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Abstract

A detailed simulation of vertical showers in atmosphere produced by primary gammas and protons, in the energy range
11100 TeV, has been performed by means of the FLUKA Monte Carlo code, with the aim of studying the time structure of
the shower front at different detector heights. It turns out that the time delay distribution can be fitted using few parameters
coincident with the distribution central moments. Such parameters exhibit a smooth behaviour as a function of energy. These
results can be used both for detector design and for the interpretation of the existing measurements. Differences in the time
structure between gamma and proton induced showers are found and explained in terms of the nonrelativistic component
of extensive air showers. c© 1998 Elsevier Science B.V.

1. Introduction

Recent papers concerning calculations of Extensive
Air Showers (EAS) [1] include results on time de-
lay of particles from the shower front, in view of the
comparison with existing recent measurements [21
4]. As a matter of fact, the first measurements of the
structure of the EAS front were attempted by Bassi,
Clark and Rossi in 1953 [5], but many other have
contributed [6112]. As far as the many simulation
works on EAS are concerned, a part from the quoted
Ref. [1], only a limited fraction of them has consid-
ered the question of the time structure [13123].

The interest in this topic has been renewed by re-
cent experimental data concerning the detection of an
anomalous delayed component [24]. In this frame-
work it is therefore important to achieve a better and
more detailed knowledge of this time structure. Fur-

thermore, eventual fast simulation tools based of sim-
ple parametrisations constructed on this knowledge
can be helpful not only for analysis, but also for de-
sign of new detectors, trigger evaluation, etcetera.

When a full shower simulation is considered, the
structure of the time front depends to a large extent
on the details of particle transport algorithms. There-
fore, it can be useful to consider the outputs of very
detailed codes, and compare it with the results of the
codes optimized for the cosmic ray physics, which of-
ten contain simplifications in order to reduce the com-
puter time. A valuable study of the time structure of
Extensive Air Showers, for very high energies, based
on the use of the CORSIKA code [25] has been pre-
sented in [3].

Here we present the study of the time structure of the
e.m. secondary component generated by a photon or
proton, as calculated mainly with the FLUKA96 code.
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We have already used such code in [26], where we
published the parametrisations of e.m. size resulting
from photon and electron induced subshowers. Such
code has already been successfully used in other cos-
mic ray applications [27,28].

We have explored primary energy from 100 GeV
up to 100 TeV, injected at the top of the atmosphere.
This energy range is of particular interest for gamma-
astronomy purposes, mainly in the chance of possible
differences in the time structure between gamma and
proton initiated showers.

After describing the MC setup, we discuss the
search for the best functional shape to fit the time
distribution, and then results are discussed. Numeri-
cal results of characteristic parameters are given for
different energies, secondary particles and detector
altitudes.

2. The MC codes

Among the shower programs available in the High
Energy Physics community, we have mainly consid-
ered FLUKA96 [29], although in some cases we have
also used GEANT version 3.21 [30], using the in-
terface to the FLUKA package (1992 version) for
hadronic interactions. It must be stressed that GEANT-
FLUKA and FLUKA96 are not the same thing, for
different reasons: the e.m. simulation code is differ-
ent [31], particle transport algorithms are different
and, most of all, the FLUKA interface of GEANT
contains only part (updated to 1993) of the hadronic
interaction model of full FLUKA96.

In particular, the full FLUKA96 code employs
transport algorithms with refined path length correc-
tions [32] associated to multiple scattering, which are
essential in problems involving low energy electrons
and positrons. Furthermore, FLUKA96 is completely
in double precision, thus allowing a much more accu-
rate definition of a finely segmented geometry setup
which extends itself up to many tens of kilometers.
Another advantage coming from double precision is
the timing accuracy even below 1 ns. An additional
advantage of the full FLUKA96 package is the in-
clusion of very detailed models of nuclear excitation
and low energy neutron transport. As we shall see in
the following, this last topic has some importance for
the argument of this paper. The two different codes

adopted in this work provide slightly different re-
sults, in particular for log10t/ns ≤ 0, because of the
insufficient precision of the GEANT transport algo-
rithms. However, for log10t/ns greater than that, the
differences in the bulk of arrival time distributions
are substantially within statistical fluctuations. For all
these reasons, in the following sections we shall limit
ourselves to the discussion of the results obtained
with FLUKA96.

The atmosphere is defined by a stack of box volumes
of rectangular basis and thickness increasing with the
height above the sea level. Any volume corresponds
to a depth of ∼ 24 g/cm2. In each box the density is
uniform, and it is chosen in such a way that an approx-
imation to the standard U.S. atmosphere is performed
according to the Shibata fit [33]. The chosen depth
granularity in our approximation is about one half of
radiation length (37.66 g/cm2) in air. We have limited
the top of atmosphere at 1 g/cm2, and the bottom is at
1025 g/cm2. Particles have been injected at the altitude
H = 45.445 km above the sea level. We have used the
same elemental composition at all depths. The kinetic
energy cut for secondary charged particles has been
fixed to 1 MeV, while for secondary photons we have
chosen 0.5 MeV in order to include the contribution
from e+e− annihilation. Particles have been recorded
at three different detector heights, corresponding re-
spectively at sea level, and 1000 and 2000 m above
sea level. These altitude values have been chosen in
order to apply our work mainly to the case of the Gran
Sasso laboratory site. For our investigation, we gen-
erated only vertical showers, at different log-spaced
energies: 100, 177, 316, 562, 1000, 1778, 3128, 5623,
10000, 17780, 31620, 56230, 100000 GeV.

3. Analysis

We present results for different groups of secondary
particles. We have considered separately photons,
electrons (both e+ and e−) and other charged particles
(muon, pions, etc.). The last group of secondary par-
ticles is relevant only in the case of primary hadrons.
It must be noticed in fact that the adopted codes did
not activate the hadro-production by photons.

As already done by other authors [4], we defined
as relevant variable the time delay t with respect to a
spherical front moving with light speed c, originating
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from a fixed injection point of the atmosphere, i.e.
we are giving the shower disk deviation from such
a spherical front. The exact definition of our delay
variable t is given by

t = tarrival −
√
H2 + r2

l
, (1)

where r is the distance from the shower core, and tarrival

is the arrival time of the considered secondary particle,
as calculated by the code, and H is the injection point
height in the atmosphere. The injection of the primary
particle occurs by definition at zero time.

We have recorded the delay distribution in different
radial bins from the impact point of the shower axis
for each different group of secondary particles. On
the basis of the features of the lateral distribution of
secondary particles, we use a logarithmic spaced radial
zones, for a total number of 9 regions:
1 I: 014.64 m
1 II: 4.64110.00 m
1 III: 10.00121.54 m
1 IV: 21.54146.42 m
1 V: 46.421100.00 m
1 VI: 100.001215.44 m
1 VII: 215.441464.16 m
1 VIII: 464.1611000.00 m
1 IX: 1000.0012154.42 m
The contributions at a distance exceeding the limit of
region 9 are negligible for the considered energies.

3.1. The arrival time probability distribution function

We paid a particular attention to the choice of a
suitable function which can be used to fit the delay
distribution in any of the considered radial regions. If
there is no interest in time delays larger than tens of
nanoseconds, usually a good choice in experimental
analysis is the gamma function, as in Ref. [1] or [2],

Γ(t) = A · tβ e−t·α . (2)

However, the authors often note how the gamma
function cannot account for the long tail of the exper-
imental delay distribution [2].

Our simulations also exhibit such long tails, but we
have found that the use of a log-normal function al-
lows a fairly satisfactory reproduction of the simu-
lated data (at least when no smearing effects due to

finite resolution of detector are included) in any of the
aforementioned radial regions, up to a very long delay
time (' 10 µs),

f(t) =
A

t
· e[−(log t−B)2/C] . (3)

The B and C parameters of such a distribution (es-
sentially related to the mean delay and to its r.m.s) are
also found to follow simple evolution as a function of
shower energy and radial distance.

The preference for the log-normal behaviour could
reflect some intrinsic feature of the underlying pro-
cesses. According to Ref. [34], the log-normal distri-
bution arises whenever we are in presence of a variable
whose value takes a random proportion of that of the
previous step in the stochastic process. However, we
must stress that our choice of approximating function
was an heuristic fact, aiming to the best approximation
of the actual distribution. In fact, we did not adopt any
mathematical model as input for the shower develop-
ment, thus we merely state that the log-normal distri-
bution provides a better numerical approximation than
the gamma function to the phenomenological delay
distribution. Therefore, also the concept of goodness
of fit has to be somewhat relaxed in the present dis-
cussion with respect to a rigorous statistical context.

As an example, in Fig. 1 we show the time delay
distribution for secondary gamma recorded at 2000 m
a.s.l. in the radial region V, as produced by primary
protons of energy 100 TeV, fitted up to 200 ns of delay,
with log-normal and gamma functions.

The differences are self evident and can be noticed
at different energies, radial regions, etc.

After this conclusion, we find it more convenient
to reexpress all the results plotting log t instead of t
and then fitting to a Gaussian, as shown in the upper
part of Fig. 2, which refers to the same case of Fig. 1.
The distribution for secondary e+e− has practically a
log-normal shape. It is also interesting to look at the
distribution, for the same energy, radial bin, etc., when
secondary muons and charged hadrons are selected.
This is shown in the bottom part of Fig. 2.

The resulting distribution, for this primary energy
and distance from the core, is even more asymmetric
than that of electrons or photons. The consequence is
that neither the pure gamma or the pure log-normal
distribution succeed in fitting the delay distribution up
to large t values. At smaller distances from the core,
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Fig. 1. Log-normal and Gamma fit to the delay distribution of
secondary γ’s and from primary 100 TeV protons, as detected
at 2000 m a.s.l. in the V radial region (stand-alone FLUKA96
simulation).

Fig. 2. Above: Gaussian fit to the log10 t distribution of secondary
γ’s and from primary 100 TeV protons, as detected at 2000 m a.s.l.
in the V radial region (stand-alone FLUKA96 simulation). Below:
log10 t distribution of secondary muons and charged hadrons, for
the same primary energy and distance from the shower core.

also for muons and charged hadrons, the log-normal
approximation works better. However, in the follow-
ing, we shall limit ourselves to the discussion of the
results for e+e− and γ’s, since their density largely
dominates that of muons, or residual charged hadrons.
We recognize that the case of muons and other charged
particle would deserve a dedicated study, also in view
of the fact that it has been recently advocated the use
of the arrival time of muons for measurements re-

lated to the mass composition of primary cosmic rays,
using the so-called “Time Track Complementarity”
(TTC) [35]. At present we are not able to perform
with our tools a detailed study of this method, since
our Monte Carlo code does not allow, in this version,
the treatment of nuclear projectiles and the primary
energies required for this purpose.

In any case, it already appears that also the log-
normal fit is not sufficient to weight carefully the
whole t range. Such a fit usually takes good care of
the bulk of the events, but the extreme tails of the log t
distributions exhibit deviations from a perfect Gaus-
sian behaviour. As a matter of fact, the left tail is very
important, since it corresponds to the early front of
the shower that affects the experimental trigger time.
The right tail refers to the very delayed component of
EAS. In order to look for a more precise description
of the simulation results, we characterise the log10 t
distribution and its deviations from a pure log-normal
one by means of a set of parameters. We find conve-
nient the use of central moments (i.e., the moments
calculated around the mean). Starting from the values
of a finite set of these moments, the distribution can
be reproduced (and directly sampled in Monte Carlo)
with a sufficient degree of approximation, as demon-
strated in Ref. [36]. We consider a variable ξ defined
by ξ = log10(t)− µ1/σ, where µ1 and σ are the av-
erage and the r.m.s. of the log10(t) distribution. If the
f(ξ) distribution function (p.d.f. in the following)
can be approximated by a standard normal g(ξ), then
f(ξ) can be expanded in series of the derivatives of
the standard normal function,

f(ξ) = g(ξ)

{
1 +

µ3

6σ3
H3 +

1
24σ4

(µ4 − 3)H4

+
µ2

3

72σ6
H6 + · · ·

}
, (4)

where Hn are the Hermite polynomials of order n and
µn are the central moments of f(ξ),

µn =
N∑
i=1

(log10(ti)− µ1)n

N
. (5)

This is also known as the Graham1Charlier expan-
sion (GC in the following). We have chosen to give
the first four moments of log10(t) distributions. This
set seems sufficient to express the features of the delay
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distributions in most cases, but there are some limita-
tions, as discussed in the literature, which would de-
mand for higher order moments. For instance, when
µ4 increases above a certain limit, moments of an or-
der greater than n = 4 must be considered in the ex-
pansion, otherwise the distribution becomes neither
unimodal neither positive defined in the whole range.

However, we must stress how the moments of high
order are subject to statistical fluctuations in case of a
small number of entries in a distribution. In that case
the errors induced by such fluctuations might be even
larger than that due to the omission of such moments.

To show how the G.C. expansion works, in Fig. 3
we show the comparison between the pure log-normal
and the GC expansion fits to the short delay region of
the same distribution of Fig. 1 (please note the linear
scale!). Such an improvement can be seen also at large
delays.

In summary, a better χ2 is obtained but usually the
first two moments resulting from the fit, common to
the two functions, are the same within the fit errors
for the two case. We stress that, for most of the cases,
these first two moments (i.e., the log-normal approx-
imation) are sufficient to describe the time delay dis-
tribution from the experimental point of view (i.e.,
log(t/ns) >0), with the noticeable exception of long
tails at large radial bins for proton showers, as will be
discussed in Section 5.

An important outcome of the series expansion in
terms of moments is that it is possible to derive an
expression which allows to have a direct Monte Carlo
sample of the the desired p.d.f. with good accuracy
starting from a random number normally distributed
ξ without any rejection. This is described and demon-
strated in [36]. The relation between variable x to be
generated with average µ, standard deviation σ and
central moments µn, and the normal distributed num-
ber ξ is given by

x =µ+ σ
[
ξ +

µ3

6σ3
(ξ2 − 1)

+
µ4 − 3µ2

2

24σ4
(ξ3 − 3ξ)

− µ2
3

36σ6
(2ξ3 − 5ξ)

]
, (6)

with the µn giving the nth central moments of the x
distribution function. Of course µ2 = σ2.

Fig. 3. Log-normal and GC fits to the small delay region of the
distribution of secondary γ’s and from primary 100 TeV protons,
as detected at 2000 m a.s.l. in the V radial region (stand-alone
FLUKA96 simulation.

Fig. 4. Comparison between the M.C. data the momentum expan-
sion and the sampling described in [36].

An example of the functionality of this sampling
method is shown in Fig. 4 where the M.C. output, the
momentum expansion and the sampled data from this
expansion are superimposed.
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Further differences, such as those discussed in Sec-
tion 5, can be considered as an estimate of the sys-
tematic error related to the choice of different MC al-
gorithms and interaction models.

4. Results

In this section we present the M.C. results giving
information about the four moments that appear in
the expansion of Eq. (6), for different sets of pri-
mary particle, secondary produced and distance from
the shower core (radial bin). For practical conve-
nience, instead ofµ2, µ3, µ4, in the following we shall
use r.m.s (

√
µ2), skewness (µ3/µ2

3/2) and kurtosis
(µ4/µ

2
2 − 3) in place of µ3 and µ4. For each set of

the three quoted parameters, we obtained these quan-
tities in two ways: by direct computation of the mo-
ments from the logarithm of the arrival times, and by
fitting the log(t) distribution with the GC expansion
with the moments used as fit parameters. A quantita-
tive comparison of this two set of moments is made
using the computed one as fixed parameters of the GC
function and fitting the log(t) histogram with only the
normalisation as a free parameter. In most cases, the
two sets of resulting moments are in good agreement,
within the errors, and also the χ2 values from the two
fits are similar. Important exceptions are those relative
to the regions where we had low statistics. There, the
moments obtained from the general fit generally give
a worse approximation of the data than those directly
computed.

We will show how the behaviour of the parame-
ters is rather smooth, so that all intermediate cases
in radius and detection height can be easily obtained
by interpolation. We shall express the results in two
ways: we will consider the moments of the average
time distribution of single secondary particles (i.e.,
the distributions obtained summing the arrival times
for each particles and for all the primary showers),
but we shall also give quantitative information on the
statistical fluctuations of these moments from event to
event. Unfortunately, our simulation runs at the highest
energies have only a small number of events, so that
while the single particle distribution is always mea-
sured with high accuracy, the fluctuations on an event
by event basis are studied with less precision.

4.1. The p.d.f. moments

The obtained moments 1 for the distributions
recorded at the observation level of 2000 m a.s.l. are
given in the tables reported in the appendix. As pre-
viously stated, we limit ourselves to the results for
secondary e+e− and γ, which dominate the shower
size. We refer mainly to the level of 2000 m a.s.l.
since, in applications like gamma-astronomy, it is the
most favourable among the three a priori foreseen
observation levels, although higher altitudes would be
even more appealing for this purpose. The tables of
parameters at the other lower observation levels can
be obtained from the authors.

In this section we present a subsample of these re-
sults in a graphical way in order to discuss the es-
sential features. We plot the moment values without
the corresponding error as derived from the fit. This
is because those errors are dominated by the gener-
ated statistics and are smaller than the actual shower
to shower fluctuations, which instead are specifically
reported in this paper. There is also another important
comment about these results. Since the moments have
been extracted from a fit, there exists some degree of
correlation among them. This makes even less signifi-
cant the error on a single parameter. We cannot report
here the covariance matrix for all the relevant cases,
and the irregularities visible in these figures are not
simply due to statistical fluctuations. Correlations are
such that the evolution of the resulting distribution is
much smoother than that of single parameters.

In Fig. 5 the moment values are shown versus the
logarithm of the primary energy for three radial bins,
for the case of showers induced by γ primaries and
in Fig. 6 are plotted the same quantities for proton
induced showers.

The most striking feature is that the average value
of log(t) is almost independent from primary energy
(at least in the range considered by our simulation),
the kind of primary or secondary particle, and changes
only with the radial bin.

If we adopt the log-Gaussian approximation, we
remind that, for this distribution, the correspondence
between 〈t〉, σt and 〈log10 (t)〉, µ2 is given by

1 For the sake of simplicity, we shall use in the following the
term moment, although r.m.s, skewness and kurtosis are not the
true moments.
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Fig. 5. First central momenta of the arrival time p.d.f. versus log(E) for secondary γ from γ primary in 3 different radial bins. Here r3,
r5, and r8 stand for radial bin III, V and VIII.

log10〈t〉 = 〈log10 (t)〉+
µ2

2
loge(10) , (7)

σt = 〈t〉
√

(10µ2 loge(10) − 1) . (8)

The increase in the average delay (which we remind
is measured with respect to a light ray) as a function
of distance from the shower core reflects the fact that
moving to the outer regions of the shower, the average
energy of secondary particles decreases, and therefore
the deviations from a straight line trajectory become
more important.

The values of
√
µ2 are slightly different according

to the different primary or secondary species, but is
substantially constant with respect to the primary en-
ergy for γ induced shower and shows a weak depen-
dence from this parameter for proton primary. We also
notice an apparent reduction of the variance (i.e., a
shrinkage of the distribution) as function of the radial

distance from the core. One should not be induced in
error, since we plot the variance of log t: it can be ver-
ified that transforming back to the t variable, the ef-
fective width of the delay distribution (directly related
to the time thickness of the shower disk) increases as
a function of distance. Let us take a numerical exam-
ple; for a primary gamma of 10 TeV, we have a r.m.s.
around 0.6 in the third radial bin, when the average
is 0.004. It means that the 68% fraction in log t is in
the range 0.1816.0 ns. Instead, in the eighth radial bin,
the r.m.s. drops 0.28, while the average increases to
2.6. Therefore, the 68% fraction in log t is now in the
range 11811350 ns.

The higher moments are very different for the two
primaries: roughly speaking the proton induced show-
ers have higher third and fourth moments, that is, the
log(t) p.d.f. has a less log-normal shape. In order to
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Fig. 6. First central momenta of the arrival time p.d.f. versus log(E) for secondary γ from proton primary in 3 different radial bins. Here
r3, r5, and r8 stand for radial bin III, V and VIII.

understand that, but also to give a clearer idea of the
evolution of time delay distributions, we show in Fig. 7
the log t distributions at 10 TeV for γ and proton show-
ers in few different radial bins. We can clearly see
that while there is a nearly log-Gaussian bulk almost
identical in the two cases, an additional tail at high de-
lays appears for proton showers, particularly visible at
large distance from the shower core. Our fit is unable
to follow completely this tail, which presents itself as
a distinct family of particles. Indeed the population of
these highly delayed particles is only a very small frac-
tion of the total number of arriving e.m. particles. We
postpone the specific discussion on this phenomenol-
ogy in Section 5. Coming back to the general features
of the delay distribution, we stress that the extracted
moments describe the average arrival time distribu-

tion functions. Obviously, remarkable fluctuations can
be detected in a event-by-event analysis of the gener-
ated data. For example, in Fig. 8 we superimpose the
electron arrival time distribution for 4 different show-
ers induced by a 100 TeV γ primary. The differences
in shape and normalisation for the different showers
are evident. This effect is amplified in the showers in-
duced by proton primaries. This is highly correlated to
the large fluctuations in the height of the first inelas-
tic interaction. In Fig. 9 are presented the momenta
fluctuation for γ primaries, to be compared with much
bigger fluctuation presented in Fig. 10, corresponding
to the proton primaries. As expected, all the fluctua-
tions shows a decreasing behaviour with the energy.
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Table 1
Percentage of delayed particle and relative abundance of neutrons, photons and electrons for different radial bins, in EAS induced by a
100 TeV proton primary

Rad. bin Time thr.
Ndelayed

Ntotal
× 10−4 Nγ

Ndelayed

Nneutrons

Ndelayed

Ne+e−

Ndelayed

II ≥ 102 ns 9.3 89.5 (%) 3.5(%) 7.0(%)
V ≥ 103 ns 5.4 30.0 (%) 59.0 (%) 4.0(%)
VIII ≥ 104 ns 196.8 6.5 (%) 93.0 (%) 0.5(%)

Fig. 7. log10 t distributions at 10 TeV for proton (above) and γ
(below) showers in few different radial bins. Here r2, r5, and r8
stand for radial bin III, V and VIII.

Fig. 8. Electrons arrival time distributions for single showers from
gamma 100 TeV primary.

5. Discussion of the origin of delayed particles

The time structure of e+e− and γ secondaries from
hadronic and pure e.m. showers shown in Fig. 7 is
rather similar, as far as the nearly log-Gaussian bulk
is concerned. The main difference consists in the ap-
pearance, in the hadronic showers, of a slow e.m.
component which becomes more and more visible at
large distance from the shower core. Such a compo-
nent seems to constitute a different family, really well
separated from the major population. It can extend it-
self up to tens of microseconds. We have investigated
in some detail the simulation steps, in order to under-
stand the physical origin of such a delayed compo-
nent. We have learned, of course, that the bulk of our
time delay distribution come from the relativistic part
of the shower, namely from the e.m. showers coming
fromπ0 decay. Instead, the delayed family in hadronic
showers comes from the de-excitation of air nuclei af-
ter the interactions with neutron of energy below few
tens of MeV. These neutrons are quite slow, and for
this reason separate easily from the relativistic compo-
nent. Of course, this secondary electro-magnetic com-
ponent is a small fraction of a much larger popula-
tion of neutrons which dominates the shower disc at
large distances. Table 1 shows the percentage fraction
of delayed particles, neutrons, γ and electrons, above
a radial dependent time threshold, for 100 TeV pro-
ton primary at 2000 m a.s.l. The time threshold for a
given radial bin has been chosen in such a way to ap-
proximately define the transition region between the
log-normal bulk and the additional tail.

The treatment of nuclear effects, and in particular
of de-excitation processes, is one of the most interest-
ing feature offered by the FLUKA code. The descrip-
tion of the modelization of these processes is given
in Refs. [37,38]. We have to notice that also in the
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FLUKA interface of GEANT 3.21 a nuclear evapora-
tion model is present, but it much more simplified and
approximated with respect to that of the quoted refer-
ences. We are aware that this new evaporation model is
now also interfaced to CORSIKA [25], version 5.60,
when the DPMJET interaction model [39] is chosen.
However, such a package in the frame of CORSIKA
is not yet available for public distribution.

Here we try to summarize the possible different low-
energy reactions which can contribute to the process
under investigation.

(a) Capture reactions (n, γ): very probably these
are not the relevant phenomena in our case, since
these would give photons with much larger delays
than those considered in our distributions. However,
in general they have a small cross section. This re-
action can be relevant for Ar (630 mbarn) through
the process 40Ar(n, γ)41Ar. On this respect we have
to make the following remark. The present simulation
has been performed in the case of a dry atmosphere,
but in case of a relevant presence of humidity in air
or near the soil (in presence of snow for instance),
the build-up of capture reactions can be relevant due
to the thermalization of neutrons on H nuclei.

(b) Reactions (n, n′), where the neutron is scat-
tered leaving the nucleus in an excited state. The resid-
ual nucleus will decay to the ground state emitting a
cascade of photons between the different levels. This
phenomenon is one of the most important sources of
delayed photons, since an energy just above the first
excited level is enough. For N, the first three excited
levels are at 2.319, 3.948, 4.915 MeV. For Ar they are
at 1.461, 2.121, 2.524 MeV, while for O they are at
6.049, 6.130, 6.919 MeV (therefore, this reaction is
less relevant in the O case). The excitation of higher
levels is usually negligible. The lifetime of these ex-
cited levels is quite short (ns scale or less), so that
these photons are promptly emitted. Furthermore, the
model makes use of an isotropic angular distribution.
This is not very different from reality.

(c) There are also reactions with production of
other particles together with additional γ’s. We can
quote, in order of increasing energy threshold:
1 (n, p); among these, an important exception is the

celebrated 14N(n, p)14C, which does not produce
γ’s;

1 (n, 2n); this is practically closed for O nuclei below
about 20 MeV, but is open for the other nuclei of

air even at lower energies;
1 (n, α);
1 (n, d);
1 (n, t);
1 (n, kp), with k produced protons;
1 (n, kα), with k produced α’s.
For each of these processes, the cross section rises
quite fast above the threshold.

The reason why we notice the delayed family at
large distance is that the low energy neutrons can be
found more easily in the periphery of the shower,
where energy is degraded. Furthermore, this nonrela-
tivistic component is obviously much more smeared
in space than the relativistic one. Of course, the de-
layed neutron component can give much larger sig-
nals in a given detector (for instance in a scintillator
array) with respect to the associated secondary e.m.
component. However, we would like to stress that in
case of nuclear projectiles (a case outside the scope
of the present simulations) we shall have also exci-
tation of the nuclear fragments coming from the pro-
jectile. Unlike the case of the excitation of the target
nuclei, the photons (and other particles) following the
de-excitations of the fast moving fragments will be
Lorentz-boosted in the laboratory frame, in order to
contribute in a more efficient way to the energy de-
position. In particular, we advance the hypothesis that
they can give rise to subshowers having some delay
with respect to the first particles in the EAS disc. For
instance, we suggest that this could be the basis for
an explanation of the observation of a delayed compo-
nent [24] in VHE Extensive Air Showers, as observed
in the COVER-PLASTEX detector in the GREX ar-
ray [2].

We wish to point out that the inclusion of these pro-
cesses in simulation codes for high energy cosmic ray
physics has not yet become a common practice. There-
fore, these phenomena might have escaped from other
simulation studies, while the existence of such delayed
particles might have some experimental relevance.

6. Comparison with experiments

We compare our results with the EAS-TOP [4] ar-
ray experimental data. In Fig. 11 we plot the average
secondary delay from the first particle, with respect
to the radial bin. This values refer to the photons pro-
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Fig. 9. Fluctuations of first central momenta of the arrival time p.d.f. versus log(E) for secondary γ from proton primaries. Here r3, r5,
and r8 stand for radial bin III, V and VIII.

duced by a 100 TeV, proton initiated EAS as detected
at 2000 m a.s.l. The EAS-TOP signal is dominated by
the secondary electrons, but we remark that, at least in
this range of parameters, the differences with respect
to the time distribution of secondary electrons appear
to be very small. On the other hand, the number of
photons is much larger [26], and this allows a reduced
statistical uncertainty. The average value we obtain
seems to reproduce the EAS-TOP experimental data.
These are divided in 2 samples, corresponding to the
cases in which they had at least 1 or 4 particles in each
of the triggered sub-detectors. The event class corre-
sponding to at least 1 particle in the detector should
correspond to a primary energy close to the trigger
threshold of EAS1TOP (' 100 TeV, mostly from pro-
ton primary). At distances from the core lower than

100 m, the two classes are not distinguishable. In the
same figure we also show that our results are system-
atically higher than those of Ref. [1]. There the cal-
culation was done only for gamma primaries, but our
results, in the same range of distance from the shower
core, do not exhibit substantial differences between
the two species of primaries 2 . Also the delay distribu-
tion width (that is the shower disk thickness), is well
reproduced by our simulation: in Fig. 11 is reported
the width of the delay distribution as measured at 70%
of the height of the peak, for different radial bins. The

2 We must note, however, that the numbers from Ref. [1] were
obtained using a threshold at 5 MeV. In a more recent paper [40],
Di Sciascio et al. describe new calculations performed with 1
MeV threshold. In that case, their results exhibit a much better
consistency with our calculations.
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Fig. 10. Fluctuations of first central momenta of the arrival time p.d.f. versus log(E) for secondary γ from proton primaries. Here r3, r5,
and r8 stand for radial bin III, V and VIII.

agreement between Monte Carlo and the EAS-TOP
data is very good. In spite of the goodness of the sim-
ulation results we want to stress the effect of a finite
detector resolution on the simulated arrival time of the
secondaries. In particular, in the first radial bins (near
the axis of the shower), the arrival time distribution
are peaked at time values which can be lower than the
typical experimental time resolution. Thus the result
of the folding of the simulated p.d.f. with the experi-
mental error distribution drastically modifies the dis-
tribution in these radial bins, producing a flattening at
arrival times close to the time resolution value.

This effect is shown in Fig. 12 where we plotted a
log-normal function with 〈log10(t/ns)〉 = −0.54 and
σlog10(t/ns) = 0.75 (similar to the delay distribution
expected at 2000 m a.s.l for secondary photons from

primary gamma, in the 2nd radial bin), superimposed
to the same distribution folded with a Gaussian error
function with σexp = 1 ns. The effect of the exper-
imental resolution is clearly seen on the bulk of the
events, even if the average value of the arrival time is
bigger then the resolution value.

We remark also that usually the experimental re-
sults are expressed as particle delay distribution as
measured since the arrival of the experimental trigger.
This is different from the delay time from the light
cone that we used in M.C. These two distributions are
almost equal if the shower is so populated that the
first triggering particle has a minimum delay from the
light cone, but can be quite different for low statistic
showers, where the triggering particle may arrive after
a sizeable delay from the light cone. In this case the
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Fig. 11. Average particle delay from the first arrived particle and
width of the delay distribution at 70% of the peak vs the shower
axis distance for 100 TeV primary protons (see text for details).

Fig. 12. Effect of the folding of a Gaussian experimental resolution
(σ= 1 ns) with a log-normal distribution, similar to the delay
distribution expected at 2000 m a.s.l for secondary photons from
primary gamma, in the 2nd radial bin.

M.C. distribution are biased toward the longer delays
with respect to the experimental results by an amount
of time given by the average delay of the first particle.

7. Conclusion

We have simulated the time delay of vertical Ex-
tensive Air Showers by means of the FLUKA Monte
Carlo code. We have shown how the logarithm of the
time delay distribution of a shower front can be eas-
ily expressed as a Gaussian expansion in terms of a
few parameters. Such parameters exhibit a smooth be-
haviour as a function of energy, thus allowing the ex-
trapolation to higher energies of the presented Monte
Carlo simulation results.

The proposed expansion allows the construction of
fast algorithms useful in detector design and data in-
terpretation, when the running of a complete detailed
simulation would result in unnecessary heavy job. Dif-
ferences between protons and gamma initiated show-
ers are observed. In particular, hadronic showers ex-
hibit a delayed component at large distance from the
shower axis. These differences have been interpreted
as due to effects coming from nonrelativistic particles
in the shower. In particular, we found that the deexci-
tation of air nuclei following the interaction with low
energy neutrons are the essential contributions to the
highly delayed e.m. component in hadronic showers.
We remark how this can be obtained at simulation
level, only with very specialized and detailed codes,
not commonly used so far in cosmic ray physics. In
particular situations, these results can be used as an in-
terpretation basis for the understanding of apparently
anomalous delays.
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Appendix A. Tables of moments and of their
fluctuations

Table A.1
Central momenta for the distribution function of log(t/ns) for
secondary γ produced at 2000 m a.s.l. by a γ primary, as obtained
from the FLUKA stand-alone simulation. Primary γ, Sec. γ, hdet =
2000 m a.s.l.

Rad. bin Average Sigma Skewness Kurtosis

E0 = 562. GeV
1 −.77± .45 1.03± .28 .3± .7 3.2± 1.1
2 −.35± .30 .83± .19 .5± .6 3.0± .7
3 .05± .26 .71± .17 .7± .7 4.1± 1.3
4 .51± .25 .61± .15 .3± .6 3.1± .9
5 1.04± .18 .50± .09 .2± .5 2.6± .7
6 1.54± .12 .44± .07 .0± .4 2.5± .6
7 2.04± .10 .36± .05 −.2± .4 2.6± .6
8 2.49± .10 .30± .05 −.3± .5 2.8± .8
9 2.91± .11 .24± .07 −.2± .6 3.0± .7

E0 = 1000. GeV
1 −1.12± .41 1.01± .23 .5± .4 3.1± 1.0
2 −.37± .30 .79± .24 .3± .5 3.0± 1.0
3 .02± .23 .66± .14 .5± .6 3.3± .8
4 .53± .19 .58± .09 .4± .4 3.1± .7
5 1.06± .11 .51± .07 .3± .3 2.7± .5
6 1.56± .08 .42± .05 .0± .2 2.5± .4
7 2.06± .07 .35± .03 −.2± .3 2.6± .4
8 2.51± .07 .28± .03 −.2± .4 2.5± .6
9 2.92± .08 .23± .05 .0± .5 2.6± .7

E0 = 1778. GeV
1 −1.16± .32 .99± .24 .2± .9 2.9± 1.6
2 −.47± .33 .79± .17 .6± .5 4.3± 1.1
3 .02± .22 .66± .14 .5± .5 3.3± .8
4 .55± .12 .57± .08 .3± .3 3.1± .6
5 1.06± .06 .49± .05 .3± .2 2.7± .4
6 1.58± .05 .42± .03 .0± .2 2.5± .3
7 2.07± .05 .34± .02 −.2± .2 2.5± .3
8 2.53± .05 .28± .02 −.1± .3 2.8± .6
9 2.94± .06 .23± .05 .0± .5 2.9± .7

E0 = 3162. GeV
1 −1.04± .37 .94± .20 .8± .6 4.5± .9
2 −.53± .25 .73± .15 .6± .4 4.1± .9
3 .02± .17 .65± .11 .5± .3 3.5± .7
4 .55± .08 .56± .05 .4± .2 2.9± .4
5 1.07± .06 .48± .03 .2± .1 2.7± .3
6 1.59± .04 .41± .02 .0± .1 2.4± .2
7 2.08± .04 .34± .02 −.2± .1 2.6± .2
8 2.54± .04 .28± .02 −.2± .2 2.8± .3
9 2.96± .05 .23± .03 −.1± .3 3.0± .5

Table A.12 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 5623. GeV
1 −1.44± .32 .95± .17 .1± .5 4.2± .7
2 −.54± .13 .66± .09 .7± .4 4.0± .8
3 .00± .06 .60± .08 .5± .2 3.5± .4
4 .57± .04 .53± .04 .4± .1 3.1± .2
5 1.10± .04 .47± .03 .2± .1 2.7± .2
6 1.62± .05 .40± .02 −.05± .08 2.6± .1
7 2.11± .05 .33± .01 −.20± .08 2.7± .2
8 2.56± .05 .28± .01 −.2± .1 2.9± .4
9 2.97± .06 .23± .01 .0± .2 2.6± .3

E0 = 10000. GeV
1 −1.02± .28 .98± .11 .7± .3 5.0± .6
2 −.56± .12 .73± .08 .6± .3 3.7± 1.1
3 .03± .04 .62± .05 .6± .1 3.5± .2
4 .55± .03 .55± .03 .38± .06 3.1± .2
5 1.08± .03 .48± .02 .24± .08 2.6± .1
6 1.59± .03 .41± .01 .01± .05 2.46± .09
7 2.09± .02 .34± .01 −.14± .07 2.6± .1
8 2.55± .03 .28± .01 −.19± .07 2.7± .1
9 2.96± .03 .23± .01 .0± .2 2.9± .4

E0 = 17780. GeV
1 −1.20± .15 .85± .06 .7± .2 3.4± .3
2 −.53± .05 .70± .04 .6± .1 3.7± .3
3 .02± .03 .61± .03 .51± .06 3.4± .1
4 .55± .02 .53± .02 .35± .04 3.0± .1
5 1.10± .02 .46± .01 .18± .04 2.62± .07
6 1.62± .03 .40± .01 −.01± .02 2.58± .06
7 2.12± .03 .33± .01 −.18± .04 2.6± .1
8 2.58± .02 .27± .01 −.16± .08 2.8± .1
9 3.00± .03 .23± .01 .0± .1 3.0± .2

E0 = 31620. GeV
1 −1.28± .16 .89± .03 .5± .1 3.6± .2
2 −.52± .01 .68± .02 .70± .09 3.7± .2
3 .02± .01 .61± .02 .54± .06 3.48± .09
4 .56± .01 .54± .02 .39± .05 2.98± .05
5 1.10± .01 .46± .01 .15± .02 2.67± .04
6 1.62± .01 .40± .01 −.03± .01 2.53± .07
7 2.11± .02 .33± .01 −.18± .05 2.65± .06
8 2.57± .01 .27± .01 −.16± .03 2.72± .07
9 2.99± .02 .23± .01 −.1± .2 3.0± .2

E0 = 56230. GeV
1 −1.32± .13 .88± .04 .4± .2 3.5± .4
2 −.54± .02 .67± .03 .58± .06 3.9± .2
3 .00± .01 .59± .02 .50± .02 3.63± .07
4 .56± .01 .52± .01 .37± .03 3.17± .04
5 1.11± .01 .46± .01 .16± .03 2.73± .05
6 1.64± .02 −.39± .01 .05± .03 2.58± .03
7 2.14± .02 .32± .01 −.19± .03 2.71± .05
8 2.60± .02 .27± .01 −.15± .03 2.8± .2
9 3.02± .02 .22± .01 −.01± .08 3.0± .2
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Table A.12 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 100000. GeV
1 −1.39± .11 .88± .02 .3± .2 3.8± .3
2 −.55± .02 .65± .03 .57± .05 4.0± .2
3 .01± .01 .58± .02 .50± .02 3.56± .07
4 .57± .02 .51± .01 .34± .03 3.12± .03
5 1.12± .02 .45± .01 .14± .03 2.77± .04
6 1.65± .03 −.39± .01 .07± .03 2.58± .04
7 2.15± .02 −.32± .01 .18± .02 2.7± .1
8 2.61± .02 .27± .00 −.15± .03 2.9± .1
9 3.02± .02 .22± .01 −.01± .08 3.0± .2

Table A.2
Central momenta for the distribution function of log(t/ns) for
secondary e+e− produced at 2000 m a.s.l. by a γ primary, as
obtained from the FLUKA stand-alone simulation. Primary γ, Sec.
e+e−, hdet = 2000 m a.s.l.

Rad. bin Average Sigma Skewness Kurtosis

E0 = 562. GeV
1 −.45± .11 1.13± .20 −1.05± .6 3.43± .6
2 .03± .05 .80± .15 .1± .4 2.4± .5
3 .35± .24 .64± .14 .0± .6 2.4± .6
4 .65± .22 .55± .15 −.3± .5 3.0± .5
5 1.09± .18 .42± .11 −.1± .7 3.1± .7
6 1.40± .14 .41± .13 .0± .5 3.8± .6
7 1.85± .16 .31± .11 .2± .7 3.8± .8
8 2.38± .12 .28± .05 .0± .3 2.8± .4
9 2.78± .12 .19± .05 −.52± .3 2.75± .4

E0 = 1000. GeV
1 −.39± .51 .93± .20 .0± .6 2.2± .5
2 .06± .27 .70± .13 −.2± .5 2.2± .9
3 .31± .20 .63± .14 .0± .5 2.5± .6
4 .73± .24 .54± .14 −.2± .6 2.7± .8
5 1.06± .19 .42± .09 −.1± .5 3.1± .8
6 1.44± .15 .36± .09 .1± .6 3.4± 1.0
7 1.83± .11 .30± .07 .0± .6 2.6± .6
8 2.36± .15 .28± .06 .2± .8 3.1± 1.0
9 2.83± .15 .24± .06 .91± .8 4.10± 1.0

E0 = 1778. GeV
1 −.54± .38 .95± .18 −.2± .4 2.5± .4
2 .04± .33 .73± .15 −.2± .5 2.5± .6
3 .33± .25 .61± .16 −.2± .5 2.5± .8
4 .73± .19 .51± .11 −.3± .5 2.5± .6
5 1.05± .12 .41± .07 −.1± .5 2.7± 1.0
6 1.45± .10 .34± .07 −.1± .6 3.3± 1.0
7 1.88± .12 .29± .07 .0± .5 2.9± .7
8 2.35± .10 .27± .06 .3± .7 2.9± .9
9 2.91± .10 .26± .06 −.24± .8 3.03± .9

Table A.22 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 3162. GeV
1 −.56± .40 .84± .12 −.1± .4 2.4± .5
2 −.09± .25 .69± .14 .1± .4 2.8± .8
3 .33± .15 .60± .09 .2± .3 2.7± .4
4 .73± .11 .50± .06 .0± .3 2.5± .5
5 1.07± .09 .41± .05 .0± .4 2.8± .6
6 1.44± .07 .34± .06 .2± .4 3.0± .6
7 1.90± .08 .30± .06 .0± .5 3.5± 1.1
8 2.39± .09 .27± .07 .2± .5 2.6± .7
9 2.88± .09 .24± .07 .05± .5 2.34± .7

E0 = 5623. GeV
1 −.89± .33 1.03± .19 −.3± .4 3.0± .9
2 −.14± .20 .67± .07 .3± .3 2.7± .4
3 .32± .15 .58± .07 −.2± .3 2.5± .3
4 .75± .10 .48± .05 −.2± .3 2.6± .4
5 1.11± .08 .40± .03 −.1± .3 2.7± .4
6 1.48± .07 .33± .03 .0± .2 3.2± .4
7 1.92± .06 .29± .03 .0± .4 3.0± .5
8 2.40± .09 .27± .05 .1± .6 3.2± .8
9 2.90± .09 .26± .05 .04± .6 2.26± .8

E0 = 10000. GeV
1 −.67± .31 .96± .19 −.3± .5 3.0± .5
2 −.13± .16 .76± .10 .0± .3 2.5± .4
3 .34± .07 .56± .05 .0± .1 1.5± .2
4 .74± .04 .48± .03 .0± .1 2.7± .4
5 1.08± .05 .40± .03 .0± .1 2.5± .2
6 1.44± .04 .33± .02 .1± .2 2.9± .3
7 1.90± .04 .30± .03 −.1± .3 2.7± .4
8 2.38± .05 .26± .03 .2± .3 3.1± .5
9 2.85± .09 .25± .04 .5± .3 2.5± .4

E0 = 17780. GeV
1 −.61± .15 .92± .13 .1± .2 2.5± .4
2 −.05± .05 .68± .04 .1± .2 2.3± .3
3 .35± .05 .57± .03 .0± .1 2.3± .1
4 .73± .03 .48± .02 −.2± .1 2.6± .2
5 1.11± .03 .41± .01 −.06± .10 2.6± .2
6 1.47± .03 .32± .02 .0± .2 3.0± .6
7 1.92± .03 .28± .02 .2± .2 3.0± .2
8 2.43± .06 .27± .02 .2± .2 3.1± .4
9 2.88± .07 .23± .04 .1± .3 2.2± .3

E0 = 31620. GeV
1 −.65± .19 1.21± .06 .11± .07 5.0± .1
2 −.05± .04 .68± .02 .2± .1 2.2± .2
3 .35± .03 .56± .01 −.01± .09 2.1± .1
4 .75± .02 .49± .02 −.16± .04 2.4± .1
5 1.10± .01 .41± .01 .01± .08 2.9± .1
6 1.47± .02 .33± .01 .15± .08 2.9± .2
7 1.92± .01 .29± .01 .1± .1 3.1± .3
8 2.39± .02 .26± .01 .0± .2 2.7± .3
9 2.88± .05 .23± .02 .3± .6 3.0± .9
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Table A.22 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 56230. GeV
1 −.73± .11 .90± .06 −.1± .1 2.5± .3
2 −.09± .03 .68± .01 .12± .07 2.3± .1
3 .35± .02 .57± .01 .00± .04 2.45± .08
4 .75± .01 .47± .01 −.01± .06 2.53± .06
5 1.12± .02 .40± .01 −.04± .06 2.7± .1
6 1.49± .02 .33± .01 .04± .06 2.8± .1
7 1.94± .02 .29± .01 .1± .1 3.0± .2
8 2.43± .03 .25± .01 .1± .1 2.7± .4
9 2.92± .07 .25± .02 .2± .3 3.1± .6

E0 = 100000. GeV
1 −.79± .11 .91± .01 −.02± .06 2.6± .2
2 −.08± .02 .66± .02 .14± .05 2.34± .06
3 .35± .02 .56± .02 .01± .03 2.48± .05
4 .77± .02 .47± .01 −.06± .04 2.60± .04
5 1.14± .03 .40± .01 −.01± .03 2.69± .04
6 1.51± .03 .33± .01 .09± .04 2.8± .2
7 1.96± .02 .29± .00 .11± .08 2.9± .2
8 2.45± .03 .27± .01 .1± .1 3.1± .2
9 2.93± .03 .22± .02 .1± .2 2.9± .4

Table A.3
Central momenta for the distribution function of log(t/ns) for
secondary γ produced at 2000 m a.s.l. by a proton primary, as ob-
tained from the FLUKA stand-alone simulation. Primary protons,
Sec. γ, hdet = 2000 m a.s.l.

Rad. bin Average Sigma Skewness Kurtosis

E0 = 562. GeV
1 .20± .40 .59± .14 1.12± .7 3.65± 1.4
2 .38± .34 .63± .13 .8± .6 3.3± 1.4
3 .55± .44 .64± .18 1.1± .9 3.9± 2.8
4 .62± .37 .64± .15 .8± .6 2.6± 1.1
5 .99± .28 .58± .14 .2± .6 2.7± 1.1
6 1.44± .25 .50± .13 .1± .7 2.6± 2.3
7 1.92± .21 .44± .12 −.1± .8 2.9± 2.4
8 2.36± .25 .41± .14 −.1± .9 3.1± 2.8
9 2.88± .34 .56± .19 .6± .9 5.6± 2.2

E0 = 1000. GeV
1 −.25± .30 .59± .19 1.3± .9 4.5± 3.1
2 −.35± .45 .74± .14 .9± .5 3.2± 1.4
3 −.04± .33 .64± .15 1.1± .5 3.2± 1.2
4 .46± .36 .62± .11 .4± .5 2.6± 1.3
5 1.04± .27 .52± .13 .1± .5 2.9± 1.6
6 1.51± .22 .48± .11 −.2± .5 2.8± 1.4
7 1.99± .21 .44± .11 −.5± .7 3.7± 2.7
8 2.45± .24 .38± .12 −.2± .9 3.1± 3.1
9 2.91± .32 .54± .17 .5± .9 5.5± 2.4

Table A.32 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 1778. GeV
1 .04± .24 .66± .07 .4± .9 3.0± 2.4
2 −.10± .40 .82± .18 .4± .6 2.8± .8
3 .12± .42 .72± .17 .8± .6 2.7± .9
4 .45± .32 .64± .11 .4± .5 2.7± .9
5 .97± .23 .54± .09 .1± .5 2.5± 2.2
6 1.49± .17 .47± .11 .0± .5 2.5± 1.9
7 1.99± .14 .40± .08 −.2± .8 2.7± 2.9
8 2.44± .19 .39± .11 −.2± .8 3.5± 2.8
9 2.93± .24 .50± .13 .5± .9 6.0± 2.6

E0 = 3162. GeV
1 −.60± .44 .78± .18 1.2± .6 4.2± 1.5
2 −.53± .41 .78± .13 .6± .6 2.9± 1.4
3 −.09± .42 .71± .13 .3± .6 2.9± .8
4 .48± .26 .59± .12 .2± .4 3.1± .9
5 1.02± .18 .53± .10 .0± .4 2.7± .8
6 1.53± .13 .45± .07 −.1± .4 2.6± 1.7
7 2.03± .13 .40± .06 −.3± .6 3.1± 2.5
8 2.47± .17 .37± .07 −.3± .8 3.2± 2.9
9 2.95± .25 .50± .14 .5± .7 5.5± 2.1

E0 = 5623. GeV
1 −.72± .48 .82± .25 .3± 1.0 2.7± 4.2
2 −.55± .63 .83± .17 .8± .6 3.1± .6
3 .03± .52 .65± .19 .5± .5 3.2± 30.3
4 .47± .23 .61± .09 .3± .4 2.8± 2.2
5 1.01± .12 .54± .10 .1± .3 2.8± .6
6 1.47± .13 .55± .10 −.5± .4 4.1± 1.4
7 2.03± .10 .40± .08 −.3± .4 3.1± 1.5
8 2.46± .15 .37± .09 −.3± .7 3.3± 2.7
9 2.92± .24 .49± .12 .3± .7 5.7± 2.0

E0 = 10000. GeV
1 −.61± .39 .89± .20 .2± .5 2.4± .7
2 −.46± .36 .81± .16 .5± .4 2.8± .8
3 −.05± .24 .71± .08 .4± .3 3.1± .5
4 .49± .12 .60± .07 .3± .2 2.9± .3
5 1.02± .07 .52± .05 .1± .2 2.8± .7
6 1.54± .10 .45± .07 −.1± .2 2.8± .9
7 2.03± .07 −.39± .04 .2± .3 2.8± 1.5
8 2.49± .08 .34± .05 −.2± .6 3.2± 2.4
9 2.96± .11 .43± .07 .5± .6 5.3± 1.8

E0 = 17780. GeV
1 −.62± .41 1.13± .13 .4± .3 5.8± .6
2 −.47± .33 .75± .04 .5± .3 2.7± .6
3 −.12± .17 .72± .07 .2± .2 3.4± .4
4 .48± .10 .58± .05 .2± .1 2.8± .3
5 1.06± .03 .49± .02 .13± .06 2.7± .3
6 1.57± .07 .43± .02 −.2± .2 2.7± .5
7 2.06± .05 .37± .02 −.2± .3 2.8± 1.0
8 2.51± .06 .33± .03 −.3± .4 3.4± 1.4
9 2.97± .03 .44± .03 .3± .5 5.9± 1.2
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Table A.32 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 31620. GeV
1 −1.34± .52 .92± .07 .4± .4 3.3± .5
2 −.56± .24 .74± .08 .5± .2 3.6± .5
3 −.02± .12 .64± .06 .3± .2 3.3± .3
4 .53± .04 .56± .04 .25± .07 3.0± .2
5 1.07± .05 .49± .03 .0± .1 2.7± .3
6 1.59± .05 −.43± .02 .1± .2 2.7± .4
7 2.09± .05 .37± .03 −.3± .3 3.0± 1.1
8 2.53± .06 .33± .04 −.3± .5 3.4± 1.2
9 3.00± .08 .42± .03 .7± .4 5.5± .8

E0 = 56230. GeV
1 −1.29± .33 .88± .05 .5± .2 3.4± .3
2 −.58± .05 .70± .05 .51± .09 3.5± .2
3 −.03± .03 .62± .04 .46± .03 3.3± .2
4 .52± .04 .55± .02 .27± .06 3.0± .1
5 1.08± .03 .48± .02 .12± .05 2.7± .1
6 1.61± .03 .41± .01 −.1± .1 2.7± .3
7 2.10± .04 .36± .02 −.3± .1 2.9± .6
8 2.56± .04 .31± .02 −.2± .4 3.2± .8
9 3.05± .05 .43± .02 .7± .2 5.8± .5

E0 = 100000. GeV
1 −1.25± .11 .88± .05 .5± .1 3.3± .2
2 −.58± .08 .71± .06 .5± .1 3.7± .2
3 −.03± .04 .64± .03 .39± .09 3.4± .2
4 .52± .02 .55± .02 .28± .05 3.04± .07
5 1.08± .03 .48± .02 .08± .02 2.8± .1
6 1.61± .03 −.41± .01 .11± .05 2.7± .2
7 2.10± .02 .35± .01 −.3± .1 2.9± .6
8 2.56± .03 .31± .02 −.2± .2 3.2± .6
9 3.02± .04 .40± .02 .6± .2 5.1± .6

Table A.4
Central momenta for the distribution function of log(t/ns) for
secondary e+e− produced at 2000 m a.s.l. by a proton primary, as
obtained from the FLUKA stand-alone simulation Primary protons,
Sec. e+e−, hdet = 2000 m a.s.l.

Rad. bin Average Sigma Skewness Kurtosis

E0 = 562. GeV
1 .26± .30 .43± .10 .37± .7 1.90± .10
2 .49± .27 .63± .11 .85± .6 3.74± .8
3 .57± .27 .59± .11 .2± .6 2.2± .8
4 .66± .26 .54± .11 .2± .7 2.1± 1.4
5 .93± .28 .50± .12 −.2± .8 3.4± 2.4
6 1.30± .23 .43± .12 .0± .7 2.9± 1.7
7 1.72± .28 .43± .19 .1± 1.0 3.5± 1.8
8 2.23± .36 .44± .20 .4± 1.0 3.5± 1.5
9 2.74± .34 .60± .27 .3± 1.0 5.8± 5.8

Table A.42 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 1000. GeV
1 .17± .29 .69± .19 .2± .5 2.2± .6
2 −.03± .36 .79± .15 .2± .5 2.1± .8
3 .17± .25 .68± .11 .2± .5 2.3± .6
4 .60± .17 .54± .11 −.2± .6 2.4± .8
5 1.02± .26 .47± .12 −.1± .6 3.3± 1.0
6 1.34± .24 .43± .12 −.1± .8 3.6± 3.1
7 1.81± .28 .58± .17 −.2± 1.1 5.8± 3.7
8 2.32± .34 .56± .19 1.0± 1.0 5.9± 2.1
9 2.77± .37 .50± .18 .2± .9 3.2± 1.9

E0 = 1778. GeV
1 .42± .40 .62± .20 .54± .5 2.50± .4
2 .15± .40 .78± .19 −.2± .4 2.3± .3
3 .28± .21 .69± .13 .0± .5 2.4± .7
4 .56± .18 .56± .13 −.1± .6 2.0± .8
5 .95± .18 .46± .11 .0± .7 2.8± 1.6
6 1.33± .19 .41± .10 .2± .7 3.2± 1.9
7 1.81± .20 .36± .11 .3± .8 3.1± 1.9
8 2.31± .29 .51± .16 .2± 1.0 4.8± 2.3
9 2.86± .24 .55± .20 1.1± .9 5.1± 1.8

E0 = 3162. GeV
1 −.32± .30 .77± .20 .1± .5 2.2± .8
2 −.14± .31 .80± .14 −.2± .4 2.7± .9
3 .20± .23 .67± .11 −.2± .4 2.5± .5
4 .63± .18 .53± .09 −.1± .4 2.8± 1.0
5 1.01± .18 .47± .11 −.2± .4 2.9± .6
6 1.36± .15 .40± .09 −.2± .8 3.3± 3.8
7 1.82± .19 .37± .13 −.1± 1.0 3.1± 3.6
8 2.32± .26 .42± .18 .3± .8 3.7± 2.1
9 2.88± .37 .58± .20 .0± .7 5.5± 1.5

E0 = 5623. GeV
1 −.31± .27 .85± .20 −.1± .6 2.4± 1.0
2 −.20± .46 .86± .16 −.1± .4 2.5± .6
3 .31± .24 .63± .14 −.1± .6 2.4± 1.1
4 .59± .26 .55± .11 −.4± .4 2.9± .5
5 1.00± .14 .47± .10 −.2± .5 2.8± 2.1
6 1.29± .15 .50± .11 −.5± .8 4.7± 2.4
7 1.83± .13 .40± .11 .0± .5 3.8± 1.5
8 2.34± .20 .41± .16 .4± .9 4.1± 2.1
9 2.83± .35 .65± .19 .5± .9 4.3± 1.6

E0 = 10000. GeV
1 −.16± .32 .83± .19 −.3± .4 2.7± .7
2 −.15± .28 .79± .15 −.2± .4 1.8± .5
3 .23± .22 .68± .10 −.3± .3 2.3± .6
4 .63± .12 .55± .08 −.2± .3 2.7± .3
5 1.01± .10 .46± .06 −.2± .5 2.9± 1.4
6 1.38± .13 .39± .07 −.1± .8 3.2± 4.4
7 1.81± .10 .37± .07 .1± .9 3.3± 4.1
8 2.33± .14 .38± .09 .2± .9 3.4± 2.6
9 2.88± .22 .56± .15 .5± .7 5.7± 1.6
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Table A.42 continued

Rad. bin Average Sigma Skewness Kurtosis

E0 = 17780. GeV
1 −.22± .42 .82± .14 −.1± .3 2.7± .3
2 −.12± .26 .78± .08 −.2± .5 3.4± 1.1
3 .21± .09 .67± .06 −.1± .2 2.9± .4
4 .63± .07 .53± .05 −.24± .10 2.7± .3
5 1.06± .04 .43± .04 −.1± .2 2.8± .5
6 1.40± .06 .37± .03 .0± .5 2.9± 3.5
7 1.85± .06 .34± .03 .1± 1.3 3.4± 5.8
8 2.34± .14 .38± .09 .1± .8 3.8± 2.1
9 2.93± .13 .50± .08 1.1± .5 4.5± 1.5

E0 = 31620. GeV
1 −.78± .43 .91± .13 .0± .3 2.0± .5
2 −.14± .21 .71± .08 −.1± .2 2.6± .3
3 .29± .12 .62± .06 −.2± .3 2.8± .8
4 .70± .05 .52± .03 −.14± .10 2.7± .3
5 1.07± .06 .44± .03 −.2± .1 3.0± .6
6 1.43± .06 .37± .03 −.1± .3 3.0± 1.2
7 1.87± .05 .35± .03 .0± .9 3.2± 3.4
8 2.38± .08 .38± .07 .3± .8 4.2± 2.3
9 2.88± .15 .47± .08 .5± .5 5.5± 1.0

E0 = 56230. GeV
1 −.73± .23 .90± .06 .1± .2 1.9± .3
2 −.17± .02 .70± .04 .0± .1 2.5± .3
3 .29± .05 .61± .03 −.02± .07 2.29± .09
4 .69± .04 .51± .02 −.15± .08 2.4± .4
5 1.08± .03 .43± .02 −.1± .1 2.7± .4
6 1.45± .03 .36± .02 .0± .3 3.0± 1.9
7 1.92± .04 .34± .02 .2± .3 3.3± 2.1
8 2.44± .06 .44± .04 .3± .2 4.9± 1.0
9 2.98± .09 .51± .04 .5± .3 6.1± .5

E0 = 100000. GeV
1 −.72± .14 .90± .03 .1± .2 1.9± .2
2 −.14± .08 .70± .06 .0± .1 2.3± .1
3 .29± .04 .61± .03 −.13± .07 2.6± .1
4 .69± .02 .52± .02 −.14± .04 2.68± .09
5 1.08± .03 .43± .01 −.08± .06 2.8± .2
6 1.45± .03 .36± .01 .0± .2 3.0± 1.9
7 1.90± .03 .34± .02 .0± .4 3.2± 2.1
8 2.42± .04 .37± .03 .4± .2 4.0± 1.2
9 2.96± .07 .51± .05 .6± .3 5.7± 1.1
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