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Machine learning methods to improve boosted Higgs boson tagging at ATLAS
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Abstract. Identifying Higgs bosons decaying via the dominant H → bb¯ mode is an essential ingredient to many
searches for new physics happening at LHC. ATLAS reconstructs hadronic Higgs bosons by using a large-radius
jet to which smaller variable-radius subjets are associated and assigned with flavor discriminants using standard
flavor tagging (b-tagging). This work introduces an algorithm to select Higgs bosons in the high-momentum
regime that combines flavor discriminants from up to three subjets using a feed-forward neural network. The
algorithm performance is studied in terms of its accuracy to discriminate between jets originating from Higgs
decays, top decays or QCD processes. The background rejection is also studied after adding substructure
variables.
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1 Introduction

Many Beyond the Standard Model scenarios introduce
new heavy resonances which can decay to Higgs bosons
with high transverse momentum (pT ). Therefore precise
reconstruction techniques for high-momentum (boosted)
Higgs boson decays in which the two b-quarks are highly
collimated are crucial for improving the sensitivity of
those searches. The Higgs bosons that decay into pairs
of bottom quarks have a high branching ratio of about
0.6. As the Higgs boson decays quickly we can only mea-
sure the respective products of the decay, where we use
the reconstruction of the large radius (large-R) jets with
the intention of capturing the entire process, while smaller
variable-radius jets (VR subjets) are used to resolve and
identify the individual b-hadrons. A neural network (NN)
is introduced to solve the H → bb¯ tagging problem, tak-
ing advantage of the strong tagging performance of the b-
tagging algorithm in order to discriminate the large-R jets
according to the processes originating them: Higgs to bb
decays, QCD processes, or hadronic top-quark decays.

2 Methods

2.1 b-tagging method

The b-tagging algorithms take advantage of the fact that
b-hadrons have a significant lifetime, they fragment and
hadronize into B-hadrons providing a measureable dis-
placed secondary vertex, as seen in Figure 1, where we
show the H->bb decay capture by a large-R jet with in-
dividual b-jets resolved by variable-radius jets. Using
this information allows us to identify jets containing b-
hadrons.
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Figure 1. b-hadron long lifetime is present in the blue segments
of the figure [3].

2.2 Neural Network

As described before for our tagging mechanism we will
use a Deep Neural Network, the main characteristics that
define it are described below:

Layers: 5 hidden
Nodes: 112, 96, 48, 24, 12, 6, 3

Optimizer: Adam
Loss: Categorical Crossentropy

Learning rate: 0.01
Batch size: 256

Activation function: Relu

2.2.1 Features

The data of our jets needs to be classified by our NN, in or-
der to discriminate each jet and to categorize it towards the
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available classes we introduce a subset of variables called
features that can be used as good predictors for our model.
In total we use 11 features for our input, we can identify
them below:

• pT : Transverse momentum of the large-R jets;

• η: Pseudo-rapidity of the large-R jets;

• pu (3x): Probability distribution of a VR-subjet being
light;

• pb (3x): Probability distribution of a VR-subjet being
bottom;

• pc (3x) : Probability distribution of a VR-subjet being a
charm;

Here pT is the transverse momentum of the large-R
jets. In our model we consider the boosted regime (high
pT ), which implies a more difficult recognition of the sub-
jets which become collimated and may overlap in the lab-
oratory frame, this can be seen in the Figure below:

Figure 2. Resolved and Boosted regime of the subjets.

η is related to the angle that a particle has relative to
the beam axis, pu, pb and pc are the probability distribu-
tions of the VR-subjet originating from a light, bottom or
charm quark. As we are dealing with up to 3 VR subjets
in our model, we have in total 11 features as discriminant
variables.

2.2.2 Classes

From features described before, our jets will be distributed
towards the 3 available classes: QCD, Higgs and Top.
Looking at the number of events in terms of the mass
distribution we can understand better the physics behind
them:

Figure 3. Large-R jet mass distribution of Top, Higgs and QCD
jets.

We observe a smoothly falling distribution for QCD
and a resonant peak for the Higgs (125 GeV) and two dis-
tinct peaks for Top, one corresponding to the W-boson
(80.37 GeV) and the other to the top-quark (172 GeV),
this due to the top decaying into b-hadron and a W-boson
where consequently the W-boson decays into two quarks.
For high enough transverse momentum the top-quarks
may be combined into a single jet, which corresponds to
the top-quark peak, if it is not the case the W-boson can be
also combined into a single jet leaving out the b-hadron,
which corresponds to the W-boson peak.

The invariant mass in our model will not be consid-
ered as a feature, not entering the NN. It will be used to
characterize and create our fits for the model externally.

3 Results and Discussion

3.1 Validation Plots

Before training the NN, we first need to study and validate
our data to know what are the respective orders of magni-
tude and the corresponding behaviour for our features, it
also needs to be weighted in order for it to be physical, so
we plot the corresponding number of events in terms of all
features shown before:
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Figure 4. pT -Transverse momentum of large-radius jets.

Figure 5. η- Pseudo-rapidity of large-radius jets.

Figure 6. Probability of three VR track-jets to be light, for large-
R jets in Higgs,Top and QCD.

Figure 7. Probability of three VR track-jets to be Charm, for
large-R jets in Higgs,Top and QCD.

Figure 8. Probability of three VR track-jets to be Bottom, for
large-R jets in Higgs,Top and QCD.

Additionally we compared this data with the one ob-
tained from the figures 18-21 from [1] recreating and re-
producing the probabilities of the VR-trackjets and large-
R jet to be QCD, Higgs or Top.

3.2 NN results

With our data validated, we divide it into train and test
samples, and we start training our NN for 100 Epochs
with the corresponding features. We then check our model
predictions that categorizes into the corresponding classes,
giving us a normalized probability.

Below we show the loss function and the model accu-
racy for our NN along the 100 epochs for the train and test
samples:

Figure 9. Loss function in terms of the mean squared error along
100 epochs.
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Figure 10. Accuracy of the model along 100 epochs.

These functions represent how well the model de-
scribes and categorizes the data, as the training progresses.
As we can see, we could have practically the same results
if the training/testing phase was done for 50 epochs.

We now plot the ROC curve that quantifies how well
the model identifies the signal and rejects the background
jets. This is studied by comparing the True Positive Rate
and the False Positive Rate. The area below each curve
gives an indication towards the performance of our model,
ideally it should converge on a top-left corner of the plot if
our model predicts correctly all the data.

Figure 11. ROC curve for model with 11 features, for Higgs,
QCD and Top.

To allow a better visualization of the performance of
the algorithm, we can compare the jet class predicted by
the NN and the true one by creating a normalized Confu-
sion Matrix as shown down below. In an ideal case, we
should have only the diagonal occupied.

Figure 12. Normalized Confusion Matrix for model with 11 fea-
tures, for Higgs, QCD and Top.

From here and from the ROC curve we can visualize
the difficulty that the algorithm has to predict correctly the
jet class of Top compared to the other 2 classes, this due
the complexity of the processes occurring in that class as
referred previously, intersecting both, the Higgs and QCD.

3.2.1 Discrimination Value

The three-class output can be combined into a single dis-
criminant parameter described as:

DXbb = ln
pHiggs

ftop.ptop + (1 − ftop).pmulti jet
(1)

Here pHiggs, ptop and pmulti jet are respectively the prob-
ability output from our NN to classify the jets into Higgs,
Top and QCD. Where the numerator is the signal and the
denominator is the respective background, ftop = 0.25 is
an arbitrary parameter in order to define the type of back-
ground for our system.

From this we can plot in normalized units the Dxbb dis-
tribution for our system and also the respective logarithmic
scale for easier identification of the peaks:
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Figure 13. DXbb distribution for 11 features for Higgs, QCD and
Top.

Figure 14. DXbb distribution for 11 features for Higgs, QCD and
Top in logarithmic scale.

Comparing our result with the figure 2 from [1] we
identify a strong Top jet class intersection with the other
two jet classes, as expected from the Confusion Matrix
analysis. We also noticed a worse signal identification ef-
ficiency at high values of DXbb , identified by the missing
peak structure at around 3.

Additionally we could also study the performance of
the algorithm in terms of the flavour composition of the
jets in the simulation, however in our case the data-sets
had no information of that type and it is left for a future
studies.

3.2.2 Substructure Variables

Adding to the information given from the b-tagging, we
could also have additional knowledge of the structure of

the jets via the calorimeter and the tracks. This could be
used to characterize even better our system, among Higgs,
QCD and Top. Adding a total of 14 additional variables to
characterize the jets [2]:

• Split12, Split23, Zcut12: Splitting scale variables;

• Qw: Minimum pair invariant mass;

• Planar Flow, Angularity, Aplanarity: Jet shapes;

• KtDR: Kt-subjet ∆ R;

• C2, D2: Energy Correlation ratios;

• e3: Energy Correlation function;

• Tau21, Tau32: N-Subjettiness;

• FoxWolfram20: Fox-Wolfram moment;

Figure 15. Tracks and Calorimeter visualization for the respec-
tive jets [4].

Meaning that we could repeat the procedure that was
done with 11 features but now done with 25 in total. By
training and testing our new model for 100 epochs we ob-
tain the respective loss function and accuracy plot down
below:

Figure 16. Loss in mean squared error and Accurracy model
respectively along of 100 epochs.

Once again we define our ROC curve:
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Figure 17. ROC curve with 25 features for Higgs, QCD and Top.

And now we compare the Confusion Matrices from 11
and 25 features:

Figure 18. Confusion Matrix with 25 features for Higgs, QCD
and Top.

We identify a better performance of our algorithm as
expected, and this is more evident for the Top jet class
identification increasing the overall probability of the cor-
rect data prediction from 0.63 to 0.74.

Also if the look at the DXbb distribution we identify the
same characteristics as for 11 features:

Figure 19. DXbb distribution for 25 features, right image in loga-
rithmic scale.

Here we are going to introduce the DL1r method
(baseline) and then do a comparison between the perfor-
mances of the 11 and 25 feature algorithms. The DL1r
method considers the b-tagging information of the VR
subjets individually, without taking into account their cor-
relations for each large-R jet.

Here we compare the three performances using a ROC
curve, where we study the Dijet or Top background rejec-
tion in terms of the Higgs efficiency of the signal. Compar-
ing the 11 and 25 features we see an increase of the back-
ground rejection up to a factor of 2, however as the flavour
information is already discriminatory, where for example
the information about the number of VR track-jets is al-
ready partially included in the NN, this results into not
having an even better performance of the algorithm when
the 14 substructure features are added.

Figure 20. Background Rejection Top and Bijets in terms of the
Higgs signal efficiency.

To study further the relation of adding the substructure
variables we performed a mass distribution study with 11
and 25 features as shown below, having a cut in our dis-
criminatory variable of DXbb > 1.8. This value is identified
by requiring that 80% of the total signal passes through.

Figure 21. Mass distribution with 11 features (left) and 25 fea-
tures (right).

From comparing the two distributions in Figure 21 it
can clearly be seen that adding jet substructure information
distorts the background jet mass distribution.

4 Conclusions

In terms of this work, by looking at the Confusion Matri-
ces, we identified that the Top background was the most
difficult to filter through by being the most complex and
by intersecting the ranges of Higgs and QCD.

The comparison between 11 features and 25 features
(where the substructure variables are added) shows an in-
crease in background rejection up to factor of 2. However
with the substructure we can also distort the background
jet mass distribution. As a next step this effect could be re-
duced for example by introducing another NN that could
perform the decorrelation between the NN output and the
jet mass.
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