally, one
should note that we have discussed the interaction of two
partons coming from different protons. In a collision at the
LHC it is possible to have more than one pair of interact-
ing partons and therefore the number of jets produced will
increase.

Here follows a scheme of the work developed in this
paper: Jet Formation:

Protons are accelerated to nearly
the speed of light in the LHC, fa-
cilitating high-energy collisions.

Two partons, originating from different
protons, collide head-on at specific

interaction points within the detector.

Parton Shower: partons participating
in the hard scattering develop the
emission of additional quarks and

gluons, leading to a cascade of particles.
The groups form the parton jets.

Hadronization: The partons rapidly
combine and transform into colorless

hadrons (e.g., pions). This process
follows E = γmc2. The colorless
hadrons cluster together, forming

cone-shaped groups of particles that
originate from the same initial parton.
These groups are called particle jets.

Detection by the Tracker and Calorime-
ters: The ATLAS detector captures
the trajectories and energy of the
particles constituting the jets. The
tracker and calorimeters play key

roles in this detection process.

Figure 2. Jet Formation

1.3 Flavour-Tagging

To gain insight into the properties of jets and the particles
resulting from specific parton-parton collisions (quark-
antiquark or gluon-gluon), we employ a process known
as flavor-tagging. Flavor-tagging involves identifying the
flavor of the partons that gave rise to the jets. For in-
stance, a jet resulting from the hadronization of a b quark
is termed a b-jet. Similarly, jets originating from c-quark
and u-quark collisions are referred to as c-jets and u-jets,
respectively. U-jets stand for u-quark and d-quark jets and
are the most prevalent. They are often referred to as light-
flavor jets3. The frequency of jets is directly related to
the prevalence of the parton that spawned them. Conse-
quently, u-jets are the most common, while b-jets are the
least common. The frequency of quarks decreases with
their increasing mass. Remarkably, jets stemming from t
quarks do not exist, as t quarks decay into b quarks before
they can undergo hadronization due to their considerable
mass. In addition to flavor-tagging, we employ B-tagging
to identify b-jets based on their unique properties. This
process enhances our understanding of the jets’ origin and
aids in the investigation of specific particle interactions.

Figure 3. Standard Model of Elementary Particles
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B-jets are characterised by a structure that exhibits one
particular feature that is not present in other jets: a men-
surable displaced secondary vertex. This secondary vertex
allows us to identify b-jets through a the properties of this
vertex and impact parameter variables (d0 and z0).

Figure 4. B-jet Structure

1.4 Simulation and Monte Carlo Generators

The collision process discussed in Section 1.2 is simulated
using Monte Carlo (MC) generators, specifically Pythia8
([1]) and Herwig7 ([2]. These generators are employed
to simulate both the collision process and the subsequent
hadronization process. While Pythia8 is widely used, this
study aims to compare it with the less common Herwig7.
The outcome of the simulation is a sample resembling
the data obtained from real measurements at the detector.
Since it is a simulation, we possess knowledge of the jet
flavors, as we know the flavors of the partons that orig-
inated them. This sample comprises an extensive num-
ber of events, each representing a particular collision type.
Each event provides the sample with information about its
jets and their respective properties. Typically, this infor-
mation is organized into two distinct types of variables:
jet variables, describing the jets as a whole, and track vari-
ables, which vary from track to track within the jet. The
simulation can be performed with various types of events.
In our study, we will utilize tt̄ and Z′. The tt̄ event sim-
ulates the collision of a t quark and anti-quark. These
events have a higher likelihood of producing b-jets, as top
quarks, being significantly heavier, almost always decay
into b-quarks before undergoing hadronization. Conse-
quently, the formation of b-jets in low pT ranges is highly
probable in the tt̄ sample. Z′ is a hypothetical gauge bo-
son that arises from extensions of the Standard Model of
Elementary Particles. It has been generated with a mass
equal to 700 GeV and it is used in order to study the B-
tagging performance algorithms at large transverse mo-
mentum ranges.

1.5 Machine Learning

Once the collision process is simulated, Machine Learn-
ing (ML) algorithms are employed for flavor-tagging of

the jets. The primary objective is to train these algorithms
on simulated datasets to enhance their tagging capabilities,
subsequently enabling their application to real data for jet
flavor identification. One of the most widely used ML al-
gorithms for B-tagging is RNNIP (Recurrent Neural Net-
work Impact Parameter), which serves as a reference for
comparison with the GN2 algorithm, the focal point of this
paper’s development. The GN2 (2nd generation Graphical
Neural Learning) algorithm, being novel, garners signifi-
cant attention in this study.

Collision Simulated with
MC Generator for multiple
events, building a sample

ML Algorithm trained
with the sample

Results in a dataset

Data Analysis

For each jet in the sample, the algorithm generates
three scores: the probability of the jet being a b-jet, the
probability of it being a c-jet, and the probability of it be-
ing a u-jet. To study the B-tagging algorithm, an analysis
is conducted to investigate how its scores vary concerning
different variables, such as jet transverse momentum. The
ideal scenario is to achieve a distinct separation between
the three types of jets, signifying the algorithm’s ability to
differentiate and consequently identify the jets flavors. In
the ideal case, the algorithm would output a b-score of 1
for b-jets, a c-score of 1 for c-jets, and a u-score of 1 for
u-jets. However, due to the strikingly similar properties
of these jets and the similarities in the decay products of
different quarks, it proves to be quite challenging to differ-
entiate between the three types of jets accurately. Hence,
the algorithm’s scores will not precisely reach 1 for the
correct jets.

1.6 Discriminant

Based on the scores provided by a specific algorithm for a
simulated sample, it is possible to calculate a discriminant
that will help us understand how well the algorithm is able
to differentiate between the different types of jets. The
B-discriminant of a jet is calculated using the following
formula:

Db = log
(

Pb

fc × Pc + fu × Pu

)
(1)

Where Pb is the b-score of the jet, Pc is the c-score of the
jet, Pu is the u-score of the jet and fc and fu are the frac-
tions of c-jets and u-jets in the sample respectively. For a
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given jet, the bigger the B-discriminant is, the more likely
it is for the algorithm to correctly identify the jet as a b-jet.
The C-discriminant is given by:

Dc = log
(

Pc

fb × Pb + fu × Pu

)
(2)

Where fb is the fraction of b-jets in the sample.

1.7 Datasets Used

This paper will analyze datasets coming from the GN2 al-
gorithm. These datasets come from two different samples
(tt̄ and Z’) and two different MC generators (Pythia8 and
Herwig7):

ML Tagger
MC Generator

(Simulates the Sample)
Events on the Sample

GN2 Pythia
Zprime

tt̄

Herwig
Zprime

tt̄

The results were obtained via code written in Python
using the PUMA and MATPLOTLIB libraries. Generally,
each histogram contains 1 000 000 events for statistical
purposes.

2 Transverse Momentum

In order to confirm the nature of both the samples used,
we plotted the transverse momentum of the jets. Firstly,
for the tt samples:

Figure 5. The transverse momentum, pT , distribution for tt event
sample generated by Pythia and Herwig. All flavours summed.

tt samples have low pT values as expected.

For the Z′ samples:

Figure 6. The transverse momentum, pT , distribution for Z′

event sample generated by Pythia and Herwig. All flavours
summed.

Z′ samples have higher pT values than tt samples as
expected. In both cases, the Herwig and Pythia data are
very similar.

3 Track Variables

Focusing on the track variables, we plotted histograms for
the following variables:

3.1 Charge over Momentum

The electric charge of the particle over its momentum is
expected to be symmetrically distributed around 0 and
have no bins at 0 because electrically neutral particles are
not detected - the Inner Tracker of ATLAS only detects
charged particles. The results for both samples are:

Figure 7. qOverP for tt sample all flavours summed
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Figure 8. qOverP for Z′ sample all flavours summed

As expected, both distributions are symmetrical be-
cause it is equally likely for a detected charged particle
to have charge q or -q. Differences between Herwig and
Pythia up to 10% can be observed - they are more signifi-
cant in the Z′ sample. The data is more spread out across
the bins for the tt sample which results in a lower peak at
0: 10 % of the data is at 0 for the tt sample and 20 % of
the data is at 0 for the Z′ sample.

3.2 Distance from the Jet Axis

The dr variable is the distance between the track and the
jet axis. The results for both samples are:

Figure 9. dr for tt sample all flavours summed

Figure 10. dr for Z′ sample all flavours summed

The density of tracks decreases as dr increases. Notice
a displacement around 0,24 only present in the Z′ Sample.
Pythia and Herwig values differ above this point. Figures
9 and 10 were also plotted in logarithmic scale and the
results are in appendix A figures 32 and 33.

3.3 Impact Parameter

The impact parameter is the distance between the track and
the primary vertex. The plots for d0 are as follows:

Figure 11. The impact parameter, d0, distribution for the tt sam-
ple. All flavours summed.
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Figure 12. The impact parameter, d0, distribution for the Z′ sam-
ple. All flavours summed.

As expected, in both samples (figures 11 and 12), the
amount of tracks decreases as the impact parameter in-
creases - the further away from the leading track, the least
tracks are found. In addition, no differences between Her-
wig and Pythia can be observed outside the statistical un-
certainty.

3.4 Impact Parameter Significance

The impact parameter significance is the impact parameter
divided by its uncertainty. The plots for this variable are
as follows:

Figure 13. The d0 significance distribution for the tt sample. All
flavours summed.

Figure 14. The d0 significance distribution for the Z′ sample.
All flavours summed.

3.5 TruthOriginLabel

The TruthOriginLabel concerns the generated parton that
will originate the jet.

Figure 15. TruthOriginLabel for tt sample.

Figure 16. TruthOriginLabel for Z′ sample.
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4 Number of Tracks

In order to study the number of tracks of each jet flavour
and also its variation with jet pT , the following histograms
are plotted:

Figure 17. The track multiplicity distribution for jets in the tt
sample. All flavours.

Figure 18. The track multiplicity distribution for jets in the Z′

sample. All flavours.

For the tt sample (figure 17), the number of tracks is
approximately the same for u- and c-jets with the most
probable value at 6 tracks per jet. The b-jet distribution is
shifted towards larger multiplicities. On the other hand, for
the Z′ sample (figure 18), the number of tracks is higher
for b-jets and c-jets than for u-jets and it peaks at 8 tracks
per jet for light jets and 11 tracks per jet for b-jets and
c-jets. In both cases the distributions are very similar: in-
crease rapidly until the peak and then decrease slowly.

In order to study the differences between Herwig and
Pythia, histograms with this variable were plotted for all
flavours summed:

Figure 19. The track multiplicity distribution for jets in the tt
sample. All flavours summed.

Figure 20. The track multiplicity distribution for jets in the Z′

sample. All flavours summed.

For the tt sample (figure 19), the number of tracks is
approximately the same for both generators. However,
major differences can be observed in figure 20 for the Z′

sample. Differences between Herwig and Pythia can be
observed up to 10%.

5 Score Variables

In order to study the score variables, we plotted histograms
for each one of the scores. The complete data with his-
tograms separated by flavour and type of jet is available in
the appendix 2, 3 and 4. Note that, in the following his-
tograms we can observe, in the y-axis, the probability of
the GN2 algorithm to associate a jet as a b-jet, c-jet, or u-
jet with the b, c, or u score in the x-axis. The ratio panels
show the ratio between the Herwig and Pythia histograms.
The ratio is calculated by dividing the Herwig histogram
by the Pythia data in order to compare the two generators.
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5.1 tt Samples

In the following samples, we can see histograms for
three different scores in the tt samples: GN2v00_pu,
GN2v00_pc and GN2v00_pb.

Figure 21. Normalised number of jets as a function of score
GN2v00_pb for the tt sample. All flavours.

As expected, b jets are very likely to have a ≈ 1 b score
and close to 0 c and u scores.

Figure 22. Normalised number of jets as a function of score
GN2v00_pc for the tt sample. All flavours.

Figure 23. Normalised number of jets as a function of score
GN2v00_pu for the tt sample. All flavours.

The c and u scores are very low in both cases for b jets.
However c jets and u jets are never likely to have a ≈ 1 c
or u score respectively. This is due to the fact that we are
working with a b-tagging algorithm therefore its main goal
is to identify b jets. Herwig and Pythia differences are not
very noticeable in any of the three scores since the ratios
show no differences within the statistical uncertainty.

5.2 Z′ Samples

Here are the same results for the Z′ samples.

Figure 24. Normalised number of jets as a function of score
GN2v00_pb for the Z′ sample. All flavours.

As expected and, similarly to the tt samples, b jets are
very likely to have a ≈ 1 b score and low c and u scores.
However, apart from what can be observed in figure 21, in
figure 24 there is an ≈ 50 % difference between Herwig
and Pythia for low scores in b jets and for high scores in c
jets. There is also an ≈ 20 % difference between Herwig
and Pythia for low scores in c jets.
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In figure 21, score b has 60 % of the data with a score of
1 for b jets and in figure 24 score b only has 20 % of the
data with a score of 1 for b jets.

Figure 25. Normalised number of jets as a function of score
GN2v00_pc for the Z′ sample. All flavours.

In figure 25 score c is very low for b jets, as expected,
and oscillation between 0.1 and 0.4 for c jets and u jets can
be observed. The algorithm behaves differently than in the
tt samples in the figure 22: the three jets have lower prob-
abilities at their peak but the most significant difference is
in the b jets - for the tt samples, b jets have a c score of 0
for 60 % of the data and for the Z′ samples, b jets have a
c score of 0 for 22 % of the data. Lastly, for low scores,
Herwig and Pythia show < 50 % difference for the three
flavors for c scores smaller than 0.4.

Figure 26. Normalised number of jets as a function of score
GN2v00_pu for the Z′ sample. All flavours.

For the u score, b jets peak around 0 and c and u jets
oscillate between 0.4 and 0.85. Herwig and Pythia differ-
ences are only noticeable for b and c jets for scores bigger
than 0.3 and smaller than 0.7. Once more, if we compare
26 with 23, we can see that the algorithm behaves differ-
ently in the Z′ samples than in the tt samples: for the b

jets, u score is 0 for 80 % of the data in the tt samples and
for 40 % of the data in the Z′ samples.

5.3 tt vs Z′ Samples

Comparing the results in sections 5.1 and 5.2, we can see
that the algorithm behaves differently in the tt samples and
in the Z′ samples. For the Z′ samples, there is a tendency
to have more dispersion in the scores than in the tt sam-
ples - that is why the histograms in the Z′ samples have
more oscillation and the higher peaks of each score, even
though located in the same place, are lower than in the Z′

samples. Peaks of Z′ samples are less intense because they
have higher pT and B Tagging algorithms are not as exact
for high pT as they are for lower pT (tt) - the variables that
allow the algorithm to identify b jets lose significance as
the jet pT increases.

6 Score Variables Variation with pT

In order to confirm if the scores vary with the transverse
momentum of the jets, we plotted 2D Histograms for the
three scores Herwig and Pythia for the tt and Z′ samples.
The histograms are available in the appendix.

For fixed values of pT , the scores have similar distributions
to those observed in section5 for all cases. For fixed values
of score, the counts of each bin decreases as pT increases
for both tt and Z′ samples: this decrease is much more
evident in the tt samples because their pT values are lower
than the Z′ samples as it can be seen in figures 5 and 6.

7 Score Variables Variation with each
other

During our investigatidation of the GN2 algorithm, we
came across the need to study the variation of the scores
with each other. We suspected that both c and b scores
would express repeated behaviour when plotted against
the u score. 2D histograms were plotted for both c and
b scores against the u score for the tt and Z′ samples. In
order to observe the behaviour we intended to study, two
types of techniques were used:

1. ’Tendential Lines’: these are curves fitted to the
points of the histogram with the highest counts.
They are used to observe the behaviour of the scores
in the region where they have the highest counts.
They have no physical meaning and they are present
only to help us understand the behaviour of the
scores.

2. Weighted Mean: for each x bin of the histogram, we
calculated the weighted mean of the y bins accord-
ing to the number of counts of each bin. This allows
us to observe the region where the scores have the
highest counts.
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We considered both Herwig and Pythia samples for the
tt and Z′ events. The results are in the appendix B. As we
can see, there is a behaviour common to both generator
and events: for low u scores, the b score is higher than the
c score, and for high u scores, the c score is higher than
the b score. This behaviour indicates that the algorithm is
more likely to identify a jet as a b jet if it is highly unlikely
for it to be an u-jet.

This behaviour can be further observed if we plot the sum
of the c and b scores against the u score and then overwrite
the histogram with the ’tendential lines’ and the weighted
mean for both c and b scores:

Figure 27. Scores c and b against u for tt. Sample: Pythia.

The equivalent plots for tt Herwig, Z′ Pythia, and Z′

Herwig are in the appendix B.

Analyzing the images 35, 36, 27 and 34, we can see that
the scores have similar behaviour in all cases to the one
described earlier.

8 B Discriminant

In order to study the GN2 algorithm and its ability to dif-
ferentiate between the different types of jets, we plotted
1D and 2D histograms for the b discriminant. To compute
the b discriminant, we considered fc = 0.018. Here follow
the results for both Z′ and tt samples:

Figure 28. Normalised number of jets as a function of the GN2
B-Discriminant for the tt sample. All flavours.

Figure 29. Normalised number of jets as a function of the GN2
B-Discriminant for the Z′ sample. All flavours.

In figure 28, Herwig and Pythia data only differ within
the statistical uncertainty. Nonetheless, the b discriminant
has higher values for b jets, peaking around 10.0. For light
jets, it only has one peak around -2.5 and for c jets, it has
two peaks: one around -2.5 and another around 2.5. As it
is expected, b jets have, in general, higher B-Discriminant
values than c-jets and u-jets.

In the Z′ samples, however, the B-Discriminant does not
have such a clear separation between b-jets and c- and u-
jets as it did in the tt samples. As we can see in figure 29,
the B-Discriminant has two peaks for b jets: one around
11.0 and another around 2.0. The first peak is more intense
than the second one and it is located close to the peaks of
the b discriminant for c- and u-jets, respectively at -1.5 and
-2.5.

9 Re-sampling

During our investigation, it became important to consider
re-sampled events in order to better understand the results
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obtained. Re-sampling is a technique that ensures equal
number of the three jet flavours in each bin of pT . 1 Usu-
ally, the b jets are the least common meaning each bin’s
number of c and u jets is reduced to the number of b jets.
No major differences were observed in the results obtained
with re-sampled events. For example, here follows the
GN2 b-score for re-sampled events in the Z′ sample:

Figure 30. Score GN2v00_pb for Z′ Re-sampled events

Figure 31. B-Discriminant for tt Re-sampled events

The results on figure 31 are very similar to the ones
obtained in 24 for the Z′ samples. However, it should
be noted that when Re-Sampling, the differences between
Herwig and Pythia become non-significant for pT, scores
and B-discriminant plots. In tt samples the same effect can
be observed.

10 Results and Conclusions

In this paper, our primary objective was to investigate
the GN2 algorithm’s performance. Regarding b-tagging,
we have reached the conclusion that this algorithm yields
remarkable results for identifying b-jets, regardless of
whether they are in high (Z′) or low (tt) pT ranges. It is

1and pseudorapidity η. Results not shown in this paper though.

important to note that when comparing the performance
of the algorithm across two Monte Carlo generators, Her-
wig7 and Pythia8, we observed more pronounced differ-
ences in Z’ samples compared to tt samples.

However, it’s worth highlighting that when we resam-
pled the datasets to ensure a more balanced representation
of different jet flavors across multiple eta and pT bins, the
disparities between Herwig and Pythia disappeared. This
adjustment helped to create a fairer comparison between
the two generators.

Lastly, our investigation also delved into a specific be-
havior of the GN2 algorithm concerning the relationship
between its three scores. We consistently observed that
jets with low u-scores tended to exhibit higher b-scores
than c-scores, while in jets with higher u-scores, the op-
posite pattern emerged. This insight could eventually pro-
vide valuable information about the algorithm’s behavior
in different contexts.
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A dr in Logarithmic Scale

Figure 32. dr for tt sample all flavours summed

Figure 33. dr for Z′ sample all flavours summed
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B Score Variables Variation with each other

Description tt Events Z′ Events

Pythia score b
and u

Pythia score c
and u

Herwig score b
and u

Herwig score c
and u

Table 1. Score Variables Variation with each other
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Figure 34. Score c and b against u for tt sample Herwig

Figure 35. Score c and b against u for Z′ sample Pythia

Figure 36. Score c and b against u for Z′ sample Herwig

C Score Histograms
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Description tt̄ Events Z′ Events

Herwig and
Pythia b jets score

b GN2v00_pb

Herwig and
Pythia c jets score

b GN2v00_pb

Herwig and
Pythia u jets score

b GN2v00_pb

Table 2. Scores Histograms for GN2v00_pb

by
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Description tt̄ Events Z′ Events

Herwig and
Pythia b jets score

c GN2v00_pc

Herwig and
Pythia c jets score

c GN2v00_pc

Herwig and
Pythia u jets score

c GN2v00_pc

Table 3. Scores Histograms for GN2v00_pc
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Description tt̄ Events Z′ Events

Herwig and
Pythia b jets score

u GN2v00_pu

Herwig and
Pythia c jets score

u GN2v00_pu

Herwig and
Pythia u jets score

u GN2v00_pu

Table 4. Scores Histograms for GN2v00_pu
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Description Z′ Events tt̄ Events

Histogram
Herwig score b

pT

Histogram Pythia
score b pT

Histogram
Herwig score c

pT

Histogram Pythia
score c pT
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Description Z′ Events tt̄ Events

Histogram
Herwig score u

pT

Histogram Pythia
score u pT
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