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Anomaly Detection in all hadronic boosted final states
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Abstract. In this report, the machine learning technique of supervised Deep Neural Network(DNN), Graph
Attention Network(GAT) and semi-supervised deep Auto-Encoder(AE) was explored, for the purpose of finding
the possible new physics in the current experiment data, by using the simulated standard model events and
beyond standard model events from ATLAS experiment. The performance of each model has been presented,
and a comparison between supervised learning DNN and the anomaly detection approach of semi-supervised
deep AE is discussed.
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1 Introduction

The Standard Model (SM) in particle physics is known as
the most successful model. The model can give an accu-
rate prediction of most of the phenomena from the current
experiments. However, SM is not perfect, as the SM de-
scribes three of the four fundamental forces, and there is
evidence of the existence of dark matter by the observa-
tion of unexpected speed on the galaxy rotation curve.[1]
For these mysteries beyond SM, the searches of Beyond
Standard Model (BSM) have been conducted at many fa-
cilities, for example, the using Higgs boson to search dark
photons in ATLAS.

The concerns about generic search in the experiment
of ATLAS and CMS, suggest that the BSM signal could
be omitted due to the insufficient sensitivity of the current
strategy. Therefore, a possible improvement to the sensi-
tivity in the collider is proposed that the Anomaly Detec-
tion (AD) method of machine learning may be sensitive
to such signal.[2] Where the AD method refers to a type
of machine learning model, where the model is trained by
ordinary data, but able to isolate abnormal data from ordi-
nary data. The proportionality of ordinary data for such a
model is normally considered to have a larger portion than
abnormal data. Thus, the application of the AD method in
the classification of SM and BSM is expected to be trained
by SM events only, and the model is able to separate the
BSM events from SM events without knowing their de-
tails.

2 Machine learning models and simulated
data

In the training of machine learning models, the simulated
data were used, the data consist of simulated SM events
as background and simulated BSM events as the signal,
where in general, there are more background events than
signal events. Based on the training set of simulated data,
the supervised model of Deep Neural Network (DNN) and
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Graph Attention Network (GAT) was explored, and the
AD method Auto-Encoder (AE) was explored as well. The
supervised models were used for the comparison with AE.

The data were from simulated events of boosted top-
quark with hadronic decay, some of the features can be
described in figure 1. Signal events have large missing en-
ergy from undetected particles but largely overlapped top
quark masses with background events and some discrep-
ancy in the momentum information.

Figure 1: plot of mainly used features of simulated data.
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In the DNN model, the model learns the input features
from the hidden layers for a regression task, where the hid-
den layers are the layers between input and output. The
DNN model can be described by y = fNN(x), where x is
the input, fNN is the vector function on the hidden layer,
which has the form:

f l(z) def
= gl (Wlz + bl) (1)

Where l represents the layer index, z is the input, gl

is the activation function, matrix Wl and vector bl are pa-
rameters that will be learned by the model algorithm. As
the raining objective for DNN is to classify the signal and
background events, the model output is given as a proba-
bility for an event to be signal or background.[3]

2.1 Graph Attention Network (GAT)

The architecture of GAT can be considered as a graph
composed of nodes, and each node has features with the
same dimensionality, to produce a new set of nodes with
features in the graph attentional layer as its output. The
model combined the idea of neural network and conver-
sational network, with additional graph attention. In the
graph attentional layer, the information from the node is
passed to the neighbour node and computed the attention
coefficient by:

ei j = a
(
Wh⃗i,Wh⃗ j

)
(2)

Where W is weight matrix, a represents the shared at-
tention mechanism a : RF′ × RF′ → R. The attention co-
efficient normalized by the Softmax function is used for
the corresponding linear combination in the neural net-
work, therefore, the parameters of layers that are attached
to the neural network can be learned by the model algo-
rithm. Since the training objective of GAT was the same
as DNN, the output of GAT is the same as DNN.[4]

2.2 Deep Auto-Encoder

The Deep AE have a symmetric architecture, mainly con-
sisting of two part for the compression of and decompres-
sion of data. For the encoder in the compression part, the
number of units in each layer is always decreasing as the
index of the layer increases, the compressed data through
a bottleneck layer, which connect the compressed part and
decompressed decoder part, with the bottleneck layer as
the intermediate layer, always have a smaller dimension
than the original data sample. In the decoder, the number
of units always increases as the index of layer increases,
and finally, have the same dimensionality as the original
data sample. The decoder is aiming to reconstruct the
compressed data from the encoder therefore, by using the
cost function to compute the error between the original
data and reconstructed data, the error can be used as the
anomaly score in the neural network.[3]

3 Model implementation, training and
optimization

The simulated data set was split into train, validation and
test set with predefined random state. The data consist of
97 features including the Monte-Carlo information, in all
the stages of implementation, the Monte-Carlo informa-
tion was excluded for the unbiased outcome. In the im-
plementation of all three models, the input features were
selected with only contain the basic information of four-
momentum, and the condition of the jet, all the other in-
formation was avoided for the test of performance in the
condition of limited information.

3.1 Training features

In the training of the DNN and Deep AE, the model was
trained with the same features for the consistency of the
comparison. The trained features with a total of 15 fea-
tures and were standardized(see table 1).

Table 1: Features used in DNN and Deep AE.

DNN/Deep AE
nGoodJets Number of good jets

MET Missing energy(both x,y direction)
mtop Mass of top quark
HT scalar Pt sum of all objects in the event

fjet_p(x,y,z) Front jet 3-momentum
jet_p(x,y,z) Jet 3-momentum
ljet_p(x,y,z) Large 3-momentum
MET_p(x,y) Missing energy components

And due to the architecture of GAT, the trained fea-
tures were differently. Four nodes were assigned in the
GAT model, with four features under each node(see table
2). In the MET node, the MET_pt was used as a dummy
feature, for the nodes can remain the same property, and
ttbar_category was repeatedly applied on all the nodes. the
model was trained by 16 features, but 13 unique features
were used.

Table 2: Features used in GAT.

MET jet fjet ljet
MET_pt jet_pt fjet_pt ljet_pt
MET_phi jet_phi fjet_phi ljet_phi
MET_eta jet_eta fjet_eta ljet_eta
ttbar_cate ttbar_cate ttbar_cate ttbar_cate

3.2 Models and optimization

In the implementation of DNN, GAT and Deep AE, the
model was implemented in TensorFlow 2.9.1 with Keras
2.9.0. For the optimization of hyper-parameters, the Op-
tuna package 2.10.1 was used. In the implemented DNN,
the model was able to converge within a few epoch there-
fore, in order to avoid over-fitting, 100 epoch was used
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(a) Standardized selected features

(b) Selected original features (c) Full original features

Figure 2: ROC of DNNs, trained with different type of
features.

with an early stop if the loss of the model does not have a
significant improvement in 20 epoch. The DNN has also
trained with full 65 features and selected unstandardized
features. The ROC curve of three setups in figure 2, shows
that the performance of input features does not change the
classification of the model significantly, hence only the
standardized selected features were optimized.

For DNN and AE, the detail of optimization of hyper-
parameters is shown in table 3. In deep AE optimization,
due to the symmetric architecture, the number of units was
not directly optimized with optuna loop but correlated with
the number of layers with 5 ∗ i3, where i is layer index, the
index reversed at the decoder layer. The optimizer Adam
was used for all the trials, due to the Adam provided the
best performance in the preliminary test. The best hyper-
parameters configuration can be found in table 4

Table 3: Considered hyper-parameter in DNN and deep
AE in the Optuna optimization. Search of number of lay-
ers and units and learning rate are in form of [initial value,
maximum value].

Hyper-parameter DNN range AE range
Number of layer [1, 8] [2 ,5]
Number of unit [2. 1024]
Learning rate [10−4, 10−2] [10−4, 10−2]

Optimizer [Adam, RMSprop] [Adam]
Activation [relu, selu] [linear, selu, elu]
Batch size [256, 512, 1024] [256, 512, 1024]

Number of trial 50 200

Table 4: Best hyper-parameter configuration of DNN and
AE.

Hyper-parameter DNN AE
Number of layer 8 5
Number of unit 879
Learning rate 0.004825 0.004981

Optimizer Adam Adam
Activation relu selu
Batch size 256 256

In the optimization of GAT, the optimizer Adam was
used for all trials, and the number of units in the hidden
layer was correlated with number of layers with 6 ∗ i3,
where i is the layer index. The detail and best hyper-
parameter can be found in the table5.

Table 5: Considered hyper-parameter and best result in
GAT in the Optuna optimization. Search of number of lay-
ers and units and learning rate are in form of [initial value,
maximum value].

Hyper-parameter Range Best
Number of layer [2, 5] 5

GAT unit [2, 1024] 56
number of unit [2, 1024] 835
learning rate [10−4, 10−2] 0.000159
Activation [linear, selu, elu] selu
Batch size [256, 512, 1024] 512

Number of trial 50

4 Results

4.1 Supervised learning

For the supervised learning DNN and GAT, the model
shows high accuracy even if tested by unseen data in the
training phase. By comparing DNN and GAT in the figure
3 and 4, the DNN shows better performance than GAT.
However, the features used in the GAT are less than DNN,
but GAT still can give similar performance, but due to re-
quirements of GAT of data format, the simulated data-set
was unable to provide more correlated features.

Figure 3: ROC of GAT by best hyper-parameter.
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Figure 4: ROC of DNN by best hyper-parameter.

Furthermore, the GAT shows higher stability in the
training phase than DNN. In the training of GAT and
DNN, the model was trained in 100 epochs with the early
stop of 20 epochs. By comparing the loss at GAT and
DNN in figure 5 and 6, the DNN validation loss shows a
different trend with training loss and diverged since around
30 epochs.

Figure 5: GAT loss in the training phase.

Figure 6: DNN loss and ROC in the training phase.

And from the output of DNN and GAT in figure 7 and
8, the GAT have better performance on the classification of
background events, this is mainly due to the extra features
ttbar_category in the training features. The performance
of DNN shows an equivalent accuracy in the classification
of background and signal events.

Figure 7: GAT output.

Figure 8: GAT output.

4.2 Semi-supervised learning

In semi-supervised learning deep AE, the model was
trained with the same features as DNN, according to the
classification report created by the Scikit-learn package in
table 6, the model was trained only with the background
events, 0.0 refer to background, 1.0 refer to signal. The
model can isolate the majority of the signal events but is
less accurate in the prediction of background events, over-
all the model gives a weighted average precision of 72%.

Table 6: Classification report of deep AE with best hyper-
parameters.

precision recall f1-score support
0.0 0.60 1.00 0.75 70498
1.0 0.89 0.04 0.08 49029

Accuracy 0.61 119527
Macro avg 0.75 0.52 0.42 119527

Weighted avg 0.72 0.61 0.48 119527

In the reconstructed data by AE in figure9 and 10, the
AE was able to reconstruct the majority of data within a
certain region but lacked the ability to reconstruct the data
with higher deviation. Especially in the case of fjet data
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in figure 11, the reconstruction has only matched a small
amount of data in a limited range.
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Figure 9: Reconstructed MET by deep AE.
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Figure 10: Reconstructed mtop by deep AE.
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Figure 11: Reconstructed fjet_px by deep AE.

5 Discussion and conclusion

In the trained supervised learning DNN and GAT, the mod-
els show high performance in the classification of SM
events and BSM events. To compare the DNN with the
AD method deep AE, the performance of DNN was much
better than AE, however, the supervised model is expected

to have less precision if the test set is from non-correlated
data with the training set, And AE is expected to perform
a general equivalent precision for all kind of data-set. In
the reconstructed data of AE, the AE shows the ability to
reconstruct the majority of the data, but lack of precision
in the fjet data, this is may due to the unexpected bias of
the data-set or solely due to the scale of the fjet data was
much larger than others.

In conclusion, DNN and GAT show promising results
in the classification of SM and BSM even tested by unseen
data in the training phase. If the data set can have compat-
ible properties of features, GAT could have better perfor-
mance than DNN. The deep AE is able to recognise signal
events that were not seen during the training phase. The
performance is less than supervised models but provided
relatively reliable reconstructed data, and reasonable pre-
cision in the classification of BSM, therefore, deep AE can
be used as a generic signal classifier. However, the model
needs to be parallel compared with other AD method mod-
els, the comparison between DNN can not provide a suffi-
cient result.
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