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Abstract. Despite the success of the Standard Model, it has certain limitations that may be solved by particles
belonging to the so called Hidden Sector, among them being Heavy Neutral Leptons. SHIP is an intensity
frontier experiment at CERN that aims to explore these feeble interacting particles. Using previously simulated
data relative to this experiment, this project intends to develop machine learning algorithms to classify decays
of Heavy Neutral Leptons based on their kinematic properties.
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1 Introduction

Although the Standard Model (SM) gives us a good de-
scription of nature, it fails to explain certain known phe-
nomena, such as dark matter, the low masses of neutrinos
and the baryon asymmetry of the universe. To solve these
problems, it is theorized that there exists more particles
than the ones in the SM. There are two main reasons why
these particles have not yet been detected. One possibility
is that the theorized particles are too massive and so, to
produce them, higher energy collisions are required. This
is known as the energy frontier, a problem that is being
tackled at the LHC. Another possibility is that interactions
between these hypothetical particles and the SM particles
may be too feeble. To solve this, experiments need to have
higher luminosity and account for longer lived particles.
This intensity frontier will be explored by the SHIP exper-
iment.

2 The SHIP experiment

The Search for Hidden Particles experiment is a general-
purpose fixed-target experiment that will be set at the SPS
accelerator at CERN. It aims to explore the intensity fron-
tier in the search for feebly interacting particles (FIPs),
with Heavy Neutral Leptons (HNLs) being one of them
and the focus of this project. To detect the Standard Model
decay products (daughter particles) originated from the de-
cay of FIPs (mother particle) the set-up presented in Fig. 1
will be used.

A high intensity beam of protons (400 GeV) from SPS
collides with a target that is followed by a hadron absorber
and an active Muon shield, where muons produced in the
collision are deflected by strong magnetic fields. After
this, there is a scattering and neutrino detector and a muon
identification system that works as a veto for the upcom-
ing decay vessel. The Hidden sector particles will decay
in the decay vessel, a pyramidal structure with 50 m of
length. Products from the interaction of neutrinos along
the decay vessel can be mistaken as those produced in the
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decays of particles of interest, constituting our main back-
ground. To reduce the number of neutrino interactions, the
decay vessel is maintained at a constant 1mbar pressure.

The decay products are detected in a spectrometer that
follows the decay vessel. Through the schematic shown in
Fig. 2, we observe that the spectrometer is initially made
up of straw trackers, which are separated by a magnet
with a defined magnetic field. These straw trackers com-
bined with the electromagnetic calorimeter allow the re-
construction of different kinematic properties of particles
such as decay vertex, mass, among others. Between the
straw trackers and the calorimeter is the timing detector.
The timing detector reconstructs the arrival times of decay
products and matches these times, within certain limits,
to form vertex candidates which reduces the background.
Finally, there is a muon identification system.

Figure 2: Schematic of the Decay Spectrometer at SHIP,
adapted from [1].
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Figure 1: Schematic of SHIP’s experimental set-up.

3 Heavy Neutral Leptons and data
simulation

First proposed by Minkowsky in 1977, Heavy Neutral
Leptons are right-handed massive neutrino-like particles
that do not couple to the weak force, and consequently
to no force in the SM. Even so, they can couple to the
SM through neutrino oscillations. These hypothetical par-
ticles could solve a lot of the current problems in the SM.
Through seesaw mechanisms they may explain the low
masses of SM neutrinos, and through leptogenesis they
may explain the Baryonic Asymmetry of the Universe.
Other than this, they are also candidates for Dark Matter.

Because data acquisition has not started at SHIP, since
it has not already been built, we used simulated data
throughout this project. The data was generated using the
FairShip software, based on the FairRoot framework. The
initial interaction of the proton beam and the target was
simulated with Pythia 8, while propagation and interac-
tion of produced particles was done with GEANT4. Neu-
trino interactions were simulated with GENIE, and heavy
flavour production and inelastic muon interactions were
done with a combination of Pythia 6 and GEANT4.

The HNL data used in this project is relative to two
different decay processes, the decay into a Pion-Muon pair
(PiMu) and the decay into a Rho-Muon pair (RhoMu). In
the second case, the Rho particle will eventually decay into
a charged pion and a neutral pion, the latter one decaying
into two photons. HNL data was generated from the pa-
rameter spaces shown in Figs. 3 and 4. Finally, as afore-
mentioned, the background in our data corresponds to in-
teractions of neutrinos along the decay vessel.

4 Motivation

Exploration of the intensity frontier requires high inten-
sity beams, which in turn leads to significant production
of background. Since the main objective of the SHIP ex-
periment is to detect a total of two to three decays of Hid-
den Sector particles over the whole duration of the ex-
periment, SHIP needs to be a 0-background experiment.
Background is already significantly reduced by the exper-
imental set-up, but even so, correct data analysis needs to
be applied to distinguish between signal and background.
Another problem that the SHIP experiment may face is
that in some cases different decay processes may lead to
the same daughter particles being detected. For example,
there’s a possibility that in the RhoMu decay process the
two photons are not detected and, in that case, there is loss

Figure 3: Parameter space for the HNL effective coupling
to muon (Model I) and electron neutrinos (Model II), ac-
cording to Ref. [2].

Figure 4: Parameter space for the HNL effective coupling
to tau neutrinos (Model III), according to Ref. [2].

in the reconstruction of the energy of the mother particle,
and thus the daughter particles detected in the PiMu and
RhoMu decay processes will be the same.

To tackle these problems, this project aims to develop
Machine Learning algorithms, more precisely binary clas-
sifiers, to distinguish between the two decay processes of
HNL particles (RhoMu-PiMu) and separately distinguish
each signal from background (PiMu-Back, RhoMu-Back).
In the following, the first process in the classifications pre-
sented before will always be referred to as the first sample,
being assigned a target of 1, and the other as the second
sample, with target 0.
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5 Machine Learning

Figure 5: Schematic representation of the typical structure
of a Neural Network, in this case with W=4, S=0 and D=2.

The binary classifiers developed in this project were Neu-
ral Networks (NN), more precisely Multilayer Perceptrons
(MLP). This was done using Keras and TensorFlow, both
open-source libraries for Python.

A common NN, as in Fig. 5, starts with an input layer
that receives data features and so has as many nodes as
there are selected features. The last layer, the output layer,
outputs the NN response and is composed, in the case of
this project and binary classifiers, by only one node. In
between these layers there are hidden layers that will be
described by a depth (D), width (W) and step (S), as well
as other hyperparameters. In this way, the NN will have
D hidden layers, having the first one a total of W nodes
and subsequent layers having fewer nodes, reduced by S
per layer. Each node in the NN is connected to every other
node in adjacent layers, with the connections defined by
weights, and each node may have a threshold or bias. The
information processed in a node is passed to the next layer
with an activation function, that in the case of a MLP is a
nonlinear one.

The values of weights and biases are learned in the
training phase that, in the case of a MLP, corresponds to
supervised learning. Supervised learning means that the
data used for training has defined inputs (features) and re-
sults (targets). This way, parameters are learned by mini-
mizing the loss function, this is, by minimizing the mean
square error between the output and the target over all the
data in the training sample. To find the minima and the op-
timal weights and biases an optimization function is used
and the rate at which parameters are updated is referred to
as the learning rate. The number of epochs corresponds to
the number of times the Neural Network will pass through
the whole training dataset, while batch size corresponds to
the number of events the NN sees before updating.

Finally, because MLPs are NNs with supervised learn-
ing, they will eventually overfit the training data, be-
coming obsolete when faced with data which they never
trained on. To avoid this, a separate data set that is not
used for training (validation set) is used for validation. The
loss function value for the validation set will decrease in
the beginning, but eventually will start increasing. After

a number of epochs where the loss value increases (Pa-
tience) the training is stopped and the NN parameters are
the ones relative to the loss function minima for the val-
idation set. Other than this, it’s possible to reduce co-
dependencies between neurons, and so reduce overfitting,
with dropout. With this technique, for each batch, there
is a set probability of blinding, or dropping, information
from the nodes (dropout rate).

6 Feature Selection

The simulated data has a total of 15 variables:

• Total Momentum (mother particle and both daughter
particles);

• Transverse momentum (mother particle and both
daughter particles): component of new particle’s mo-
mentum perpendicular to the beam line;

• Fraction of transverse momentum (mother particle
and both daughter particles): ratio between transverse
and total momentum;

• Opening angle: angle between daughter particles mo-
mentum.

• Impact parameter: Closest distance between the beam
intersection with the target and the intersection of the
propagation of the mother’s particle trajectory with the
target;

• Decay vertex position (x, y, z): Space coordinates of
the point where the mother particle decayed. Z coordi-
nate is along the decay vessel, while X and Y are or-
thogonal;

• DOCA (Distance Of Closest Approach): Minimal dis-
tance between the tracks of both daughter particles;

• Invariant mass: Energy at the centre of mass of the
hidden sector particle candidate.

Although we have all these variables, only some will
be used in the NN. Firstly, given that the dimension of
the input layer is equal to the number of features selected,
using fewer variables simplifies our NN and reduces com-
putational cost. Secondly, features that are linearly corre-
lated to each other or have similar distributions for differ-
ent classes do not greatly impact the training of the NN.
Knowing this, feature selection was then done based on
how much a feature was linearly correlated to other fea-
tures and mainly on how discernible were the differences
between classes for that feature. Because of this, selection
was done based on the visualization of correlation matri-
ces, see Fig. 7 as an example, and normalized plots of all
classes for each feature (in Fig. 6 are presented some fea-
tures of interest for each classification case).
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Figure 6: Normalized distributions of Impact Parameter and DOCA for RhoMu-PiMu (left), PiMu-Back (middle) and
RhoMu-Back (right) classification cases

Figure 7: Correlation matrix for the RhoMu-PiMu classi-
fication case.

6.1 RhoMu-Pimu

For this case, it’s important to remember that in the
RhoMu process certain decays cannot be fully recon-
structed because photons may not be detected. The error
in the reconstruction of the mother particle will be propa-
gated to the target, which explains the differences observed
in the Impact Parameter distributions for this classifica-
tion case. Other than the Impact Parameter, the follow-
ing features were also chosen: Mother Total Momentum,
Daughter1 Transverse Momentum, Daughter2 Transverse
Momentum, Daughter1 Total Momentum, Daughter2 To-
tal Momentum.

6.2 PiMu-Back

In this case, in addition to all the features used in the pre-
vious case, Decay Z and DOCA were also used. The back-
ground originates from violent interactions, so energy loss
should occur, which justifies the differences in Impact Pa-
rameter distributions for PiMu and Background. In addi-
tion, DOCA distributions are also quite distinct, since, due
to energy losses, the reconstructions of the daughter par-
ticle trajectories do not lead to such exact vertexes. On

the other hand, Decay Z becomes a relevant parameter be-
cause the decay vessel is in a vacuum, and therefore most
neutrino interactions will occur at its beginning. In con-
trast, hidden sector particles, having longer lifetimes, will
have a higher probability of having their decay vertices to
be along the decay vessel.

6.3 RhoMu-Back

The parameters used in this case are the same as in the pre-
vious case. Even so, it should be noted that for Impact Pa-
rameter the differences between RhoMu and Background
are not as pronounced as in the case of PiMu-Back, some-
thing that would be expected since this parameter was al-
ready relevant for the RhoMu-PiMu case. The justifica-
tion for this difference not being so great is the same as
presented in Sec. 6.1.

7 Pre-Processing

Firstly, due to the losses in the energy reconstruction of the
mother particle in the RhoMu process, in order to avoid
some form of bias, only events with a reconstructed in-
variant mass below 1,2 GeV/C2 were used. On the other
hand, the chosen features have different units and some
have much higher ranges than others. As such, in order
to prevent the neural network from giving more relevance
to some features than others due to these aspects, the data
was normalized and standardized to mean 0 and standard
deviation of 1 and Principal Component Analysis (PCA)
was applied to change the parameter basis and so decor-
relate the parameters as much as possible. Then the data
was divided into development and validation sets. Since
for the PiMu-Back and RhoMu-Back cases the number of
background events was much smaller than the ones for the
signal, and as in the RhoMu-PiMu case the PiMu events
are a little smaller, the split was 70-30 for the first sample
and 70 × backratio−(100−70 × backratio) for the second,
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where backratio corresponds to the ratio of the dimension
of the first sample relative to the dimension of the second
sample. After that, the development set was divided into
training and test sets with a 70-30 split.

8 Hyperparameters

After trial and error, the hyperparameters that led to the
best results were the following:

Table 1: List of hyperparameters that led to the best results

Hyperparameter RhoMu- PiMu- RhoMu-
-PiMu -Back -Back

Depth 2 2 5
Width 30 10 60
Step 10 0 10

Activation function Hidden Layers- Relu
Output layer- Sigmoid

Batch size 100 30 30
Optimizer ADAM

Number of epochs 2000
Patience 500

Dropout rate 0,05
Learning rate 0,001

The differences in batch-sizes are due to the pre-
processing of the data. As explained in Sec. 7, given that
the background had a much smaller number of events, the
way the data pre-processing was done left the training sets
with fewer data than in the RhoMu-PiMu case. Therefore,
it seemed sensible to also reduce the batch-size.

9 Results

Firstly, as shown in Fig. 9, the loss function evolves as
explained in Sec. 5.

Figure 9: Evolution of the loss function for the training
and validation sets, relative to the RhoMu-PiMu classifi-
cation case

In order to evaluate the performance of the NN, ROC
curves and Confusion Matrices were used. Receiver Op-
erator Characteristic (ROC) curve corresponds to a plot of
the true positive rate, the ratio of correct positive predic-
tions (true positive-TP) against all positive events (sum of

TP with false negative-FN), against the false positive rate,
the ratio of correct negative predictions (true negative-TN)
against all negative events (sum of TN with false positive-
FP), for different classification thresholds. In order to
compare different classifiers, the Area Under the Curve
(AUC) was used, which provides us with a measure of the
performance of the NN for different classification thresh-
olds. In a way, this area indicates the probability of the
model attributing a greater output to a positive event than
to a negative event. Therefore, the closer the AUC is to 1,
the greater the tendency for correct predictions. As such,
what we want is AUCs close to 1 and ROC curves that
look squarer, this is, that come closer to the top left corner
of the graph. On the other hand, in the case of a confu-
sion matrix, the classification threshold is defined as 0,5
and then TP, TN, FP and FN are counted based on this
threshold and the result is presented in the form of a ma-
trix, as shown in Fig. 8. Finally, given that SHiP should
be a zero-background experiment, then for the PiMu-Back
and RhoMu-Back classifications, the classification thresh-
old that would lead to such a situation was also sought. For
this, the threshold was defined as the largest output that
the model gave to a background event. In this way, the
background is reduced to zero, but certain signal events
are classified as background, as shown in Table 2.

Table 2: Results relative to the 0-background study.

PiMu-Back RhoMu-Back
TP 135 80
TN 138 138
FP 0 0
FN 3 58

Selection 0,978 0,580efficiency

10 Conclusions
From the results presented in Fig. 8, it is possible to con-
clude that machine learning was able to provide very satis-
factory results, only getting sub-optimal results in the case
of the RhoMu-Back classification. In the case of the last
method presented in the results, we observed that, as ex-
pected, we obtained 0-background, but at the expense of
some signal being classified as background. This can be
worrying in the case of an experiment where only two to
three decays are expected to be detected, as is the case
of SHIP. Furthermore, in this 0-background study we ob-
served the same trend that was presented at the begin-
ning of this conclusion, with the selection efficiency being
much lower in the RhoMu-Back case. A possible expla-
nation for the results not being so good in this last classifi-
cation case could be missing energy in the reconstructions
that happens in the RhoMu decay process, which led to the
smearing of certain features, such as the Impact Parameter
(as was presented in Sec. 6.1 and 6.3).

Despite the effects that the lack of efficiency in the
reconstruction of the RhoMu decay had in the previous
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Figure 8: ROC curves and confusion matrices relative to RhoMu-PiMu (left), PiMu-Back (midle) and RhoMu-Back
(right) classification cases.

analysis, it did not prevent the distinction between the two
decay modes (RhoMu-PiMu), since the results are quite
satisfactory. By observing the confusion matrix for this
classification, we can see that there is a slight bias to clas-
sify the event as coming from a decay to RHO mesons.
This way, in one hand, the developed algorithm was able to
solve one of the problems presented in Sec. 4. On the other
hand, this can reinforce the idea that the Impact Parameter
corresponds to a very relevant parameter for the perfor-
mance of the classifier, given that in this case, contrary to
what happened in RhoMu-Back, there are discernible dif-
ferences between classes for this feature.

However, certain changes and progress still have to be
done. Firstly, it would be interesting to develop a multi-
classifier that performs all classifications simultaneously
and compare its performance with that of the binary clas-
sifiers developed throughout this project. Finally, it is
still necessary to apply the developed methods to real data
taken from experiment and to study the problems and ad-
versities that could arise.

Even so, we can say that Machine Learning algorithms
correspond to very promising tools in the exploration of
New Physics in Particle Physics, and show an interesting
potential to be applied in the SHIP experiment.
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