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Abstract. The identification of isotopes in AMS (Alpha Magnetic Spectrometer) is of paramount importance to
deepen our understanding of cosmic ray propagation. The AMS, which has been installed on the International
Space Station since 2011, is able to measure different properties of incoming particles like velocity, rigidity and
charge. Velocity and rigidity, or the combined variable mass, are the main ingredients to isotopic separation.
This requires building isotopic mass templates which combined will provide isotopic abundance. In this work, a
data-driven method will be applied to Monte Carlo (MC) data samples to extract mass templates for cosmic-ray
protons and deuterons. Additionally, we will show that we were able to retrieve the simulated abundances.
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1 Introduction
1.1 The AMS detector

The Alpha Magnetic Spectrometer (AMS) is a precision
particle physics detector mounted on the International
Space Station (ISS), whose main objectives are the search
for anti-matter, understanding the origin of dark matter
and measuring cosmic rays fluxes. Several constituents
and their functions are represented in figure 1, which is
taken from [1], the latest report from the AMS collabora-
tion, where they are described in detail.

Figure 1: Overview of AMS detectors.

For the present work, related to isotopic identification,
the most relevant are silicon Tracker, RICH, TOF and the
magnet.

1.2 Isotopes Identification

The ability to identify isotopes in the AMS is important
and relevant for studies of cosmic ray propagation pro-
cesses, for example, to characterize the structure of the
magnetic fields in the galactic halo [2].
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Physical Observables

To identify the isotopes crossing the detectors three phys-
ical observables are taken into account: the charge of the
particle, Z; it’s velocity1, β ; and it’s rigidity2 R = pc

eZ .
Once we have these measurements we can calculate the
mass, m = ReZ

γβ
, of the particle and thus identify the iso-

tope.

Detectors

To make measurements of these observables three detec-
tors are relevant:

• Silicon Tracker - consists of a nine layer silicon sensor
detector responsible, together with the magnet, for de-
termining the trajectory and charge of cosmic rays and
their loss of energy [1]. The characterization of the tra-
jectory of the particles, including the measurement of
the sagitta, enables us to assign a rigidity value to in-
coming particles.

• Time of Flight (ToF) - consist of a set of 4 scintillator
planes and a coincidence unit that provides us with a
charged particle trigger and with a measurement of the
velocity of cosmic rays.[1]

• Ring Imaging Cherenkov Detector (RICH) - consists
of two radiating media: 16 tiles of sodium fluoride, NaF,
and 92 tiles of silica aerogel. It exploits the phenomenon
of Cherenkov radiation to provide us with a measure-
ment of passing particles’ velocity and charge. It can
measure velocities βNaF > 0.75 and βaerogel > 0.953. [1]

1.3 Overview of the article

This article is aiming at develop and implement a mass
separation method able to evaluate the statistics of every
isotope present in a data sample. With that in mind we

1β = vc , where c is the speed of light
2it is a measurement of how much the particle is deflected by a mag-

netic field
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first created a MC sample of events, taking into account
the AMS detector’s characteristics.

Second, we describe an iterative data-driven method
from [2] and implement it to try to extract the isotopes’
mass templates, directly from MC data.

Third, a solution is offered when a problem with de-
termining the fractions of isotopes has been identified. We
demonstrate that it is possible to determine the right iso-
tope fraction in our simulated mass distributions and to
determine the templates of the isotopes.

2 Isotopes Simulation

The data used for the analysis described in the following
sections has been simulated. This simulation is divided
in two steps: first, we generate the true properties of the
particle; second, the measurement on the detectors. The
ultimate objective of these simulations was to create mass
histograms to which the data-driven method will be ap-
plied.

2.1 Particle Generation

We start by generating a true kinetic energy per nucleon,
Tn =

T
A , a quantity which is closely related to β. We want

to pick values which follow the differential-energy spec-
trum of observed cosmic rays, which can be modeled using
the force-field approach [3]. This approach adds a correc-
tion to the unmodulated local interstellar spectrum (LIS)
to account for the influence of the heliosphere. Assuming
an unmodulated LIS, [3],

JLIS (Tn) =
(

1.9 × 104

m2 sr s GeV/n

)
P(Tn)−2.78

1 + 0.4866 · P(Tn)−2.51 (1)

where P(Tn) =
√

Tn (Tn + 2mn) and mn = 0.938GeV/n is
the nucleon mass. The kinetic energy per nucleon is given
in GeV/nucleon so that JLIS is expressed in particles/(m2 ·

sr · s ·GeV/nucleon). The energy spectrum of the isotope
(with charge Z and mass number A) is obtained by cor-
recting this unmodulated LIS with[3]:

J(Tn, φ) = JLIS (Tn + Φ)
(Tn)(Tn + 2mn)

(Tn + Φ)(Tn + Φ + 2mn)
(2)

where Φ = (eZ/A)φ, being φ the modulation potential
[GV], a time-varying function related to solar activity.
From expression (2) we sample values of Tn. For a given
sample we can calculate the true β and rigidity according
to the relations:

β(Tn) =
√

Tn (Tn + 2mn)
Tn + mn

(3)

R(Tn) =
A
Z

√
Tn (Tn + 2mn) (4)

2.2 Measurement Simulation

Rigidity

To simulate the rigidity measurement we assumed that its
relative precision is roughly 10%. We generate the mea-
sured quantity, Rm, from a normal rigidity distribution:

p(Rm|R) =
1

σR
√

2π
exp

−1
2

(
Rm − R
σR

)2
 (5)

where the mean value, R, is the true rigidity and σR =

0.1 R.

Velocity

To simulate the velocity measurements a similar approach
was used. In this case we have three different measure-
ments to account for, one from the TOF and two from the
RICH. The relative precision of TOF measurement is [4]:

(
σβ

β

)
TOF
= β · c [cm/ps] ·

√(
159 [ps]

Z

)2
+ (79 [ps])2

120
√

2[cm]
(6)

For the RICH measurement some considerations related
to the acceptance need to be made: it was assumed that
roughly 80% of particles in AMS cross the RICH detec-
tor radiator plane and from these 11% of AMS particles
cross NaF and the remaining (89%) cross the aerogel. The
velocity resolutions are:

(
σβ

β

)
NaF
=

0.34%
0.8Z

(7)

(
σβ

β

)
AGL
=

0.12%
0.8Z

(8)

As for rigidity, the measured quantity, βm was sampled ac-
cording to a normal distribution.

Mass Distributions

In figure 2, below, we can see the results of a simulation
of protons and deuterons (A=1 and A=2), where the rela-
tive real fractions were set to be {0.5, 0.5}. There are two
graphs, one relative to TOF and the other to RICH, where
we plot measured rigidity on the x axis and measured ve-
locity on the y axis; the number of events is represented in
the z axis.
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Figure 2: Measured β and rigidity.

To build mass distributions, events are selected in
small βm intervals and the mass of the particle is calcu-
lated (from βm and Rm),

Figure 3: Mass histogram.

We alter the variables in this way to facilitate interpre-
tation.

3 Data Driven Method

The data driven method (DDM) is an iterative tool that can
be applied to a given (total) distribution which is the sum
of several unknown elementary distributions in order to
find each elementary distribution and its relative fraction.
This method will be applied to isotopes with charge (Z=1)
identification.

3.1 Problem Statement and Solutions

The problem is the following: a given mass histogram is
provided, like the one in figure 3, and a set of isotopes
of a given charge, Z, is known to be present; we want to
know the mass distributions of each isotope, which will be
called mass templates, and the relative fractions of each
isotope present. Several approaches (analytical, paramet-
ric [5], data-driven) can be used to find the solutions. The
data-driven approach will be explored.

3.2 Assumptions

The DDM that will be later described is based on two as-
sumptions:

1. The mass resolutions are equal for all the isotopes

2. It is possible to transform one mass template into
another with a linear tranformation

Equal Mass Resolutions

The mass resolution is given by:

δM
M
=

√(
δR
R

)2

+ γ4

(
δβ

β

)2

(9)

We can assume that the β resolution is nearly constant be-
cause the mass histograms are constructed from small β
bins. The rigidity resolution is also constant in the low ki-
netic energy range [6]. If both β and rigidity resolutions
are constant so is the mass resolutions. If the different
isotopes (α, λ and θ) have similar masses we can assume
equal mass resolutions for them.(

δM
M

)
α
=

(
δM
M

)
λ
=

(
δM
M

)
θ

(10)

Transforming Templates

The claim is that we can get the mass template of isotope
β by applying a linear transformation to the α isotope tem-
plate.

Tβ(x) = Lα,βTα(x) (11)

where x is the mass variable and Lα,β represents the trans-
formation from α to β. This transformation could have the
general form:

Lα,βTα(x) ≡ kTα(ax + b) (12)

We start restricting this family of functions by imposing
that after the transformation the resulting function must be
normalized (in order to be a mass distribution function):∫ ∞

−∞

kTα(ax + b) dx = 1 (13)

Performing the substitution y = ax + b:∫ ∞

−∞

kTα(y)
dy
a
=

k
a

∫ ∞

−∞

Tα(y) dy = 1 (14)

From this equality we conclude that k must be equal to a
since Tα was normalized.

If the templates are gaussian functions with mean val-
ues µα, µβ and standard deviationσα andσβ we can restrict
the values of a and b after equating:

Tβ(x) = Lα,βTα(x) =
1

σβ
√

2π
e
− 1

2

( x−µβ
σβ

)2

=
a

σα
√

2π
e−

1
2

(
ax+b−µα
σα

)2

(15)
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We get: a = σα
σβ

b = µα
(
1 − µα

σα

σβ
µβ

) . (16)

Since the mass resolutions of the isotopes are assumed to

be equal 3
(
1 − µα

σα

σβ
µβ

)
= 0 and σα

σβ
=
µα
µβ

. The linear trans-
formation is then:

Lα,βTα(x) ≡
µα
µβ
· Tα

(
µα
µβ

x
)

(17)

One of the things to notice is that this transform depends
solely on the mean values of the distributions which cor-
respond to the isotopes mass numbers.

3.3 Iterative Process

Once we have defined the linear transformation we can
establish an iterative process to find one of the mass tem-
plates. We start by realizing that an experimental mass
distribution, D(x), where two isotopes are present, corre-
sponds to the sum of two mass templates weighted by their
relative fractions. .

D(x) = fαTα(x) + fβTβ(x) (18)

Making use of the transform:

Lα,βD = fαLα,βTα + fβLα,βTβ = fαTβ + fβLα,βLα,βTα (19)

=⇒ Tβ =
1
fα

(
Lα,βD − fβLα,βLα,βTα

)
(20)

Replacing Tβ in equation (19) with the expression on
(20) and solving for Tα,

Tα =
1
fα

(
D −

fβ
fα
Lα,βD

)
+

(
fβ
fα

)2

Lα,βLα,βTα (21)

This expression could be used to implement the iterative
method but we can simplify it further by contracting the
application of two linear transforms into one.

Applying 2 times the Linear Transformation

After applying the 1st transform, Lα,β, we end up with Tβ
which has mean value µβ = 1

aµα. After applying the 2nd
transformation we end up with a final function with mean
value µ f =

1
aµβ. We can relate the two mean values by

subtracting one equation from the other, taking into ac-
count that a = µα

µβ
, obtaining:

µ f = µβ +
1
a

(
µβ − µα

)
=
µ2
β

µα
(22)

Applying twice the transformation (Lα,βLα,β) is equivelent
to applying a single transformation,

Lα,βLα,β ≡ Lα, f (23)

3 σα
µα
=
σβ
µβ

where Lα, f is the result of substituting µβ for µ f in equa-
tion (17). We are in condition of establishing an iterative
process to get one of the templates, after defining a pair of
guess fractions { fα, fβ}. The term of 0-th order is:

T (0)
α =

1
fα

(
D −

fλ
fα
Lα,λD

)
(24)

Terms of higher order can be calculated with:

T (k+1)
α = T (0)

α +

(
fλ
fα

)2

Lα, f T (k)
α (25)

where the superscript represents iteration number/order
(k = 0, 1, 2...).

3.4 Mass Model

After finding the root template, the other(s) can be found
by transforming the first and we can also construct a model
from the calculated templates.

M(x; fα, fβ) = fαTα(x) + fβTβ(x) (26)

that can later be compared to the experimental data. We
try different sets of guess fractions and for each compare
the model with the experimental data via a χ2 estimator.
This estimator, in the case of histograms, is the sum of a
quantity calculated for each bin according to,

n∑
i=1

(
N i

D − N i
M

)2∣∣∣N i
k

∣∣∣ (27)

where N i
D and N i

M are the i-th bin content of the experi-
mental data and the model, respectively and,

k =

D, NM = 0 ∧ ND , 0
M, NM , 0

(28)

We expect that when the set of guess fractions corre-
sponds to the real ones the model obtained will optimize
the match with data, corresponding to a minimum of our
estimator.

4 DDM applied to continuous functions

In order to better understand the DDM behaviour, we start
applying it to a continuous mass distribution made of two
gaussian mass functions, weighted respectively by f1 and
f2 with f1+ f2 = 1. We set the gaussian means correspond-
ing to the isotope masses to µα = 1 and µβ = 2 and the
standard deviations to σα = 0.2 and σβ = 0.4. The later
fulfills the equal mass resolution condition σα

µα
=
σβ
µβ

. The
"real" fractions (the weights of the two gaussians) were
set to ( f1 = 0.3, f2 = 0.7). Figure 4 shows the total mass
distribution and the individual mass templates.
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Figure 4: Real distribution with fractions ( f1 = 0.3, f2 =
0.7).

As stated before (section 3.4) the derivation of the ap-
propriate isotopes fractions on mass distribution requires
searching for a minimum in the parameters space ( f1, f2)
of the χ2 estimator. The mass templates that compose
the mass model are, according to equation 25, function of
( f1, f2). Figure 5 shows the mass templates derived after 2
iterations for wrong guess fractions ( f1 = 0.2, f2 = 0.8).

Figure 5: Data modeling function (D), isotope mass tem-
plates weighted by the incorrect guess fractions ( f1 =
0.2, f2 = 0.8) derived after 3 iterations (T1, T2) and mass
model (M).

One can observe that exist mass oscillations for masses
higher than µ+3σ on both templates. However, for the cor-
rect guess fractions ( f1 = 0.3, f2 = 0.7), mass oscillations
vanish as can be seen on figure 6.

Further analysis, (see Appendix B), leads to 3 conclu-
sions concerning the amplitude of the mass tails oscilla-
tions:

• almost vanishes when the guess fraction matches the
real fraction ( f1,g = f1,r)

• increases with iterations if the guess fraction ( f1 < 0.5)

• decreases with iterations if the guess fraction ( f1 > 0.5)

This was achieved by testing 3 different sets of guess
fractions (with f1,g = {0.2, 0.3, 0.7}) for two distinct cases

Figure 6: Model, weighted mass templates and true distri-
bution after 3 iterations for the correct set of guess frac-
tions ( f1 = 0.3, f2 = 0.7).

concerning the real fraction of the first isotope, f1,r =
{0.3, 0.6}. The fact that the amplitude of the tails almost
disappears when the fraction corresponds to the real one,
will prove essential to determine the correct fraction.

We also notice that in the region of small mass values
[0, 6] GeV/c2 the models converge after few iterations (see
Zoomed plots on Appendix B).

When we scan the parameters space, building a model
for each set of guess fractions and calculating the χ2 after
a number of iterations necessary for convergence in the
small mass region, m = [0, 6] GeV/c2, we are unable to
identify a minimum of the estimator corresponding to the
correct fraction. This is shown in figure 7, where we plot
the χ2 for a simulation in which the real fractions were set
to be f1 = 0.5 and f2 = 0.5 after 4 iterations.

Figure 7: χ2 as a function of the guess fraction of the first
isotope, f1, after 4 iterations.

We would expect to see a minimum of the χ2 when
f1 would match the real fraction (in this case 0.5), but we
see that the estimator value keeps decreasing as the guess
fraction increases.



LIP-STUDENTS-22-17 6

DDM features

Here we summarize some of the features we have to take
into account of the DDM when applied in its raw format:

1. The template bins acquire negative values, which
have no physical meaning

2. We cannot identify a minimum of our estimator-χ2

in the fraction parameters space

3. The models obtained have "tails" whose mass val-
ues increase (exponencially) with the iteration. The
problem of sectioning the histogram arises. To what
extent does it make sense that our model exists?

5 Absolutifying Templates

In order to solve the first and second features mentioned
in the previous subsection we proceede to "absolutify"
the templates (ABS option), which means, that we loop
through all the bins of our histograms (or function values)
and if the bin content is negative we take its absolute value.
With this procedure we can identify a local minimum of
the χ2( f1) that corresponds to the real fractions (see figure
8).

Figure 8: χ2 as a function of the guess fraction of the first
isotope, f1, with ABS option.

The feature that enables us to identify this local min-
imum is the tails the models acquire. This conclusion
comes from calculating the value of the estimator for two
different mass regions (figure 9) of our templates:

1. Region 1 - where the experimental mass distribution
has positive values

2. Region 2 - region of the oscillating mass tails as-
suming negative and positive values

Identifying this feature is important because it enables us
to identify the real fraction, f1,real, even when it has values
greater than 0.9, a situation in which even with the ABS
option it is not possible to clearly identify the minimum of
the estimator.

Higher Fractions

When one of the real fractions of our distributions is close
to 1 (e.g. f1,real = 0.95), values of the χ2 in the two regions
are both small and of the same order (notice vertical scale
on figure 9), which means that when we add them up we
loose the information about the minimum. We can calcu-
late our total χ2 giving a higher weight to tails region (2) 4

to enable identification of the minimum.

0 0.2 0.4 0.6 0.8 1
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1

10

210

2 χ
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1−10
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2 χ
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Figure 9: χ2 calculated for each region after 4 iterations.
The real fraction of the first isotope was set to be 0.95.

6 Results and Conclusions

Results

The final mass templates will be obtained by setting to
zero the non-physical mass oscillating tails5. Figure 10
shows the kind of correspondence between the templates
extracted with the DDM and the simulated data that can be
obtained.
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]
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D

F
 [

c

iter=4 / f1=0.30 / f2=0.70

Exp. Data

1T

2T

Figure 10: Mass templates for the proton and deuteron
obtained with the DDM against the simulated data.

Conclusions

In this project, it was made a Monte Carlo simulation repli-
cating the detection of events in the AMS detector, in order

4χ2 = χ2
1 + w · χ

2
2

5Since at this point templates are not normalized, normalization is
also imposed
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to obtain mass distributions of isotopes with a given charge
number, Z.

We have implemented a data driven method to extract
mass templates for each isotope present, which works in
two steps: first, finding the isotopes’ fractions; second, get
the mass templates and construct a model of mass distribu-
tion. In order to find the isotopes fraction we test various
possible fractions (guess fractions) and construct absolu-
tified templates. The right fraction corresponds to a local
minimum in the χ2 fraction space. The final mass tem-
plates are obtained by setting to zero the tail oscillations
allowing us to obtain a good agreement of the model with
the simulated mass distribution.
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A C++ Classes

To implement the data-driven method several C++ classes
were developed. The most important are:

• uIsotopesMC - simulate the detection of events in the
TOF and RICH detectors of the AMS from isotopes of a
given charge, Z. Stores the information in TTree object

• uIsotopesAnalysis - developed to store relevant his-
tograms constructed from data stored in a uIsotopesMC
object

• uTransform - has methods to perform linear transfor-
mations on ROOT objects TF1 and TH1D (functions
and histograms).

• uIsotopesDDM - receives an experimental/simulated
mass distribution; has methods to perform each itera-
tion of DDM and stores the mass templates and models
in a map object.
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B Testing with Functions

In this appendix section we show schematics of the templates and model evolution with iteration for two different sets of
real fractions and various guessing fractions. Three iterations are shown for each guessing fraction. It is shown the graph
as well as a zoomed in version. Notice the change in scale in both axis.

• freal = {0.3, 0.7}

– fg = {0.2, 0.8}

Figure 11: Three simple graphs

Zoomed

– fg = {0.3, 0.7}
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Zoomed

– fg = {0.7, 0.3}

Zoomed

• freal = {0.6, 0.4}

– fg = {0.3, 0.7}
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Zoomed

– fg = {0.6, 0.4}

Zoomed
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– fg = {0.7, 0.3}

Zoomed
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