
LIP-STUDENTS-22-05

Building a QCD parton shower

Diogo Costa1,a and A. Carolina Ribeiro2,b

1Instituto Superior Técnico, Lisboa, Portugal
2Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal

Project supervisors: Liliana Apolinário, André Cordeiro, Guilherme Milhano October 17, 2022

Abstract.
The analysis of jets, whose substructure encodes information about the evolution of the parton shower, a cascade
of quarks and gluons, is essential when trying to reconstruct collision events. The splitting probabilities regard-
ing parton showers can be calculated using perturbative QCD, this way the shower evolution can be simulated
using a toy Monte Carlo. In this work we developed a simple parton shower model, choosing the invariant mass
as the ordering variable while also assuming the quark to propagate without recoiling effects. We exploited
the model in different ways and compared it with another one where the quark is allowed to deflect after each
emission. Regarding the first model, we found an increase in the gluon energy fraction z and a decrease in the
angle θ between the gluon and the quark as we go further in each emission. By increasing the initial momentum
we found a decrease regarding θ while z is unchanged. Finally, we also compared this model with the one
considering the possibility of quark deflection and by doing so we found the same overall evolution as the first
model, but with a trajectory along the phase space emissions much more pronounced.
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1 Introduction

In proton-proton (pp) and heavy-ion (AA) collisions, very
energetic quarks and gluons are produced through hard
scattering processes. As a consequence of being very ener-
getic, they emit other partons (quarks and gluons) in a col-
limated cone. This collimated cascade of particles called a
parton shower [1, 2], keeps developing until the energy of
the partons reaches the order of the mesons’ and baryons’
rest mass. When this threshold is reached, hadronization
takes place, and the newly formed hadrons propagate until
they eventually reach the detectors. Despite the hadroniza-
tion, the collimated signature of the parton shower is still
measurable and we can group the final state particles into
clusters, which we call jets [2, 3]. These structures can
then be used to reconstruct the process backwards, start-
ing from the list of final state particles to the hard-scattered
ones.

The study of jets and their substructure in pp collisions
lies in the direct connection of the parton showers to one
of the building blocks of the Standard Model of Particle
Physics: the Quantum Chromodynamics (QCD)[1, 2, 4].
Given its high energy scales, the description of parton
showers can be made using first-principle perturbative
methods. Moreover, these objects are also useful to inves-
tigate the properties of the new state of exotic matter that
is produced in AA collisions (the Quark-Gluon Plasma -
QGP), which behaves as an almost perfect liquid, and for
which these jets are the main probes [5].

In this project, we will focus on pp collisions. For that,
we developed a simple parton shower model that is based
on the invariant mass - the particle rest mass, given by the
Einstein energy relation in natural units (c = ~ = 1) as
m2 = E2 − |~p|2 - as the ordering variable. In subsection 2.1
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we start by explaining the initial conditions and assump-
tions underlying the model. We then present the algorithm
details related to the variable boundaries in subsection 2.2
and actual generation using the Sudakov form factors in
subsection 2.3. In subsection 2.4 we show how to compute
the relevant kinematics, namely the angle θ between the
emitted gluon and the daughter quark, and also the gluon
energy fraction z with respect to its mother quark. Follow-
ing that, in subsection 3.1 we show the evolution of the z
and θ distributions as we go further in emissions. In sub-
section 3.2 we show the evolution of the z and θ distribu-
tions as we increase the initial momentum. In subsection
3.3 we finally show the comparison between both models
(when considering or not the possibility for the quark to
deflect as it emits gluons), regarding the differences in the
z and θ distributions as we go further in emissions.

2 Parton Shower Algorithm

A parton shower algorithm is a sort of recipe to translate
the initial hard-scattered parton (quark or gluon) into the
collection of the final state partons before the hadroniza-
tion stage [1, 2, 5, 6]. In essence, the algorithm dictates
the types of processes that can occur, and in doing so it
constrains the final state of particles and their distributions.
In this way, the parton shower algorithm is responsible for
the substructure of jets. Our model, for example, explains
how one can go from a single energetic quark to a low
energy quark and N gluons after N splittings.

When computing emission probabilities one often
refers to the Sudakov form factors [2]. Particularly, in the
considered conditions specified in subsection 2.1, we can
compute the no emission probability between two scales
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where µ corresponds to the phase space ordering variable,
essentially representing the quantity controlling the emis-
sions; α, which we considered ≈ 0.1179, is related to the
coupling scale for this work [4, 7]; CF = 4/3 being the
quark colour factor and z the energy fraction of the emit-
ted particle with respect to its emitter. With the coupling
scale fixed, we now need to choose the ordering variable
(in our case, it will be set to be the invariant mass, m) and
its respective range.

Since the Sudakov form factors are based on perturba-
tive QCD and we wish only to work in the parton shower
regime and not focus in the hadronization, we also con-
sidered the minimum invariant mass to be of the order of
the proton rest mass (≈ 1 GeV). With that we can gener-
ate the energy fraction to then compute the ordering vari-
able. The Sudakov form factor boundaries are explained
in subsection 2.2 and the generation details are explained
in subsection 2.3.

2.1 Initial Conditions and Assumptions

We considered a simple model, where a very energetic
(pz ≈ 103GeV) quark emits a single gluon, using light-
cone coordinates in momentum space. In this space,
the usual Minkowski coordinates are given by: p =
(E, px, py, pz) in natural units. We can rotate the px − py
plane by 45◦, obtaining the referred light-cone coordi-
nates, given by p = ((E + pz)/

√
2, (E − pz)/

√
2, px, py) =

(p+, p−, px, py). It is important to note that in the ultra-
relativistic limit, where the rest mass of the particle is neg-
ligible in comparison to its energy, we have E ∼ pz and
therefore p− is also negligible.

Figure 1: Transformation from Minkowski to Light-cone
coordinates regarding the E − pz plane.

In Figure 1 we show a visualisation of the transforma-
tion from Minkowski to Light-cone coordinates. Working
in these coordinates, we assume in the emission the con-
servation of the ” + ” momentum component and no de-
flection of the mother quark in the process, meaning the

quarks travel in a straight line. For simplicity, we assume
this direction to be the z-axis, this choice being neverthe-
less arbitrary. Furthermore, we assumed the gluons to have
very low energy - this is justified by noticing that the prob-
ability for the gluon to carry a fraction z of the mother
quark is given by 1/z, as seen in eq.(1). This way the
energy fraction z = k+n /p

+
n−1, with k+n and p+n−1 being the

gluon and mother quark "+" momentum component, re-
spectively, is also small (soft limit). This condition assures
the gluon invariant mass to be low enough so as to neglect
the possibility of emissions from it, and in this model, the
parton shower evolution reduces essentially to the simple
quark-gluon emission. A visualisation of this process is
depicted in Figure 2, where the relevant kinematic vari-
ables were made explicit.

p2
n−1

k2
n, zn−1

p2
n, (1 − zn−1)

Figure 2: Feynman diagram representing our model. A
quark with an initial light-cone momentum p+n−1 and an
invariant mass of p2

n−1 emits a single gluon with light-cone
momentum of k+n = p+n−1zn−1 and an invariant mass of k2

n,
without recoil.

2.2 Kinematic limits

As mentioned previously, we considered only the conser-
vation of the "+" momentum component. The conserva-
tion of all the momentum components ( "+", "−" and "⊥")
would imply:

p2
n−1 −

k2
n

zn−1
−

p2
n

(1 − zn−1)
=

∣∣∣p⊥n, rel

∣∣∣2
zn−1 (1 − zn−1)

≥ 0, (2)

with p⊥n, rel being the relative transverse momentum be-
tween the emitted gluon and the daughter quark:

p⊥n, rel = zn−1 p⊥n − (1 − zn−1)k⊥n (3)

However, since we assumed that the emitted gluons can-
not radiate further, their invariant mass is small, and we
can therefore neglect its invariant mass term. Despite z
being small, as we shall see, its minimum value is trun-
cated, and this term will not diverge. Furthermore, since
emissions are exponentially far from one another in the in-
variant mass scale, we can also neglect the invariant mass
term of the daughter with respect to the mother. This way
we simply have:

p2
n ≈

|p⊥n,rel|
2

(1 − zn)zn
. (4)
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We can impose a minimum value for the relative trans-
verse momentum, related with the invariant mass thresh-
old referred in the beginning of this section. By impos-
ing a minimum value on the former, we are also imply-
ing a minimum resolution between the gluon and daughter
quark, essentially assuring that both are sufficiently sepa-
rated from one another so that we can distinguish them.
This is a way of visualizing the hadronization stopping
condition. By considering then a condition of the form
|p⊥n,rel|

2 ≥ K2
had, we have for the energy fraction z:

K2
had

p2
n
≤ (1 − zn)zn ≤

1
4

(5)

By taking the upper bound of the square roots for simpler
z limits we have our conditions for the limits on z:

zmin = 1 − zmax =
K2

had

p2
n

(6)

It is important to refer that since we are using upper
bounds for the kinematic limits some emissions will not
be physically possible. The workaround will be to include
a kinematic veto that will discard this emission and try to
generate a new one until the lower limit is reached [8]. We
detail this procedure in the end of subsection 2.3.

Finally, the boundary values for the invariant mass can
be obtained using again the previous relation:

4K2
had ≤ p2

n ≤ p2
n−1. (7)

2.3 Sampling variables

To generate the emissions, we created a simple Monte
Carlo by making use of the Sudakov form factors, referred
in the beginning of this section, and the technique of in-
verse sampling [9].

In the latter we first compute the cumulative distribu-
tion, assign a random value to it and finally invert it. This
method can be better understood by looking at figure 3
where a random cumulative distribution is shown.

Figure 3: Cumulative distribution of a general function
and comparison between the width of each horizontal bin
and the width of its respective vertical bin. All horizontal
bins have the same width. Figure taken from [9].

In the figure we can see the relation between the width
of each horizontal bin and the width of its respective ver-
tical bin. As we can observe, the regions were the slope of
the cumulative distribution is lower correspond to smaller
vertical bin width and vice-versa. This way if the vertical
bin width is lower than the respective horizontal one, this
value is less likely to be generated since the slope of the
cumulative distribution corresponds to the actual probabil-
ity distribution.

The cumulative distribution for the scale of an emis-
sion can be computed from the ratio of Sudakov factors:

∆
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2
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=
∆
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∆
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Solving the ratio by substituting in each case the respective
scales for p2

n, and using the z boundary values showed in
the previous subsection, we obtain:
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We can now make use of the inverse sampling tech-

nique, obtaining:

∆
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Now for the energy splitting, z, we have:

F (zn) def
=

∫ zn

zmin
du/u∫ 1−zmin

zmin
du/u

=
ln (zn/zmin)

ln (1/zmin − 1)
(11)

Inverting again we obtain:

Rz = F(zn)⇒ zn =
Q2

had

p2
n

 p2
n

Q2
had

− 1
Rz

(12)

The process for accepting the generated z and p2
n goes

as follows. First we generate p2
n assuming pn,max = p2

n−1
and check whether condition (7) is verified. If it is not,
then the shower ends; otherwise, we proceed to generate
a z value. If then the condition (5) is not verified we re-
generate pn, assuming the new maximum value to be the
previously generated one, pn,max = pn,gen (veto procedure).
This process is repeated until both conditions are verified
or we reach the stopping condition.

2.4 Extracting the Kinematics

By following the presented method we can simulate par-
ton showers for the considered model, and then compute
the kinematics of the process in order to understand how



LIP-STUDENTS-22-05 4

the shower evolution is dependent on certain variables. It
is important to highlight that the shower generation and
further kinematic extraction is done in the center of mass
(CM) frame of the mother quark, in which ~p⊥ = ~0. The
results presented in Section 3 are nevertheless consistent
with the laboratory frame. We applied the respective boost
factor after computing the relevant kinematics.

Our algorithm receives the initial momentum in the z-
axis as input. Unless stated otherwise, this value was fixed
to pz = 1 TeV. We can then compute the initial quark
energy by the Einstein relation, and with that compute the
initial 4-momentum in light-cone coordinates. After this
first iteration, we simply use the z definition to compute the
“+” momentum component of the quark and gluon and the
“−” momentum component of the quark by using the 4-
momentum norm. These relations are summarised below:

p+n = p+n−1(1 − zn−1) (13)

p−n =
p2

n

2p+n
(14)

k+n = p+n−1zn−1, (15)

where for simplicity we assumed the “⊥” components to
be zero.

We also computed the transverse momentum of the
gluon and the angle θ with respect to its mother. Going
back to equation (3) we neglect the quark term since we
are working in the soft limit (z � 1):

|p⊥n, rel | ≈ (1 − zn−1)|k⊥n| ⇒ |k⊥n| =

√
zn−1 p2

n−1

1 − zn−1
. (16)

Finally, the opening angle θ can also be computed by:

|k⊥n| = |kn| sin θn = En−1zn−1 sin θn (17)

⇒ θn = arcsin
|k⊥n|

zn−1En−1
= (18)

= arcsin

√
2|k⊥n|

zn−1

(
p+n−1 + p−n−1

) (19)

3 Results

3.1 Evolution over emissions

Taking the procedure listed in section 2.4, we generated
100 000 showers. First, we studied the overall evolution
of the shower, computing the relevant kinematics over the
first emissions.

In Figure 4 we show the z (top panel) and θ (bottom
panel) distributions over the first three emissions in or-
ange, purple and green, respectively. As we can see, the z
distribution increases as we go further in emissions. This
can be explained by looking at equation (5); z increases as
pn decreases, and as the quark emits gluons, its invariant
mass decreases.

Now looking at the θ distribution, there is an overall
decrease from the first to the third emission. This phe-
nomena is essential regarding the jets’ collimation: if the

Figure 4: z (top panel) and θ (bottom panel) normalized
distributions for the first three emissions.

shower did not get more collimated as it developed, then
it would not be possible to detect jet-like structures in the
event. The collimated structure is due to (i) the decreas-
ing angle in subsequent emissions and (ii) the boost of the
particles. Without this, it would be much harder to try to
reconstruct the collision event.

After this, we computed the Lund planes [10, 11], a
bi-dimensional representation of the (z, θ) space per emis-
sion. These planes essentially comprise the relevant split-
ting information, making the overall visualization of the
evolution more simple. As shown further we can even as-
sign a value for each emission, enabling us to actually see
the "trajectory" described by the parton shower.

The Lund planes for the first three emissions can be
seen in Figures 5, 6 and 7. The axis are represented in log-
aritmic scale as (log10(π/θ), log10(1/z)). As such, higher
values in the (x, y) direction represent instead lower ab-
solute values of (θ, z). The density along the z direction,
represented by the colour scheme, helps to understand
where the majority of the emissions are located in this bi-
dimensional plane. The evolution along z is not so visible,
but in θ, there is a clear displacement towards the right
(smaller θ) direction. The visualization of each emission
alone is not as useful for our purposes since we want in-
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Figure 5: Lund planes with z vs θ values for the first emis-
sion.

Figure 6: Lund planes with z vs θ values for the second
emission.

stead to understand how the full parton shower evolves.
As such, to make this visualisation clearer, we computed
the average of these Lund plane for the first six emissions.
Each Lund plane is then represented as single point. The
full sequence can now be represented in a single Lund
plane shown in Figure 8 (green dots).

Looking at this plot we can clearly trace down the evo-
lution from the first to the sixth emission. Starting from
the upper left corner of this plane (small z and high θ),
subsequent emissions will follow an increase in the value
of z and a decrease in θ.

Figure 7: Lund planes with z vs θ values for the third
emission.

3.2 Varying initial momentum

We then studied the differences in the parton shower evolu-
tion when considering a different value for the initial mo-
mentum.

Figure 8: Comparison between the first six emissions for
an initial momentum of 104GeV and 103GeV. Each point
represents the average of the respective Lund plane for that
emission.

In Figure 8 we show directly the results of the Lund
plane averages for the first six emissions considering our
initial momentum of 103 (green dots) and comparing to an
initial quark of 104 GeV (orange dots). The z distribution
seems the same, which we would expect looking at equa-
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tion (12). This shows that, for the considered model, the
random generation in the Toy Monte Carlo model is in-
dependent of the initial momentum. However, there is an
overall decrease in θ with the increase of the initial mo-
mentum. This shift can be explained by the boost factor
explained above. Since the initial quark has a larger mo-
mentum, the boost will be higher and the shower will be
more collimated.

3.3 Relaxing Kinematic Restrictions

Finally, we compared the obtained results for this model
with one that enables the quark to deflect slightly when
it emits a gluon [6]. The respective Feynman Diagram is
shown in Figure 9 (our prescription in which the quark
does not recoil is illustrated in Figure 2).

p+n−1

k2
n, zn−1

p2
n, (1 − zn−1)

Figure 9: Feynman diagram representing the recoil
model. A quark with an initial light-cone momentum p+n−1
and an invariant mass of p2

n−1 emits a single gluon with
light-cone momentum of k+n = p+n−1zn−1 and an invariant
mass of k2

n, being then deflected.

The resulting averages of the Lund plane, for the first
six emissions, and for an initial quark with pz = 10 TeV
are illustrated in Figure 10. Our model without recoils
is illustrated in orange dots and the model with recoils in
purple dots. It is important to remember that θ is measured
with respect to the mother quark direction for both models,
otherwise, no comparison could be made.

Both methods start with the same initial conditions, as
expected. Regarding the evolution, the recoil model de-
velops overall in the same way but more steep and pro-
nounced than the one with no recoil. The greater de-
crease in θ is related with the increase in the quark "free-
dom". In the recoil model some of the deflection can
be distributed to the quark and the gluon can therefore
have smaller angles with respect to the mother propagation
axis.The greater increase in z is explained by the difference
in kinematic restrictions in the recoil model. In this model,
4-momentum conservation was assumed, so certain pairs
of (z, p2

n) values are not allowed, resulting in the referred
jumps in the Lund plane.

4 Conclusions

In this project we developed a simple parton shower model
in which a quark is allowed to emit low-energy gluons
without being deflected in the process.

Figure 10: Comparison between the first six emissions for
the recoil and no recoil models. Each point represents the
average of the respective Lund plane for that emission.

We found, as we go further in each emission, an in-
crease in the value of energy fraction carried by the gluon
(z) and a decrease in the value of its emission angle (θ).
This angular behaviour plays an important role regarding
the formation of jet collimated-like structures. As the an-
gle decreases the shower gets more collimated, making it
easier to then detect it experimentally.

When increasing the initial quark momentum the value
for z stayed the same, while θ decreased, due to a boost
factor.

Finally, we compared our parton shower results with
another model where the quark is allowed to recoil in each
gluon emission. We observed that, despite the kinematic
refinements, z and θmaintained their overall evolution. We
noticed however that evolution to be more pronounced for
the recoil model.
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