Fig. 3. Proposed example.

numerical integration, the former set of equations is con-
siderably more convenient than is the latter. Indeed, to
bring Egs. (41)—(43) into a computer-integrable form, one
must first eliminate A4, a task that has no counterpart in
connection with the formulation of dynamical equations
based on Eq. (1). Moreover, once this elimination has been
accomplished, one is still faced with equations coupled in
the highest derivatives of dependent variables. The earlier
equations are free of such coupling.

The differences between using Egs. (1) and Egs. (37) be-
come ever greater as the systems to be analyzed become
ever more complex. The reader may find it interesting to
test this proposition by formulating equations of motion
for the system shown in Fig. 3, assuming that P, is unable to
move perpendicularly to R, (i = 1,...,N).

Solitons in undergraduate laboratory

V1. CONCLUSION

Asis well known, one of the most important attributes of
Lagrange’s equations of motion is that their use permits the
automatic elimination of certain internal and external con-
straint forces, namely, those associated with workless, ho-
lonomic constraints. Constraint forces associated with
workless, nonholonomic constraints come into evidence
via Lagrange multipliers and must be eliminated by alge-
braic means. In order to be able to employ the Lagrange
equations, one must work with generalized coordinates,
which both can increase the labor one must perform to
generate dynamical differential equations and can lead to
unnecessarily complex equations. By way of contrast, the
use of Egs. (1) permits the automatic elimination of a// con-
straint forces associated with workless constraints, and it
leads to equations having the simplest possible form, pro-
vided generalized speeds are selected optimally.

'T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft Dynamics
(McGraw—Hill, New York, 1983), p. 248.

*Reference 1, p. 259.

*H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading,
MA, 1980), p. 47.

“T. R. Kane and D. A. Levinson, AIAA J. 3 (2), 99 (1980).

Alessandro Bettini, Tullio A. Minelli, and Donatella Pascoli
Istituro di Fisica *'G. Galilei,” Universita di Padova, Via Marzolo, 8-35100 Padova, Italy

(Received 6 October 1982; accepted for publication 2 February 1983)

Teaching nonlinear phenomena, from an experimental point of view, in a laboratory for
undergraduates in physics has been a motivating experience. We report in this paper on an
advanced undergraduate laboratory on solitons in water. After recalling the main aspects of the
theory and the principal characteristics of the solitons, the experimental apparatus is described
and the results obtained by some students are discussed. A systematic check of the properties of
solitons is obtained. An overall evaluation of the laboratory is given at the end.

L INTRODUCTION

The study of wave phenomena in physics has been prac-
tically limited until recent years to linear systems; the situa-
tion dramatically changed after the discovery of the soli-
tons,' localized nonlinear waves that maintain their
identity even after a collision. Triggered by this discovery
many nonlinear dispersive systems have been theoretically
described in terms of partial differential equations that ad-
mit soliton solutions. In particular, on the free surface of
the water, solitary waves can develop and propagate as ob-
served, historically for the first time in 1834, by John Scott
Russell in his celebrated “Report on waves.”?

The purpose of this paper is to report on a basic laborato-
ry to study the principal characteristics of solitons in water
that we have developed for majors in Physics at the Univer-
sity of Padova.
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After recalling the main aspects of the theory in Sec. II,
we will describe the experimental apparatus in Sec. ITI, and
present some of the results obtained by our students in Sec.
IV. An overall evaluation of the laboratory and a brief con-
clusion will close the article.

II. THE SOLITONS

We start by recalling briefly the important historical
facts. After the above-mentioned observation of solitary
waves by Scott Russell, Korteveg and de Vries® developed,
at the end of the last century, a theoretical description of
the solitary waves in terms of a nonlinear partial differen-
tial equation (KdV equation). The next important step for-
ward was made 70 years later by Zabusky and Kruskal,'
who simulated in a computer experiment the collision of
two solitary waves described by the KdV equation. It had
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been generally believed till then that two colliding solitary
waves would interact so strongly (and nonlinearly) as to
destroy each other. The surprising results of Zabusky and
Kruskal were that the waves re-emerge after the collision
with unvaried shapes and speeds. This similarity with the
behavior of particles is at the origin of the name “soliton.”
In summary, a solitary wave is a wave that travels with
unaltered shape, a soliton is a solitary wave whose shape
and speed are not altered by a collision.

We will now recall briefly the theory of Korteweg and de
Vries; detailed derivation may be found elsewhere.* As-
sume that the liquid is homogeneous, incompressible, and
with zero viscosity. Note that the last assumption is far
from being true for any real liquid. Let us assume further
that the liquid is contained in a channel along the x axis
with a horizontal bed at the constant depth z = — h and
with a constant width Ay = w. The liquid is subject to the
vertical gravitational force (g) and to the constant atmo-
spheric pressure acting on its free surface. We will forget
surface tension effects; as we will see, this is reasonable with
our working depths. Finally, the motion of the liquid under
the action of these forces is assumed to be irrotational.

In the above assumptions we are considering one-dimen-
sional waves propagating along the channel. We will de-
note with 77(x,7 ) the vertical displacement at the same time ¢
of the liquid particle at the free surface that is at x when in
equilibrium.

The above assumptions do not suffice to specify the
shape and the behavior of the waves. To define the solu-
tions we must make assumptions of the relative values of
three characteristic lengths: the vertical displacement 7
(the amplitude of the wave), a typical horizontal dimension
[ of the wave (for example the wavelength for a sinusoidal
wave train), and the depth of the channel A.

If /1«1, the classical dispersive linear case (“infinitesi-
mal’” waves), we obtain the well-known dispersion relation:

®> = kg + tanh(kh), (1)
where k is the wavenumber and w the (angular) frequency.
In this work we will be always concerned with shallow

water waves. In thiscase kk (or/ /I )issmall. Thedispersion
relation (1) can then be written:

o =cylk—(R¥/6)k>+..], (2)
where
o =gt (3)

If the depth 4 is very small, the development can be
stopped at the first term in k4 and we are left with the well-
known nondispersive shallow water waves of speed c,. As
the value of k4 increases and the term in k * must be includ-
ed, the waves become dispersive and we have one of the
terms of the KdV equation.” The second important term,
that gives the nonlinearity, comes in when terms in %/h are
included. This gives a correction to the speed that becomes
an increasing function of the amplitude, given by

¢ =co(l +3n/2h). (4)

In synthesis, the KdV equation is obtained under the
following assumptions: e

(i) Small-amplitude waves. If 77 represents a typical wave
amplitude:

e,=n/h<l. (1)

(if) Long waves. If / is a typical horizontal wave dimen-
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sion:
e=(h /1) <1. (5ii)
(iii) The two effects approximately balance; i.e., €, and ¢,

have the same order of magnitude. By defining the “Ursell
number”

U=e,/e,=nl%*h?, (6)
we require that
U=0(1), (5ii

where O (1) means of the order of unity.
The KdV equation, obtained under the above assump-
tions, is

N, + colx + (3¢/2h 17, + (€oh */6)x =0, (7)

where the subscripts refer to derivatives with respect to ¢
and x. The equation describes waves advancing in the posi-
tive x direction; a similar but separate equation describes
waves moving in the negative x direction.

A qualitative justification of Eq. (7) can be obtained iden-
tifying the nonlinear term c,(3%/2h ), with the term ap-
pearing in (4) and the dispersive term (coh 2/6)7].... With that
of Eq. (2). The rigorous justification is obtained through a
development in the two above defined parameters €, and €,,

The solitary wave solutions of Eq. (7) emerge due to the
competition between the nonlinear and the dispersive
terms. Under certain conditions the two exactly balance,
the result being a stable configuration, a wave that moves
without any change of shape (as those caused by each one of
the two terms separately). The solitary wave solution of the
KdV equation specifies analytically the shape of the wave:

7(x,t) = 9, sech’[(x —ct)/L], (8)

where 7, is the maximum amplitude of the wave, c its
speed, given for the wave (8) by

c=co(l +n0/2h), (9)
and
L = (4h°/3n,)'? (10)

the characteristic length of the wave. The solitary waveisa
single bell-shaped wave as shown in Fig. 1, very different
from the normal sine-like trains of waves of the linear case.

A further important contribution to the development of
the theory was given in 1967 by Gardner et al.® who
showed that, if the initial shape of the wave is “sufficiently
localized,” the analytical solution of the KdV equation can
be obtained. The solution predicts that, if the total initial

—.c
z
o 't
/?’T : At
= L
h
0] X

Fig. 1. A solitary wave advancing in the positive x direction at the speed c.
Speed ¢, height 7, and length ¥ are correlated. The vertical scale is
expanded with respect to the horizontal by a factor of the order of 100.
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Fig. 2. Evolution of an initially confined disturbance in a set of solitons
followed by a radiative tail.

n(x, t)
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volume is non-negative, the wave evolves in one or more
solitons and a dispersive “radiative tail” at sufficiently long
times, as sketched in Fig. 2. These results are obtained
through the so-called inverse scattering method where the
problem is reduced to find the eigenstates of the Schro-
dinger equation with a “potential well”” having the shape of
the initial wave inverted in sign. A one-to-one correspon-
dence exists between the bound states and the solitons as-
ymptotically evolving from the initial wave, and between
the scattering states and the radiative tail.

The total number N of solitons depends on the initial
shape and on the depth of the liquid A. We will limit our
experiments to rectangular initial waves (advancing in x
direction) of length % and height a. In this case

N=1+1IntS/7), 8= 3a/2k)}"*> L1k, (11)

where Int means “integer part of.”

The essential results of the theory of solitons described
by the KdV equation may be summarized in the following
list of main predictions that we will check in our experi-
ments:

(1) From an initial disturbance of non-negative volume
which is sufficiently localized at least one solitary wave
evolves, whose shape is given by (8), that in particular links
wave amplitude, length, and velocity.

(2) The shape of each solitary wave does not vary, after
the stable state is reached.

(3) The number of solitary waves evolving from an initial
rectangular wave is given by (11).

(4) The solitary waves are followed by a dispersive tail.

(5) The speed of the solitary waves depends linearly on
their amplitude as predicted by (9).

(6) Since the larger solitary waves travel faster, they
evolve in groups which are rank-ordered.

(7) The solitary waves are stable under collisions when
traveling in the same direction, hence they are solitons. A
collision can be obtained by launching a smaller soliton
followed by a larger one. This last soliton will travel faster
and ultimately reach and overtake the smaller soliton. The
KdV predicts that the shapes after the interaction remain
unaltered; the solitons experience only a phase shift, ad-
vancing the faster and retarding the slower. More precise-
ly, in the case of two interacting solitons of amplitudes 7,,
and 774, (7741 > 702), the time shifts are given by’
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4, =(h/c))(1/K,) In[(K, + K,)/(K, — K)]
(12)
4, = (h /c;)(1/K,) In[(K, + K,)/(K, — K))],

where
K. = (3n,,/4h )”2

and c; are the speeds of each soliton according to (9).

(8) The solitons are also stable under head-on collisions.
This is not a prediction of the KdV equation: The two col-
liding waves travel, in fact, in opposite directions and are
described by two separate KdV equations. Nonetheless this
is believed to be a characterizing property of solitons.

ITII. EXPERIMENTAL APPARATUS

To develop the experimental program defined in the pre-
vious section we must be able to produce an initial rectan-
gular disturbance on the free surface of the water contained
in a channel, sufficiently long to allow the evolution of the
initial state into one or more solitons and then to observe
their propagation and their collisions. Experiments of this
type were performed in a big wave tank by Hammack and
Segur.® In our case the dimensions must be such as to allow
the accommodation of the tank in the students’ laboratory.

The critical dimension of the tank is obviously its length,
that is defined by the distance that two or more solitons
must travel to separate from each other, due to the depen-
dence of the speed on the amplitude (9). The relative differ-
ence in speed between two solitons of amplitude 7, and 7,
is essentially (¢, — ¢,)/c, = (9, — 172)/2h. If we define the
“separation distance” D, as the distance after which the
two solitons are separated by a characteristic length L (10),
we can take

D, = (4h*/An) (h /37,)'?, (13)

where A = |9, — 7,| and 7, is the average of 5, and 7,.
Note that relatively high waves (bigger values of 7, and A7)
are characterized by smaller values of D,,,. For example,
with 7,~1 cm, An~0.3 cm, and a water depth A~5 cm,
D _.~4m.

To allow easy observations on fully separated solitons
and to study their collisions we built a tank 12 m long; its
depth is 15 cm, its width 8 cm. The tank consists in eight
elements each 1.5 m long made from polished perspex;
flanges with O-rings provide the connections of consecu-
tive elements. Screws on each element provide the neces-
sary horizontal alignment. At the end of the tank opposite
to that where waves are produced, a smoothly degrading
pebble beach (partially) absorbs the incoming waves, limit-
ing annoying reflections. .

We detect the solitons by recording the variations in
depth (function of time) by measuring the variation of the
electric resistance between two electrodes immersed in the
water. The depth variation is of the order of a few millime-
ters.

The resistance between two identical cylindrical conduc-
tors dipped at a depth z in a fluid of conductance o is given
by

R (z) = (1/moz)In(2! /D), (14)

where / is the length and D the diameter of the conductors
(D<l). If z, is the static draught of the electrodes, and Az its
variation, the corresponding specific variation of the resis-
tance is

AR /R = — (Az/2)/(1 + Az/z,) . (15)
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Fig. 4. Block diagram of the electronics.
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each value of the static depth z,. The relation (16) can be
assumed to be linear if Az/z,<f.

The signal from the bridge must be amplified and recti-
fied. The block diagram is shown in Fig. 4. If the polariza.
tion voltage is V, () = V, sin wt, the signal, amplified by a
differential amplifier of gain A, is

Vt)=(V,A /zeaf)Az(t ) sin wt .

Fig. 3. Bridge circuit to measure the level of the water.

The bridge shown in Fig. 3 (in ac to avoid electrode po-

larization) gives the signal Note that V() is in phase with the carrier for positive
Az/z values of Az. To reconstruct the original waveform we rec-
AV=VF, (,B—AO/) ; ognize the phase of ¥ (¢ ) relative to the carrier via a switch
. al B + Az/z)) controlled by a square wave obtained, via a comparator,
with from the carrier. After the switch the signal is
R o AV, /zaf3)Az(t) sin wt, for sinwt>0
a=14—-L, B=14+—. (16) V'[t]:[( a/2008 )Az(t) e
R, R, o for sinwt<0.
The variable resistor R, is used to balance the bridge for Finally the carrier (w/27 = 10 kHz) is suppressed by a
A=2 cm,
nleml}  (a) B=20cm,
1.0
|
i
|
0.5 :
[
|
|
0 3 -+
A | a Eel s r e | |
11s 10 9 N 6 5 4 3
- | i
A=4 cm
B =20cm
h=6 cm
d=4m
d,= 9 m
{1 } § =t l | ! | . |
10s 9 8 7 6 5 < 3 2 1 0
o | e
= |- o
2" probe 1" probe A
Fig. 5. (a) Record of the water level at the two probes located at d, = 1 m, d, = 7.5 m from the beginning of the tank. The wave was originated by preparing %
an initial step of height 4 = 4 cm and length B = 20 cm in water of depth & = 6 cm. Dots are calculated from (8) with 7, adjusted at the soliton top. (b i
Similar record in the conditions shown in the insert. ]§
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Table I. Comparison of the number of observed and predicted solitons.

Afcm) B (cm) h (em) N Noea U= %>

2 20 6 1 2 7.4 [Fig. 5(a)]
3 20 6 2 2 11.2

1 20 6 2 2 14.8 [Fig. 5(b]]
] 40 6 2 2 7.6

2 40 6 3 3 15.4

3 40 6 3 3 23.

3 20 3 3 4 88.

3 10 4 2 2 94

3 20 4 3 L) 37.6

2 20 4 2 2 25

| 30 4 4 4 84.4

2 30 4 3 3 56.2

3 40 4 5-6 5 150

2 40 4 4 4 100

two-stage active filter and the signal (at frequencies of the
order of the Hertz) sent to an xp recorder.

In the experiments we will describe, two probes at differ-
ent positions along the tank were used. As only one xy
recorder was available, each of the electronic channels as-
sociated with the two probes could be connected to the
recorder via a manual switch that was commuted from the
first to the second probe during the transit time of the wave
between them. The examples of Fig. 5 show both signals on
the same time scale.

Note that we detect the variation of the depth as a func-
tion of the time; this can be interpreted as the wave profile
if, as is practically true in our case, the wave shape does not
vary appreciably during the observation. The wave shape
appears of course in our records with respect to an x axis
running opposite to the time axis.

A simple way to produce an initial rectangular distur-
bance consists in closing an initial segment of the length B
of the tank by a “‘weir” (made from perspex with a rubber
lining on the border) up to a height 4 over the free level. A
handle allows rapid extraction of the weir. As noted by
Hammack and Segur,® the nearest closed end of the tank
acts as a reflection plane for the wave, that immediately
after the extraction is approximately rectangular® with
length %" = 2B and height @ = 4 /2. This must be taken
mto account when computing the expected number of soli-
tons.

IV. EXPERIMENTAL RESULTS

We will report here the results obtained by a group of
students'® that also were asked to design, build, test, and
calibrate the electronics. We go directly to check the eight
predictions of Sec. IL.

(1) Figure 5(a) shows a record (see figure captions for the
initial conditions) where one soliton appears. At the first
probe it is still interacting with the tail, while at the second
it is almost free from it. The dots show the shape expected
from formula (8) with 77, normalized to the maximum am-
plitude of the wave. The agreement is rather good. Figure
5(b) shows two solitons; again comparison with formula (8)
shows good agreement.

(2) The invariance of the shape predicted by the theory
cannot of course be exactly verified due to the presence of
dissipative forces that reduce the amplitude of the wave
during its propagation, as is clearly seen in Fig. 5. What is
conserved is the shape, normalized to the decreasing ampli-
tude 7, as shown in Fig. 5(b).

(3) Equation (11) gives the number of solitons evolving
from an initial rectangular wave. To test this prediction
waves were produced with different values of height 4 and
length B of the static initial state and of the depth 4 of the
tank. The relevant parameters and the predicted W, prea and
observed N, numbers of solitons are reported in Table I.
Recalling assumptions (5i)—(5iii), note that assumption (5iii)

A :
=y
204
0+
+ . } -+ &
0 10 20 .30 40 <np>/h.

Fig. 6. Relative difference of the measured speed ¢, from ¢, versus relative average amplitude (77,) /h fora sample of 35 solitons. The line is the prediction of

formula (9). (@ Data for h = 6 cm, 4 forh — 4 cm.)
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2 probe

Fig. 7. Record showing five rank-ordered solitons advancing at different speeds.

is not in fact well specified: the *‘typical horizontal wave
dimensions /™ is not in fact exactly defined. To compute U
we have taken the length /= .¥ = 2B and the height
a = A /2 of the initial disturbance. Looking now at Table I
we see a discrepancy in the first row. This is not serious, the
prediction being marginal: N, = Int(2.06). In the se-
venth row we have the only real discrepancy; it happens for
high values both of a/h = 0.5 and U = 88; moreover, the
water depth 4 is only 3 em and surface tension effects are
expected to be more important. We are probably outside
the range of validity of the KdV equation (this is probably
true also for the last two rows where the predictions are
satisfied).

(4) The radiative tail can be observed in Fig. 5(a) (in other
cases it has been “‘cut out” from the graph). The tail is
dispersive, the longer wavelengths leading the shorter.

(5) To study the dependence of the speed from the ampli-
tude 19 records were taken with different initial conditions;
excluding the solitons that were still interacting at the first
probe, we were left with a sample of 35 solitons of which we
determined the speed, ¢,,, simply as the ratio of the dis-
tance between the probes, d = 5 m, and the time taken to
travel that distance. On this long base the amplitude of
each soliton falls appreciably due to the viscosity. To com-
pare our data with theory we have then plotted in Fig. 6 the

quantity c,,/\jgh — 1 vs {(5,)/h, were (7,) is the average
of the amplitudes as measured at the two probes. The ex-
pected linear behavior is observed in agreement with the
theory inside the experimental errors that are of the same
order of the scatter of the points.

(6) Since, as we have just seen, the larger solitons travel
faster, they form groups, which are rank-ordered with the
larger leading the smaller. An example is given in Fig. 7.
Note that the peaks of the solitons lay approximately on a
straight line. This is due to the fact that relative velocities of
the solitons and hence the distances covered are propor-
tional to their amplitude.

(7) To study the overtaking between solitons a smaller
soliton followed by a higher one must be launched. This
was done as shown schematically in” Fig. 8(a). With
B, =B,=20cm,4, =2cm, 4, =4cm,and 4 = 6 cm the
record shown in Fig. 9(a) at the two probes at d, = 1.9 m,
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d, = 8.9 m was obtained. It is evident that the highest soli-
ton overtook one of the smaller between the probes. The
behavior of each of the two waves, when alone (i.e., nonin-
teracting) was recorded preparing the waves as sketched in

Fig. 8(b) and (c), respectively. The curves are reported in
Fig. 9(b) and (c). The invariance of the shape is qualitatively

observed. We also observe the phase shifts that advance the
faster and retard the slower. From the figure we compute a
phase shift A, = (0.35 4+ 0.02) s for the soliton amplitude
o1 = (12 + 1)mmand 4, = — (0.45 + 0.02) s for the soli-
ton amplitude 774, = (6 + 0.5) mm. These results are in
agreement with the theoretical predictions as given by (12):
A, =(0.314+0.03)s,4,=(— 047 +0.05) s.

(8) To study the stability of the solitons in head-on colli-

sions, two rectangular initial waves were generated at the ’
same time at the two ends of the tank. One of the two evolv-
ing groups of solitons is observed before the collision at the

first probe and after the collision at the second. One exam-
ple is given in Fig. 10 (continuous curve). The observed

" . (b)

B;

ﬂfsrexrt
Al

Fig. 8. Shows schematically the procedure used for recording the overtak-
ing between solitons.
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(c)

(b)
n[cmfﬂ
104

(a) 05

0

| g J !
11s 10

O
@
~
(o)}
(&,]

2" probe 1% probe

Fig. 9. Record obtained with the procedure sketched in Fig. 8, with4, =2cm, 4, =4 cm, B, = B, = 20 cm, and h = 6 cm at two probesatd, = 1.9m,
d, = 8.9 m. With the procedure of Figs. §(a) the record in Fig. 9(a) is obtained. The biggest soliton advanced the smaller between the probes. Record 9(b)
obtained as shown in Fig. 8(b) shows the overtaking wave when alone. Record 9(c) obtained as shown in Fig. 8(c) shows the evolution of the overtaken soliton
when alone (without interaction). The time scale origins of the records have been properly adjusted as shown to allow direct observation of the phase shifts
d,and 4,.

——— with collision
—— without collision

1(em)|

’S

" probe

o probe

Fig. 10. The continuous curve is a record of a wave evolving into three solitons (initial conditions 4 — 2 em, B = 30 cm, with 4 = 4 cm). The broken curve is
4record of the wave evolving from identical initial condition but experiencing a collision with another group of solitons advancing in opposite direction
between the two probes. Note that the phase delay in the presence of a collision is larger for smaller solitons.
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group was generated with4 = 2 cm, B = 30 cm: the collid-
ing group was generated with 4 = 2 ¢cm, B = 20 ¢m; the
water depth was & = 4 cm and the probes were atd, = 4 m,
d, = 8 m from the beginning of the tank. Separate observa-
tion of the colliding wave showed that it contained two
solitons. The stability of the shape is immediately evident.

To have a more precise result a record was taken of the
wave evolved by launching only the observed solition (i.e.,
without collision). The resulting curve is shown dashed in
Fig. 10 superimposed in time over the previously discussed
one at the first probe. At the second probe we observe three
solitons in both cases; the shape of the corresponding soli-
tons are identical. The only observed effect of the collision
1s a delay that is a decreasing function of the amplitude.
Unfortunately the KdV equation does not give any predic-
tion.

V. CONCLUSIONS

The wave tank we have described can be easily built in an
average mechanical workshop, and be located in a stu-
dents’ laboratory.

As we have shown, the principal predictions of the KdV
equation and more generally the behavior of nonlinear
waves in water can be tested and observed by the students.

More experiments than those presented here are of
course possible with the described apparatus (for example,
observations of waves evolving from different initial
shapes, of waves at the interface between two liquids, etc.).

In our laboratory the students are asked to define their
own “research program” after a study of the relevant liter-
ature; they must also design, build, and test the detector to
be used in the experiments. We have found that the stu-
dents enjoyed working in the laboratory; some have been
even motivated to continue the study of nonlinear waves in
their thesis work. We believe the observed intellectual mo-
tivation originates from the possibility of choosing among

different alternatives and the variety of arguments to be
learnt, ranging from practical electronics to theoretical
physics.
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Holographic detection of defects under the surface of solid objects?
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In this paper we introduce a simple, low-cost experimental system designed to demonstrate the
effectiveness and sensitivity of optical testing to undergraduate students. The technique used
involves generating stress by heating a material locally and detecting by holographic

interferometry.

L INTRODUCTION

In 1965, double-exposure and real-time holographic in-
terferometry techniques were developed independently by
rescarchers in several luboratories, This includes the work
of Horman.' Burch,” Powell and Stetson,*® and Haines
and Hildebrand,” who, among others* ' studied the sur-
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face deformation and displacement of diffusely reflectin g
objects. In more recent years researchers have worked wi: |
holographic techniques in production.'’

We feel that experiments in optical testing should be per-
formed on the undergraduate level. In this paper we intro-
duce a simple undergraduate experiment whose resuits can
be used to qualitatively identify material defects not visibsle
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