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Probing the cosmic ray composition with SWGO
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Abstract. An investigation on the ability to identify the cosmic ray mass composition using SWGO simula-
tion data combined with machine learning algorithms is made. The simulations of extensive air showers were
performed resorting to CORSIKA. The energies of the resultant particles in the stations were converted into
signals, normalised, and then fed to a convolutional neural network (CNN). The accuracy of the CNN is pre-
sented, for different normalisations, as a function of the Fill Factor (FF). The relation between muon numbers
and proton probability is discussed as well. The results show that CNNs can be used to distinguish proton-
induced showers from iron-induced showers, with reasonably good discrimination for values of fill factors as
low as 1%. Furthermore, the classification process doesn’t take into consideration the muon number and seems

to be based on the shower footprint, solely.
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1 Introduction
1.1 Cosmic Rays

Cosmic Rays are energetic particles that hit the Earth’s
atmosphere at a rate of about 1000 per square meter per
second [1]]. They are mostly made up of hydrogen nu-
clei (around 90%), alpha particles (roughly 9%) and heav-
ier nuclei. Their energies range from a few hundred MeV
to 300 EeV [2]. Cosmic rays with energies ranging from
around 10 GeV up to 100 PeV are expected to be produced
in our galaxy. Those that can be attributed in their origin
to the sun, have a strong temporal association with peaks
in solar activity. The fact that the most energetic particles
have gyro-radii of the size of the galaxy, seems to point to
an extra-galactic origin. The mechanisms responsible for
the acceleration of these particles are still not fully com-
prehended, the leading candidate being supernova explo-
sions. However, for some of the most energetic particles,
this hypothesis seems not to suffice, possibly opening the
door to new astrophysical events.

1.2 Extensive Air Showers

When a primary particle, either a nucleus or a photon,
reaches the upper atmosphere, a sequence of violent col-
lisions is set into motion forming a cascade of particles
called an extensive air shower. Such events can emit
Cherenkov Light, as the particles that form the shower
travel faster than the speed of light divided by the refrac-
tive index of air, as well as fluorescent light form the exci-
tation of air molecules. On the other hand, if the energy of
the primary particle or the altitude of the detectors is suf-
ficiently high, then the secondary particles may be deleted
at the ground, as is illustrated in Fig. [}
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Figure 1. Depiction of an air shower and its detection resorting
to Cherenkov Light and an array of particle detectors.

1.3 The SWGO

The Southern Wide-field Gamma-ray Observatory
(SWGO) is a proposed experiment, located in South
America at a latitude between 10 and 30 degrees South, at
an altitude higher than 4.4km. No such instrument exists
in the southern hemisphere, where the great potential
exists for the mapping of large-scale emissions as well as
providing access to the full sky for transient and variable
multi-wavelength and multi-messenger phenomena [3].
Its main purpose is to study gamma rays with energies
ranging from the hundreds of GeV to the tens of PeV.
The observatory will be formed by several Cherenkov
detector units with a high Fill-Factor (ratio of the area
occupied by detectors to the total area) core detector,
and a low-density outer array, as depicted in Fig. [2]
When a particle crosses the detector, which is itself filled
with water, it will radiate, via Cherenkov radiation. The
resultant Cherenkov photons can then be picked up by
sensitive photo-multipliers tubes (PMTs) placed inside



the detector unit, registering the passage of a particle. As
the SWGO will focus on gamma rays, the cosmic rays
constitute a background for this experiment. Nonetheless,
the cosmic rays’ mass composition is of great interest
and as such, in this paper, the use of an algorithm to
distinguish proton-induced from iron-induced showers is
proposed.
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Figure 2. Schematics depicting the future SWGO and its func-
tioning

2 Convolutional Neural Networks

A Convolutional Neural Network (ConvNet/CNN) is a
Deep Learning algorithm which can take in an input im-
age, assign importance (learnable weights and biases) to
various aspects/objects in the image and be able to differ-
entiate one from the other. In recent years, due to their ex-
cellent performance and relevant applications in different
fields, CNNs have become state-of-the-art in image recog-
nition and signal analysis. They are mainly constituted by
three different types of layers: Convolution, Pooling and
Fully Connected Layers, as exemplified in Fig. [3]
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Figure 3. Schematic representation of a Neural Network

Convolution Layer

A convolution layer is a fundamental component of the
CNN architecture that performs feature extraction [4] and
is usually the first component of a neural network. In this
layer, a small matrix called kernel is applied across an in-
put tensor. In each iteration, the respective section and
the kernel are multiplied using the dot product rule, being
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the output fed into an array. After each iteration, the re-
gion where the kernel acts is shifted by an amount known
as a stride. The values of the kernel itself are learnable
parameters that are set during training, however, the size
and stride of the kernel must be fixed beforehand. One of
the advantages of this process is reducing the number of
learnable weights when compared to fully connected neu-
ral networks, thus increasing their efficiency.

Pooling Layer

The goal in this layer is to subsample the input image, i.e.
reduce its size, in order to improve computational perfor-
mance [5]. The most common way of doing so, and the
one used in this paper, is called Max Pooling. Simply put,
this method extracts the maximum value in each region
and discards all the others, outputting this value onto an
array. This process is repeated until the entirety of the im-
age has been covered. It is worth mentioning, that there
are no learnable weights nor biases in this stage.

Fully connected Layer

The resultant array is at this point flattened, meaning trans-
formed into a 1-D array i.e. a vector, to be received as
input by the fully connected layer. Here as the name sug-
gests each node in the output layer connects with a node in
a previous layer. Each neuron in this layer has an activa-
tion function, which determines if said neuron should be
activated, as well as a weight, the latter being a learnable
parameter determining the importance of that connection
to the final result.

The structure used in the current paper is presented in
Fig. [ It consists of a convolution layer followed by a
pooling layer, followed by the same pattern before flatten-
ing the signal and feeding into a series of fully connected
layers.

Loss Functions

Loss Functions are critical for the good performance of
an Artificial Neural Network (ANN), as it quantifies the
deviation between a model’s predictions from the correct
results. For the purposes of this paper, the binary cross-
entropy function was chosen, as it is most suited for binary
classification problems, as is the case.



input: | [(None, 283, 283, 1)]
InputLayer
output: | [(None, 283, 283, 1)]
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Figure 4. Structure of the Neural Network used in this paper

Data

Typically for machine learning purposes, the data is di-
vided into three distinct categories, the first being the train-
ing data set, which is used to adjust learnable parameters
as well as calculate the values of the loss function. The val-
idation data is used to adjust hyper-parameters and evalu-
ate the model during training, selecting the best model.
Finally, the test data set is never used during training but
instead to test the model’s final accuracy and performance,
with data not yet seen by the network. This division is
summarised in Fig. [3]
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Figure 5. Schematic representation of the data organisation

3 Experimental procedure

The extensive air showers simulation was done by resort-
ing to CORSIKA [6] software. The proton-induced show-
ers were taken from a primary energy bin between 40 and
60 TeV, while iron was selected using a wider energy bin
10 to 100 TeV. Particle energies were collected in the cells
and converted into signals using a parameterization ob-
tained using a Geant4 [[7] detector simulation. A cut on
the total signal at the ground was imposed to emulate the
shower energy reconstruction algorithm and have a fair
comparison between the footprints at the ground level, as
shown in Fig. [6]

500
— Proton
— Iron
400
Proton
Entries = 3919
Mean = 5.4E+06
« 300 Std Dev = 1.1E+06
g Iron
o) Entries = 3255
Mean = 4.7E+06
© 200 S1d Do = 79E.05
100

0.5 1.0 1.5 2.0
St [p.e.] le7

Figure 6. Counts as a function of the total signal at the ground.
The shaded area depicts the events selected from the total simu-
lated. The information in the boxes concerns the selected events
only

The energies of the resultant particles in the stations
were converted into a signal, producing 256x256 arrays
where each pixel has associated with it the signal detected



in that station, as shown in Fig. [7]and Fig. [§] The sta-
tion used for the energy to signal calibration is a water
Cherenkov detector (WCD) with a radius of 2m, a water
height of 1.7m, and instrumented with three 8” PMTs at
the bottom of the station. This station is the current pro-
posal of LIP for the future SWGO and it is known as Mer-
cedes WCD [8].
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Figure 7. Proton induced shower footprint for a fill factor of
100%
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Figure 8. Proton induced shower footprint for a fill factor of 1%

To improve the generalisation capability of the net-
work, two normalisation strategies were used. The first
consisted in taking the natural logarithm of the signal and
then bounding it to an interval from O to 10, which form
henceforward will be referred to as the logarithmic nor-
malisation. The binary normalisation consisted of setting
all non-zero values equal to one. Since the latter has no
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information on the stations’ signal intensity, the compar-
ison between both normalisations provides some insight
into the classification process, gauging if the results were
based solely on the shape of the pattern produced on the
ground or if the network was picking up information re-
lated to the event’s calorimetric energy at the ground. The
data set was then split in the manner presented in the pre-
vious section, such that the training data set encompasses
60% of the total, the validation data 15% and the test data
25%.The CNN was implemented resorting to the Keras [9]
package for Python, the optimiser chosen was Adam, the
batch size was 128 and the number of epochs was 30. The
output of the CNN consisted of a value, ranging from 0 to
1, corresponding to the probability that the extensive air
shower was initiated by a proton.

4 Results and Discussion

We begin by analysing the accuracy of the neural network,
meaning, the percentage of times the network guessed the
type of shower correctly as a function of the Fill Factor.
We clearly expect that as the Fill Factor decreases so does
the accuracy, as the signal gets fainter and fainter, the neu-
ral network should have more difficulty telling them apart.
For that, the CNN was trained 10 times and the average
value of the accuracy was taken which was plotted against
the Fill Factor resulting in Fig. [0] The error associated
with each data point consists of the standard deviation of
the sample. The fluctuations from this trend can be at-
tributed to the intrinsic stochastic nature of the process, as
the minimisation process during training is only guaran-
teed to find a local minimum, meaning that fluctuations
are to be expected. Given that the accuracy of the binary
normalisation is in general lower than the one obtained
with the logarithmic normalisation it becomes clear that
information both on the morphology of the event and the
station’s signal is used in the classification process. More-
over, the accuracy remains relatively high down to fill fac-
tor values of 1%, and even for fill factors of 0.1% the CNN
is right 3 out of 4 times

The number of muons is very sensitive to the composi-
tion of the shower, such that for iron showers it is expected
to be larger when compared to proton-induced showers.
However experimentally the measurement of the number
of muons is quite complicated, making the detectors ex-
pensive or the muon tagging resolution bad. Nonetheless,
as we have access to the muon number data we can use it
as a consistency check and evaluate how it relates to the
proton probability, as was done in Fig. [I0] We observe
two disjoint sets of points with no visible correlation or
trend between them. This seems to imply that the CNN is
not performing the discrimination using features related to
the number of muons at the ground, otherwise we would
expect a clear relation between muon number and proton
probability.
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Figure 9. Average accuracy as a function of the logarithm of the
Fill Factor
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Figure 10. Proton Probability as a function of the muon number
for FF=0.1%

5 Conclusion

In conclusion, we have shown that machine learning algo-
rithms, in particular, CNNs can be used to classify proton
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and iron showers and that good discrimination can be at-
tained with fill factors as low as 1%. Furthermore, it would
appear that the CNN is oblivious to the muon content of
the shower and is instead basing its classification on the
shower footprint, meaning the classification is drawing in-
formation both from the shape produced on the ground as
well as the station’s signals, but not the muon content of
the signal.
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