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Abstract. A Machine Learning model was trained on simulated data of proton-proton collisions at the Large
Hadron Collider at CERN derived using Monte Carlo methods to be used as a binary classifier. The data
contained background events from the standard model and events from a beyond the standard model signal
related to dark matter research. It was concluded that the use of machine learning models in the search of new
physics is quite relevant since, on the simulated data, the trained model managed to get a area under the ROC
curve of 0.9947 in the test dataset using Monte Carlo Dropout techniques that showed to be useful in the model

optimization.
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1 Introduction

Along the years the standard model (SM) has been
scrutinized by the scientific community, checking if it can
reliably describe the world around us and for now, it has
never failed, withstanding the test of time. In this project
the SM is tested once more using simulated data from the
ATLAS detector, one of the four major experiments on the
LHC at CERN. In the experiment two protons collide pro-
ducing various outcomes, one of them could be a theoret-
ical beyond the standard model (BSM) signal event repre-
sented in fig. 1.

The simulated data is derived from Monte Carlo meth-
ods for later being used to train a deep neural network
(DNN) that will serve as a binary classifier to distinguish
a background event from a signal event.

The idea is to study in simulation environment how
relevant are the applications of a machine learning model
in this context and check if they can be used on the search
for new physics, aiming for later use in real world applica-
tions.
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Figure 1. Non-resonant t-channel and s-channel production of
a top-quark in association with a vector boson V which decays
into two dark matter particles; resonant production of a coloured
scalar @ that decays into a dark matter particle and a top-quark;
and single production of a vector-like T quark decaying into Zt
(= vvbW). [1]
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The signal in question is presented in Figure 1, it’s a
BSM signal since the @ and y, given in red, aren’t pre-
dicted by the SM.

This signal fits in to the dark matter (DM) research
program at the LHC thanks to y being the DM candidate.
Considering that if it exists, it would give rise to a top
with great momentum and a large quantity of transverse
energy missing, therefore making this particular signal a
good candidate for the experiment due to the clear experi-
mental signature of its existence.

2 Data Exploration

The data is divided on multiple files in csv form, each
one corresponds to a sample containing 250-450k rows
(events) and 465 different columns (features). For exam-
ple, the features contained information about the missing
transverse energy, the number of jets, the direction of the
jets, etc.

A sample is a specific outcome of the two protons col-
liding, therefore separating the data into background sam-
ples (events/processes that are already well known from
the standard model) and signal samples (the signals events
from figure 1).

2.1 Data Pre-Processing

Data Cuts

The initial 465 different features included columns that
where used for the data generation as well some non rele-
vant columns that was removed.

Accordingly to the event in fig 1, the cuts are the fol-
lowing:

1. O leptons
2. Atleast 1 fatjet
3. Atleast 1 b-tag



The drop rates for every one of the cuts are as follow-

1. Background Data:

— 0 leptons drop ratio: 0.3438 %
— Atleast 1 b-tag: 81.2528 %

— At least 1 fatjet: 2.2760 %

— Total drop rate: 81.3892 %

2. Signal Data:

— 0 leptons drop ratio: 0.5268 %
— At least 1 b-tag: 34.2679 %

— At least 1 fatjet: 0.0074 %

— Total drop rate: 34.4409 %

Extra Features

Beyond applying cuts to the data it was also added
the 'Label’ column which contained O if the event was
background or an 1 if it was signal, the "Name’ column
containing the corresponding name of the sample for each
event and finally it was calculated the *Weights’ column
containing the weight of every event. This last feature will
be approached in greater detail below.

Sample and Class Weights

Each sample has a cross-section associated with it, that
is the probability of a specific process has of occurring
when the two protons collide. In the original data files the
weights of the events inside every sample corresponded
to the weight of the sample itself. However, for training
purposes, what mattered is the probability of each event
had of occurring, not the sample as a whole.

For this purpose it was calculated a new probability on
a new feature called *Weights’. It was calculated for each
sample by dividing the cross-section of the sample by the
number of events on each sample.

Apart from that there was much more background
events compared to signal events ( 69% more background
than signal), which meant that without correction the
model would ’learn’ more class A than class B for ex-
ample, since the events in class A would pass through
the model alot more times that the events in class B. This
would result in the model having a low predictive accuracy
for the infrequent class. So due to this problem a dictio-
nary was created showing the relationship between both
classes that will later be used when training the model to
avoid this problem.

Training, Validation and Test Set

For the last step in data pre-processing it was necessary
to split the data in 3 different datasets: a test, validation and
a training set. Each one having 1/3 of the data to keep the
statistical distribution of the features.
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The training set will be used to train the model, the
validation dataset will provide an unbiased evaluation of a
model fit on the training dataset using the loss and some
other metrics and finally the test set is used to provide an
unbiased evaluation of how well the model generalizes to
new data.

After the pre-processing the data totaled 72 different fea-
tures to serve as input of our model.
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Figure 2. Tabular representation of some features after the pre-
processing

3 Deep Neural Networks (DNN)
3.1 What are Artificial Neural Networks?

Artificial Neural Networks (ANNSs) [2] are a class of
algorithms that are inspired in the way a brain operates,
recognizing relationships in the data without being explic-
itly programmed to. An ANN, shown in Figure 3, only
contains 3 types of layers: input layer, a hidden layer and
an output layer.

Output layer

Figure 3. A Neural Network [3]

But how does a ANN learn?

As stated above an ANN tries to mimic the way a
brain works, It uses neurons that are interlinked to each
other through weights and biases. Those parameters are
the heart of the neural network, and by changing them to
specific numerical values it’s possible to process any input
and get a desired output.

Each neuron in a network transforms data using a se-
ries of computations: a neuron multiplies an initial value
by some weight, sums results with other values coming
into the same neuron, adjusts the resulting number by the



neuron’s bias, and then normalizes the output with an ac-
tivation function (for example the S shaped sigmoid).

This process is repeated until it reaches the output
layer that provides the predictions related to the classifi-
cation task at hand.

A loss function is also specified, it’s used to evaluate
a candidate solution (i.e. a set of weights) and it does that
by comparing the initial outputs with a provided correct
answer.

What the Neural Network effectively does when is
training ("learning") is to manipulate the weights using
gradient descent in order to find a local minimum of the
loss function.

3.2 What are DNN’s?

Deep Neural Networks or DNN are essentially Arti-
ficial Neuronal Networks with more than two non-output
layers. DNN filter information through multiple hidden
layers enabling them to comprehend deeper and more
complex relationships in the information.

3.3 The Model

The model consists in 5 layers: 1 input layer with stan-
dardization, 3 dense layers with dropout and 1 output layer
presented in Figure 4.

Model: "functional 1"

(type) output sh

dense (Dense) (None,
opout (Dropout) (None,

dense_1 (Dense) (None,

dropout 1 (Dropout) (None,

Figure 4. Model Summary

The purpose of the standardization layer is, as the
name suggests, to standardize the data. It’s a scaling
technique where the values of the different features are
centered around the mean with a unit standard deviation.
This means that the mean of the attributes becomes 0 and
the standard deviation 1. This is done so that the model
doesn’t see many discrepancies on the data therefore
giving the same importance to all features avoiding bias
towards one in particular for instance.

3.3.1 Monte Carlo Dropout

The Dropout [4] method consists in temporally dis-
abling neurons to improve the generalization of the net-
work and prevent overfitting. Consequently, at each epoch
each neuron has a probability of being disabled which
means that the weights associate with it will equal 0.
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On the standard Dropout method the disabling of the
neurons would only occur during training, but on MC
Dropout [5] method this would also happen when evalu-
ating the model using the test or validation set: each event
goes through the model multiple times making a distribu-
tion. This distribution is then averaged thus getting a more
accurate prediction for each event than if used the tradi-
tional dropout technique.

On the final model, the probability used for each neu-
ron on the 3 hidden layers being disabled was 10%.

3.3.2 Training Model Settings

For fitting the model it was used a maximum of 500
epochs with early stopping callback enabled with a pa-
tience of 30 monitoring the validation loss. In other words
if the model trains for 30 consecutive epochs without see-
ing any improvement on the output of the loss function it
will stop the training seeing that it most likely found an
local minimum of the function.

The tensorboard and the Model Checkpoint callback
were also used when fitting the model. The first enabled
the logging of training metrics (e.g accuracy and AUC)
and see their improvement throughout training. The sec-
ond guarantees that when the training ended, only the best
performing model iteration on the validation data would
be kept as our final model.

4 Model Evaluation
4.1 No Dropout vs Dropout vs MC Dropout

The ROC score was calculated for the different scenar-
ios using the same data. The results are displayed below:

ROC Score | Improvement
Without Dropout 0.8990 -
W/Dropout 0.9934 10,5%
W/MC Dropout 0.9947 10,6%
Table 1.

Below it’s possible to see how both models evolve over
the epochs.

M

Figure 5. Evolution of the area under the ROC curve for the
model without dropout.

The dropout performs better, 10,5% than the model
with no dropout implementation. This was expected since
theoretically a model with dropout is more generalized.



Figure 6. Evolution of the area under the ROC curve for the
model with dropout implementation

It’s also evident that it needs more time to find the
best weights (the early stopping callback has stopped the
model without dropout implementation a lot sooner that
the model with dropout implementation), this is likely due
to non-ideal hyper-parameters and this problem may be
solved with hyper-parameters optimization.

Furthermore it’s possible to squeeze a little bit more
performance using MC Dropout (0,1% improvement com-
pared to Dropout) considering the model will output the
mean of a probabilistic distribution.

4.2 Metrics
4.2.1 Confusion Matrix

Confusion matrix, also known as an error matrix, is
one of the most popular metrics that allows the visualiza-
tion of the performance of an algorithm in table form.

Predicted Class

/—)%

Positive Negative

False Negative (FN) s“"s;:"""
Type I Error T
Actual Class

. False Positive (FP) Specificity
Negative “True Negative (TN) ™

Type I Error TR

Negative Predictive Accuracy
Value TP+ TN

™ WP+ TN+ FP+ FN)

TN +FN)

Precision
TP
@P+FP)

Figure 7. A Confusion Matrix Explained, as well some other
metrics

On the final model, the following confusion matrix
was obtained:

array([[371940, 16],
[ 31802, 18698711])

Figure 8. The confusion matrix on the test data of the best Model

In the figure 8 the background and signal data are the
positive and negative class respectively, as reported by fig
7.

This means that 371940 background events where cor-
rectly classified as background (TP) and 16 of them where
wrongly classified as signal (FN). On the other hand 31802
signal events where wrongly classified as background (FP)
and 186983 where correctly classified as signal (TN).
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There is still room for improvement considering the
more diagonal the confusion matrix is, the better the accu-
racy would be, thus having a better model.

The final model with MC Dropout Implementation got
an accuracy of 95,0% using our test data and a final ROC
score of 0,995
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Figure 9. The ROC Curve of the final model

Figure 10. Model accuracy over epochs.

4.3 Standard deviation’s

Lastly, one of the advantages of using simulated data
is the possibility to check how well the model performs in
each sample separately.

The model was evaluated for each sample on the frac-
tion of the data that wasn’t used for training nor validation.
With that, the accuracy and the mean of the standard de-
viation (the model prediction vs the label) was calculated
and presented in Table 2.

Accuracy | Mean of the SD

BKG_ttbar | 0.999962 | 5.14905 x107>
BKG_Wijets 1.0 3.08148 x1073
BKG_WW | 0.999958 | 9.20867 x107>
BKG_Zjets 1.0 1.17766 x107
BKG_ZW | 0.999798 | 2.11444 x107*
BKG_ZZ | 0.999960 | 5.08952 x10~3
SIGNAL | 0.866125 | 8.57968 x107!
SIGNAL_15 | 0.865916 | 8.57967 x107!

Table 2. Accuracy and the mean of the SD of the model for
each sample.

It is also possible to plot the histograms of the stds of
each sample (Fig. 11).
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Figure 11. Logarithmic scale of the standard deviation distribu-
tions by sample

The Figure 11 shows the standard deviations of our
model predictions in each sample. What this means is that
the model tried to predict the events that weren’t used for
training contained in the samples. Using the predictions of
the model, the distributions of the standard deviations for
each sample where plotted, showing the confidence that
the model has in classifying events from each sample.

Accordingly to Figure 11, it’s possible to infer that
there are some background samples more alike to the
signal than others. For example the ttbar is more similar
to the signal than the Zjets background due to higher stds.
It’s also possible to see big standard deviation’s on the
signal samples, this means that the model is less confident
when classifying signal events since they appear to be sim-
ilar to the background, making the job of the model harder.

5 Conclusion

The data was explored and pre-processed, removing
the non relevant features and applying data cuts derived
from the Feynman diagram in fig. 1. A model was then
created and trained from the simulated data of the ATLAS
detector.
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The model had an MC Dropout implementation that
improved the performance of the model by 10,6% on the
ROC score compared to the initially traditional DNN.

In a simulated environment the model was capable of
reasonably distinguish between a background event and a
signal event having a good final ROC Curve (fig. 9). This
is an indication that Machine Learning surely has a real
world applications in the field of particle physics and it
should serve as a tool on the finding of new physics.
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