
LIP-STUDENTS-20-18

Muon efficiency studies using Tag and Probe method

Allan Jales

1,a
and Thomas Gaehtgens

2,b

1Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
2Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Project supervisors: E. Melo1, N. Leonardo2, S. Fonseca1 October 2020

Abstract. We have carried out measurements of muon identification and reconstruction e�ciency, using the
data-driven Tag and Probe method. We have developed two implementations of the method, relying on two
distinct approaches for extracting the signal muons from data. The method is applied to proton-proton collision
data collected by the CMS experiment at the LHC (LHC Open Data). The e�ciency results extracted from the
datasets are compared against Monte Carlo simulation, thus providing calibration factors that can be used for
correcting the simulation in physics analyses involving muons.
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1 Introduction

The Tag and Probe method is an experimental procedure
commonly used in particle physics that allows to measure
a process’ e�ciency directly from data. The procedure
provides an unbiased sample of probe objects that can be
then used to measure the e�ciency of a particular selection
criteria.

The paper is organized as follows. The CMS detector
is introduced in Sec. 2, along with the muon reconstruc-
tion algorithms, and the datasets used in this work. The
Tag and Probe method is presented in Sec 3, together with
the particle resonances studied. The methods employed to
extract the signal muons from data are explained in Sec. 4.
The measured muon e�ciencies are finally presented in
Sec. 5.

2 Muons at CMS

Muons are central physics objects employed in virtually
any analysis. The measurement of the e�ciency of their
detection, identification and reconstruction is correspond-
ingly an essential element of a physics measurement.

2.1 The CMS experiment

The CMS (Compact Muon Solenoid) detector, represented
schematically in Fig. 1, is a general-purpose experiment
at the LHC (Large Hadron Collider). Particles produced
in the LHC collisions interact with several sub-detectors,
allowing for their trajectories and energy depositions to
be reconstructed, and their momenta to be precisely deter-
mined.

The CMS detector has an overall cylindrical shape,
with its sub-detectors disposed in layers around the cen-
tral region, where the collisions occur. In the innermost
part, near the collision point, there is a silicon tracker that
traces the passage of charged particles. It is followed by an
electromagnetic calorimeter, where electrons and photons
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Figure 1: Schematic view of the CMS detector.

will lay their energy, and an hadronic calorimeter, where
hadrons will deposit their energy. Further outwards, there
is a superconducting solenoid that produces a 3.8 T mag-
netic field and, on the outermost part, there are the muon
chambers, made of stations of gas-ionization detectors in-
terleaved with layers of steel return yoke. A detailed de-
scription of the CMS detector may be found elsewhere [1].

2.2 Relevant variables

The main event observables, obtained from the recon-
structed trajectories of charged particles in the detector,
that are used in the analysis are:

• ⌘ = � ln(tan ✓/2) : pseudorapidity;

• � : angle of the trajectory of the object in the plane trans-
verse to the direction of the proton beams;

• pT : transverse momentum: projection of the particle’s
momentum in the plane transverse to the direction of the
proton beams;

• m : invariant mass of the muon pair.

These are illustrated in Fig. 2. The invariant mass variable
m will be used as the discriminating variable, that will al-
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Figure 2: Schematic view of CMS main variables.

low to distinguish signal from background. The momen-
tum of a charged particle such as the muon can be inferred
from the curvature of its trajectory, registered in the sil-
icon tracker, in the presence of the magnetic field. The
identification of the particle as indeed a muon is achieved
with the muon chambers. This information allows to con-
struct the 4-momentum of the particle, p = (E,p). Here
we will be interested in reconstructing the invariant mass
of a resonance particle that decays into a pair of muons.
This is achieved by summing the 4-momenta of the indi-
vidual muons, and taking its norm,

m2 = p1 · p2 = (E1 + E2)2 � kp1 + p2k2 . (1)

The obtained invariant mass spectra, i.e. the histogram dis-
tribution of m reconstructed from the collision data, may
be seen in Figs. 5a and 5b.

2.3 CMS Muon identification and reconstruction

In the standard CMS reconstruction for proton-proton col-
lisions, tracks are first reconstructed independently in the
inner tracker and in the muon system. Based on these ob-
jects, three reconstruction approaches are used:

• Tracker Muon reconstruction: all tracker tracks with
pT > 0.5 GeV/c and total momentum p > 2.5 GeV/c
are considered as possible muon candidates, and are ex-
trapolated to the muon system taking into account the
magnetic field;

• Standalone Muon reconstruction: all tracks of the seg-
ments reconstructed in the muon chambers (performed
using segments and hits from Drift Tubes in the bar-
rel region, Cathode Strip Chambers and Resistive Plates
Chambers in the endcaps) are used to generate “seeds”
consisting of position and direction vectors and an esti-
mate of the muon transverse momentum;

• Global Muon reconstruction: starts from a Standalone
reconstructed muon track and extrapolates its trajectory
from the innermost muon station through the coil and
both calorimeters to the outer tracker surface.

These are illustrated in Fig. 3. The muon identification
is given according to the muon reconstruction approach.
More details concerning muon identification and recon-
struction in CMS may be found in Ref. [2].

Figure 3: Schematic transverse view of the CMS detector
shows muon identification algorithms.

2.4 Datasets and triggers

The datasets used in the current analysis are specified in
Table 1. These correspond to collision proton-proton data
recorded by the CMS experiment, employing the specified
real-time selection algorithms (triggers), as well as Monte
Carlo simulated data (MC) generated and processed within
the CMS software framework (CMSSW). The datasets are
available as CMS Open Data [3].

Table 1: Datasets (DS) and triggers used in the analysis.

Resonance Triggers DS
J/ Data HLT_Dimuon10_Jpsi_Barrel_v* [4]
⌥ Data HLT_Dimuon0_Barrel_Upsilon [4]
J/ MC HLT_Dimuon10_Jpsi_Barrel_v* [5]
⌥(1S ) MC HLT_Dimuon0_Upsilon [6]

3 The Tag and Probe method

The tag and probe method (T&P) is a data-driven tech-
nique employed for measuring e�ciencies. It is based on
the decays of known resonances (e.g. J/ , ⌥ and Z) to
pairs of the particles being studied.

The determination of a detector e�ciency is a criti-
cal ingredient in any physics measurement. It accounts
for the particles that were produced in the collision but
escaped detection (did not reach the detector elements,
were missed by the reconstructions algorithms, etc). It
can be generally estimated using simulations, but simu-
lations need to be calibrated with data. The T&P method
described here provides a useful mechanism for extracting
e�ciencies directly from data.

In this method, resonances used to calculate the de-
tector e�ciencies decay to a pair of particles, which in
our case are muons, and which will be labeled as tag and
probe. The decay muons are labeled according to the fol-
lowing criteria:

• Tag muon: well identified, triggered muon (tight selec-
tion criteria).

• Probe muon: unbiased set of muon candidates (very
loose selection criteria), either passing or failing the cri-
teria for which the e�ciency is to be measured.

The e�ciency will be given by the fraction of probe muons
that pass the criteria. The tag is employed to trigger the
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Figure 4: Feynman diagram for bb pair production in
hadronic collisions followed by formation of meson state
(resonance), via the strong force, and eventual decay into
a muon pair, via the electroweak force [9].

presence of a resonance decay. Specifically, the invari-
ant mass of the dimuon pair, i.e. the tag and the probe,
is formed, and the distribution is employed to extract the
signal by rejecting the background present in the data. Fur-
ther details about the tag and probe method can be found
in Ref. [7].

3.1 Resonances

In particle physics, resonances are particles that are ex-
tremely short lived and travel tiny distances [8]. Be-
ing unstable, they are not directly detected but recon-
structed from their decay products. This study focuses
on two known resonances decaying in dimuons of oppo-
site charges. The production and decay processes for these
particles are represented in Fig. 4.

The J/ meson is a hadron formed by a charm quark
and a charm antiquark (cc). It was first detected in 1974
by two groups independently at SLAC (Stanford Linear
Accelerator Center) and BNL (Brookhaven National Lab-
oratory) [10]. The Upsilon mesons (⌥) are a family of
hadrons formed by a bottom quark and a bottom antiquark
(bb). They were first identified in 1977 at Fermilab, in
an experiment where the existence of bottom quarks and
bottom antiquark was also discovered [11].

The discovery of these particles marked important
milestones in the history of particle physics and in the de-
velopment of the Standard Model. They are denoted as
heavy quarkonia, and provide ideal laboratories in which
to study the strong force (QCD). In this work however we
explore them as standard candles, to calibrate our detec-
tor. The physics aspects of these particles (bottomonium)
are summarized in Ref. [9].

3.2 Efficiency Definition

The muon e�ciency is given by

" =
Passing probe muon criteria

All probe muon
. (2)

The denominator corresponds to the number of resonance
candidates (tag+probe pairs) reconstructed in the dataset.
The numerator corresponds to the subset for which the
probe passes the (muon identification) criteria.

4 Signal extraction methods

Detector reconstruction e�ciencies are calculated using
signal muons, that is, only true J/ and Y(1S ) candidates
decaying to dimuons. This is achieved in this study by ex-
tracting signal from the data by the usage of two methods:
fitting and sideband subtraction.

4.1 Sideband subtraction method

The sideband subtraction method involves choosing side-
band and signal regions in invariant mass distribution for
each tag+probe pair. In this study, the signal region is
selected by finding the highest bin of the invariant mass
distribution and defining its position as the resonance in-
variant mass value (M). The signal region is taken as a
3� window around the maximum, M ± 3�, where the �
was obtained using full width at half maximum (FWHM)
which is calculated from the same distribution by select-
ing the first and last bin that passes a certain high in the
invariant mass histogram and getting the interval size be-
tween their centers. The relation between � and FWHM
was given by � = FWHM

2.355 .
While the signal region contains both signal and back-

ground, the sideband region is chosen such as to have only
background. The background region selected in this study
is at least 4� distant from resonance peak. These regions
are shown in Figs. 5a and 5b, for the J/ and ⌥ datasets.

For each event category (passing criteria and pass-
ing+failing criteria) and for a given variable of interest (as
probe pT , ⌘ or �), two distributions are obtained: one for
signal region and other for background regions. To ob-
tain the desired variable distribution only for signal, this
method subtracts background distribution from the sig-
nal+background distribution, as:

Nsignal = Nsignal region � ↵ ⇥ Nsideband region , (3)

where the normalization factor ↵ expresses the amount of
background particles present in the signal region and is
given by

↵ =
yield of background in signal region

yield of background in sideband region
(4)

For the uncertainty of each bin, this method uses

↵signal =
p

Nsignal region + Nsideband region (5)

Applying the sideband procedure to the probe muon
pT , as an example, one obtained the distributions shown
in Fig. 6. The procedure starts from the total distribution
(solid blue line) of all muon candidates in the signal re-
gion, and the corresponding distribution for candidates in
the sideband region (dashed blue line); subtracting the lat-
ter from the former (Eq. 3), the signal distribution (solid
magenta line) is finally obtained.

4.2 Fitting method

In this method, the signal is extracted not by histogram
manipulation but by likelihood fitting. The procedure is
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(a) J/ meson.
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(b) ⌥(nS) meson family.

Figure 5: Sideband (red) and signal (green) regions in the dimuon spectrum near the studied resonance states.

applied after splitting the data in sub-samples, correspond-
ing to bins of the kinematic variable of interest (pT , ⌘, �)
of the probe objects. As such, the e�ciency will be mea-
sured as a function of that variable. Each sub-sample con-
tains signal and background events; the signal is accessed
by fitting the invariant mass spectra.

The fit for each bin allows to statistically discriminate
between signal and background. In particular, the fit yields
the number of signal events. The J/ invariant mass dis-
tribution is described by the sum of a Crystal Ball function
and a Gaussian function, while the background is mod-
eled with an exponential function. For ⌥, the ⌥(1S ) sig-
nal is modeled by a Crystal Ball function (first peak), and
Gaussian functions are used for the two other resonances
(second and third peaks), while a Chebyshev function pa-
rameterizes the background.
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Figure 6: Distributions of the transverse momentum pT of
the probe muons, obtained with the sideband subtraction
method applied to the J/ meson.

The e�ciency is finally obtained by simply forming
the ratio of the signal yield from the fit to the passing cat-
egory by the signal yield from the fit of the inclusive all
category. This approach is illustrated in Fig. 7.

Figure 7: Illustration of the fitting method.

5 Efficiency measurements

The Tracker Muon identification e�ciency is measured as
function of the muon transverse momentum pT , pseudora-
pidity ⌘, and azimuthal angle �. The results obtained with
the J/ resonance are presented in Fig. 8, while Fig. 9
shows the same e�ciencies obtained with ⌥ resonance.

The e�ciencies measured for a same detector, physics
object, and selection criteria should be expected to match.
Muons originating from the decay of from di↵erent par-
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ticles on the other hand have di↵erent kinematic distribu-
tions and are embedded in di↵erent backgrounds. These
di↵erential studies allow to probe and quantify such ef-
fects.

The results obtained with J/ and ⌥ are fairly con-
sistent. The uncertainties in the measurements, displayed
by the error bars in the plots, di↵er noticeably. Such is
expected due to the fact that the J/ dataset is about six
times larger than the ⌥ sample.

The figures display in addition a comparison of the re-
sults obtained with the two methods, that have been imple-
mented for extracting the signals from data. These provide
cross-checks and may be used to quantify possible sys-
tematic uncertainties associated to the method. In general,
while the sideband subtraction method is more readily ex-
ecuted and less computational intensive, the likelihood fit-
ting procedure achieves a more complete characterization
of the data.

In Fig.10 shows the comparison between real data and
Monte Carlo with the J/ resonance using the muon stan-
dalone identification, while in Fig.11 is presented same
distributions for muon global identification. In the both
figures there are some agreement between real data and
Monte Carlo simulation for low pT regions (4.0 - 7.0 GeV)
(Fig.10a and Fig.11a). Also in Figs 10c and 11c shows a
good agreement between them.

Additional preliminary results for other muon iden-
tification algorithms not here presented are also pro-
vided [12]. These allow further comparisons between al-
gorithms, methods, resonances, and simulation. The tools
developed in this work are shared [13, 14], and further
documented in the accompanying tutorial [15].

6 Conclusions

We have devised and implemented a data-driven proce-
dure that allows to evaluate the CMS detector e�ciency
for identifying muons. Our tag and probe implementation
uses two quarkonium states, J/ and ⌥(1S ), that decay
to pairs of muons. Two methods have been devised for
extracting these resonance signals from the data, namely
sideband subtraction and likelihood fitting. These proce-
dures have been applied to proton-proton collision data
collected by CMS, which are openly available. We mea-
sured the e�ciency for several muon identification algo-
rithms, and the obtained results extracted from data have
been compared to simulation. The complementary meth-
ods and resonances explored have allowed for systematic
studies of both the physics and method performance eval-
uations. While the obtained results are in general consis-
tent, the likelihood method is found to o↵er increased ro-
bustness.

The developed implementation has been docu-
mented [15] and made available for users. Further work
will result in the integration of the code and tools into the
central CMS Open Data analysis framework.

Acknowledgements

Thanks to LIP Internship Program 2020 that allowed this
work to be carried out and published. Thanks to Eliza
Melo, Nuno Leonardo and Sandro Fonseca for guiding us
on this particle physics analysis. Also thanks to all those
who supported this work.

Part of the results obtained in this work were presented
at the conference FÍSICA 2020 (SPF, Portugal). Following
the internship, the group was also allowed to prepare and
facilitate a workshop tutorial (FNAL, US) on the tools de-
veloped in this work [15]. We thank the organizers of these
events for the opportunity to further present our work.

References

[1] CMS Collaboration, Journal of Instrumentation 3,
S08004 (2008)

[2] CMS Collaboration, Journal of Instrumentation 7,
P10002 (2012)

[3] LHC Open Data, opendata.cern.ch
[4] CMS Collaboration (2016), MuOnia primary dataset

from RunA of 2011, http://opendata.cern.ch/record/
27

[5] CMS Collaboration (2016), Simulated dataset for
J/ , http://opendata.cern.ch/record/1335

[6] CMS Collaboration (2016), Simulated dataset for
⌥(1S), http://opendata.cern.ch/record/1522

[7] R.G. de Souza, Tag And Probe 2019, https://twiki.
cern.ch/twiki/bin/view/Sandbox/TestTopic11111203

[8] C. Dudley, What is a Resonance Particle?,
https://webhome.phy.duke.edu/~kolena/modern/
dudley.html

[9] Z. Hu, N.T. Leonardo, T. Liu, M. Haytmyradov,
International Journal of Modern Physics A 32,
1730015 (2017)

[10] The 1976 nobel prize in physics, https:
//www.nobelprize.org/prizes/physics/
1976/press-release/

[11] L. Lederman, The discovery of the Upsilon, bottom
quark, and B mesons, in 3rd International Sympo-
sium on the History of Particle Physics: The Rise of
the Standard Model (1992), pp. 101–113

[12] Github: CMS Open Data e�ciency studies,
https://github.com/allanjales/Open_data_
Extra_studies

[13] A. da Silva Jales, Github: sideband subtrac-
tion method, https://github.com/allanjales/
tag-probe

[14] T.F.D. Gaehtgens, Github: fitting method, https:
//github.com/AthomsG/LIP_INTERNSHIP

[15] E�ciency studies using the tag and probe method,
https://cms-opendata-workshop.github.
io/workshop-lesson-tagandprobe/

http://opendata.cern.ch
http://opendata.cern.ch/record/27
http://opendata.cern.ch/record/27
http://opendata.cern.ch/record/1335
http://opendata.cern.ch/record/1522
https://twiki.cern.ch/twiki/bin/view/Sandbox/TestTopic11111203
https://twiki.cern.ch/twiki/bin/view/Sandbox/TestTopic11111203
https://webhome.phy.duke.edu/~kolena/modern/dudley.html
https://webhome.phy.duke.edu/~kolena/modern/dudley.html
https://www.nobelprize.org/prizes/physics/1976/press-release/
https://www.nobelprize.org/prizes/physics/1976/press-release/
https://www.nobelprize.org/prizes/physics/1976/press-release/
https://github.com/allanjales/Open_data_Extra_studies
https://github.com/allanjales/Open_data_Extra_studies
https://github.com/allanjales/tag-probe
https://github.com/allanjales/tag-probe
https://github.com/AthomsG/LIP_INTERNSHIP
https://github.com/AthomsG/LIP_INTERNSHIP
https://cms-opendata-workshop.github.io/workshop-lesson-tagandprobe/
https://cms-opendata-workshop.github.io/workshop-lesson-tagandprobe/


LIP-STUDENTS-20-18 6

0 5 10 15 20 25 30 35 40
 [GeV/c]

T
p

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Ef
fic

ie
nc

y

Efficiency of Tracker Muon Probe

 Data SidebandψJ/
 Data FittingψJ/

CMS Open Data

(a) pT for J/ 

2− 1− 0 1 2
η

0.8

0.85

0.9

0.95

1

1.05

Ef
fic

ie
nc

y

Efficiency of Tracker Muon Probe

 Data SidebandψJ/
 Data FittingψJ/

CMS Open Data

(b) ⌘ for J/ 

3− 2− 1− 0 1 2 3
 [rad]φ

0.8

0.85

0.9

0.95

1

1.05

Ef
fic

ie
nc

y

Efficiency of Tracker Muon Probe

 Data SidebandψJ/
 Data FittingψJ/

CMS Open Data

(c) � for J/ 

Figure 8: E�ciency of Tracker muons probe in J/ sample by sideband subtraction and fitting method.
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Figure 9: E�ciency of Tracker muons probe in ⌥ sample by sideband subtraction and fitting method.
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Figure 10: E�ciency comparing between data and MC using the Standalone muon identification for J/ by fitting method.
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Figure 11: E�ciency comparing between data and MC using the Global muon identification for J/ by fitting method.
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