Universal........
Behavior

in

Nonlinear Systems

Universal numbers,
0 = 4.6692016...
and

a = 2.502907875...,

determine quantitatively
the transition from

smooth to turbulent or
erratic behavior
for a large class of

nonlinear systems.

here exist in nature processes that
I can be described as complex or
chaotic and processes that are
simple or orderly. Technology attempts
to create devices of the simple variety:
an idea is to be implemented, and
various parts executing orderly motions
are assembled. For example, cars, air-
planes. radios. and clocks are all con-
structed from a variety of elementary
parts each of which, ideally, implements
one ordered aspect of the device.
Technology also tries to control or
minimize the impact of seemingly disor-
dered processes. such as the complex
weather patterns of the atmosphere, the
myriad whorls of turmoil in a turbulent
fluid. the erratic noise in an electronic
signal. and other such phenomena. It is
the complex phenomena that interest us
here.

When a signal is noisy. its behavior
from moment to moment is irregular and
has no simple pattern of prediction.
However, if we analyze a sufficiently
long record of the signal. we may find
that signal amplitudes occur within
narrow ranges a definite fraction of the
time. Analysis of another record of the
signal may reveal the same fraction. In
this case. the noise can be given a
statistical description. This means that
while it is impossible to say what am-
plitude will appear next in succession, it
is possible to estimate the probability or
likelihood that the signal will attain some
specified range of values. Indeed, for the
last hundred years disorderly processes
have been taken to be statistical (one has

given up asking for a precise causal
prediction), so that the goal of a descrip-
tion is to determine what the
probabilities are, and from this informa-
tion to determine various behaviors of
interest—for example, how air tur-
bulence modifies the drag on an airplane.

We know that perfectly definite causal
and simple rules can have statistical (or
random) behaviors. Thus, modern com-
puters possess ‘‘random number
generators” that provide the statistical
ingredient in a simulation of an erratic
process. However, this generator does
nothing more than shift the decimal
point in a rational number whose
repeating block is suitably long. Accor-
dingly, it is possible to predict what the
nth generated number will be. Yet, in a
list of successive generated numbers
there is such a seeming lack of order that
all statistical tests will confer upon the
numbers a pedigree of randomness.
Technically, the term “pseudorandom”
is-used to indicate this nature. One now
may ask whether the various complex
processes of nature themselves might not
be merely pseudorandom, with the full
import of randomness, which is un-
testable. a historic but misleading con-
cept. Indeed our purpose here is to ex-
plore this possibility. What will prove
altogether remarkable is that some very
simple schemes to produce erratic num-
bers behave identically to some of the
erratic aspects of natural phenomena.
More specifically, there is now cogent
evidence that the problem of how a fluid
changes over from smooth to turbulent
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flow can be solved through its relation to
the simple scheme described in this arti-
cle. Other natural problems that can be
treated in the same way are the behavior
of a population from generation to
generation and the noisiness of a large
variety of mechanical. electrical, and
chemical oscillators. Also, there is now
evidence that various Hamiltonian
systems—those subscribing to classical
mechanics. such as the solar
system—can come under this discipline.

The feature common to these
phenomena is that, as some external
parameter (temperature, for example) is
varied. the behavior of the system
changes from simple to erratic. More
precisely. for some range of parameter
values, the system exhibits an orderly
periodic behavior; that is. the system’s
behavior reproduces itself every period
of time T. Beyond this range. the
behavior fails to reproduce itself after T
seconds: it almost does so. but in fact it
requires (wo intervals of T to repeat it-
self. That is. the period has doubled to
2T. This new periodicity remains over
some range of parameter values until
another critical parameter value is
reached after which the behavior almost
reproduces itself after 2T. but in fact, it
now requires 4T for reproduction. This
process of successive period doubling
recurs continually (with the range of
parameter values for which the period is
2"T becoming successively smaller as n
increases) until, at a certain value of the
parameter. it has doubled ad infinitum,
so that the behavior is no longer
periodic.  Period doubling is then a
characteristic route for a system to
follow as it changes over from simple
periodic to complex aperiodic motion.
All the phenomena mentioned above ex-
hibit period doubling. In the limit of
aperiodic behavior. there is a unique and
hence wniversal solution common to all
syvstems undergoing period doubling.
This fact implies remarkable conse-
quences. For a given system. if we
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denote by A, the value of the parameter
at which its period doubles for the nth
time. we find that the values A, converge
to A (at which the motion is aperiodic)
geometrically for large n. This means
that

A Ancon (1)

for a fixed value of & (the rate of onset of
complex behavior) as n becomes large.
Put differently. if we define

SnE n+1: s (2)

8, (quickly) approaches the constant
value 8. (Typically, 8, will agree with &
to several significant figures after just a
few period doublings.) What is quite
remarkable (beyond the fact that there is
always a geometric convergence) is that,
for all systems undergoing this period
doubling. the value of 8 is predetermined
at the universal value

5= 4.6692016 ... . 3)

Thus. this definite number must appear
as a natural rate in oscillators, popula-
tions. fluids, and all systems exhibiting a
period-doubling route to turbulence! In
fact. most measurable properties of any
such system in this aperiodic limit now
can be determined, in a way that essen-
tially bypasses the details of the equa-
tions governing each specific system
because the theory of this behavior is
universal over such details. That is. so
long as a system possesses certain
qualitative properties that enable it to
undergo this route to complexity. its
quantitative properties are determined.
(This result is analogous to the results of
the modern theory of critical
phenomena. where a few qualitative
properties of the system undergoing a
phase transition. notably the dimen-
sionality. determine universal critical ex-

ponents. Indeed at a formal level the two
theories are identical in that they are
fixed-point theories, and the number d,
for example, can be viewed as a critical
exponent.) Accordingly, it is sufficient to
study the simplest system exhibiting this
phenomenon to comprehend the general
case. \

Functional Iteration

A random number generator is an ex-
ample of a simple iteration scheme that
has complex behavior. Such a scheme
generates the next pseudorandom num-
ber by a definite transformation upon the
present pseudorandom number. In other
words, a certain function is reevaluated
successively to produce a sequence of
such numbers. Thus. if f is the function
and x, is a starting number (or “seed”),
then x,, x,, ..., X, ..., where

X, = f(xp)
x, = f(x,) :
Xn41 = f‘(xn) (4)

is the sequence of generated pseudoran-
dom numbers. That is, they are
generated by functional iteration. The
nth element in the sequence is

X = M. f((xo)) --.)) = (%) » ()

where n is the total number of applica-
tions of f. [f"(x) is not the nth power of
f(x): it is the nth iterate of f.| A property
of iterates worthy of mention is

(%)) = ((x)) = F™*(x) , (6)

since each expression is simply m + n
applications of f. It is understood that




fo(x) = x. (7)

It is also useful to have a symbol, © ,
for functional iteration (or composition),
so that
Mo M=o izt (8)
Now " in Eq. (5) is itself a definite and
computable function, so that x, as a
function of x, is known in principle.
If the function f is linear as, for exam-
ple,

f(x) = ax 9)

for some constant a, it is easy to see that

™(x) = a"x, (10)
so that, for this f,
x, = a"x, (11)

is the solution of the recurrence relation
defined in Eq. (4),
Xnt1 = X, (12)
Should lal < 1, then x, geometrically
converges to zero at the rate 1/a. This
example is special in that the linearity of
f allows for the explicit computation of
B

We must choose a nonlinear f to
generate a pseudorandom sequence of
numbers. If we choose for our nonlinear
¢
flx)=a—x?, (13)
then it turns out that f" is a polynominal
in x of order 2". This polynomial rapidly
becomes unmanageably large: moreover,
its coefficients are polynomials in a of
order up to 2" ' and become equally dif-
ficult to compute. Thus even if x, = 0, x,,
is a polynomial in a of order 2"~'. These
polynomials are nontrivial as can be sur-
mised from the fact that for certain

values of a, the sequence of numbers
generated for almost all starting points in
the range (a — a%a) possess all the
mathematical properties of a random
sequence. To illustrate this, the figure on
the cover depicts the iterates of a similar
system in two dimensions:

ot 2
Xpt1 = Yo — %

Ynpr=a — X, (14)
Analogous to Eq. (4), a starting coor-
dinate pair (x,,Y,) is used in Eq. (14) to
determine the next coordinate (x,.y,).
Equation (14) is reapplied to determine
(x,.y,) and so on. For some initial points,
all iterates lie along a definite elliptic
curve, whereas for others the iterates are
distributed “randomly”™ over a certain
region. It should be obvious that no ex-
plicit formula will account for the vastly
rich behavior shown in the figure. That
is, while the iteration scheme of Eq. (14)
is trivial to specify, its nth iterate as a
function of (x,,y,) is unavailable. Put dif-
ferently, applying the simplest of
nonlinear iteration schemes to itself suf-
ficiently many times can create vastly
complex behavior. Yet, precisely because
the same operation is reapplied, it is con-
ceivable that only a select few self-
consistent patterns might emerge where
the consistency is determined by the key
notion of iteration and not by the par-
ticular function performing the iterates.
These self-consistent patterns do occur
in the limit of infinite period doubling
and in a well-defined intricate organiza-
tion that can be determined a priori
amidst the immense complexity depicted
in the cover figure.

The Fixed-Point Behavior of
Functional Iterations

Let us now make a direct onslaught
against Eq. (13) to see what it possesses.
We want to know the behavior of the
system after many iterations. As we

already know, high iterates of f rapidly
become very complicated. One way this
growth can be prevented is to have the
first iterate of x, be precisely x, itself.
Generally, this is impossible. Rather this
condition determines possible x,’s. Such
a self-reproducing point is called a fixed
point of f. The sequence of iterates is
then x,, Xy, X, ... S0 that the behavior is
static, or if viewed as periodic, it has
period 1.

It is elementary to determine the fixed
points of Eq. (13). For future con-
venience we shall use a modified form of
Eq. (13) obtained by a translation in x
and some redefinitions:
f(x) = 4dx(1 — x), (15)
so that as A is varied, x = 0 is always a
fixed point. Indeed, the fixed-point con-
dition for Eq. (15), !

x* = f(x*) = 4Ax*(1 — x¥), (16)
gives as the two fixed points
x*=0,x5=1—1/4\. (17)

The maximum value of f(x) in Eq. (15)
is attained at x = ! and is equal to A.
Also, for A > 0 and x in the interval
(0.1), f(x) is always positive. Thus, if X is
anywhere in the range [0,1], then any
iterate of any x in (0,1) is also always in
(0,1). Accordingly, in all that follows we
shall consider only values of x and A ly-
ing between 0 and 1. By Eq. (16) for 0 <
A < Y%, only x* = 0 is within range,
whereas for %, < A < 1, both fixed points
are within the range. For example, if we
set A = '/, and we start at the fixed point
x% = % (that is, we set x, = /), then x, =
Xy = = 4 similarlVeifsxe= 0% = %%
= ... = 0, and the problem of computing
the nth iterate is obviously trivial.

What if we choose an x, not at a fixed
point? The easiest way to see what hap-
pens is to perform a graphical analysis.
We graph y = f(x) together with y = x.
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Where the lines intersect we have x = y
= f(x), so that the intersections are
precisely the fixed points. Now, if we
choose an x, and plot it on the x-axis, the
ordinate of f(x) at x, is x,. To obtain x,,
we must transfer x; to the x-axis before
reapplying f. Reflection through the
straight line y = x accomplishes
precisely this operation. Altogether, to
iterate an initial x, successively,

I. move vertically to the graph of f(x),

2. move horizontally to the graph of y =
X, and

3. repeat steps 1, 2, etc.

Figure 1 depicts this process for A = Y.
The two fixed points are circled, and the
first several iterates of an arbitrarily
chosen point x, are shown. What should
be obvious is that if we start from any x,
in (0,1) (x = 0 and x = 1 excluded), upon
continued iteration x, will converge to
the fixed point at x = ;. No matter how
close x, is to the fixed point at x = 0, the
iterates diverge away from it. Such a
fixed point is termed unstable. Alter-
natively, for almost all x, near enough to
x = ' [in this case, all x, in (0,1)], the
iterates converge towards x = Y. Such a
fixed point is termed stable or is referred
to as an attractor of period 1.

Now, if we don’t care about the rran-
sient behavior of the iterates of x,, but
only about some regular behavior that
will emerge eventually, then knowledge
of the stable fixed point at x = Y satisfies
our concern for the eventual behavior of*
the iterates. In this restricted sense of
eventual behavior, the existence of an at-
tractor determines the solution indepen-
dently of the initial condition x, provided
that x, is within the basin of attraction of
the attractor; that is, that it is attracted.
The attractor satisfies Eq. (16), which is
explicitly independent of x,. This condi-
tion is the basic theme of universal
behavior: if an attractor exists, the even-
tual behavior is independent of the
starting point.
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Fig. 1. Iterates of x, at ). = 0.5.

What makes x = 0 unstable, but x =
', stable? The reader should be able to
convince himself that x = 0 is unstable
because the slope of fi(x) at x = 0 is
greater than 1. Indeed, if x* is a fixed
point of f and the derivative of f at x*,
f'(x*), is smaller than 1 in absolute value,
then x* is stable. If If'(x*)| is greater
than 1, then x* is unstable. Also, only
stable fixed points can account for the
eventual behavior of the iterates of an ar-
bitrary point.

We now must ask, “For what values
of A are the fixed points attracting?” By
Eq. (15), f(x) = 4M1 — 2x) so that

f(0) = 41 (18)
and
f(x%)=2 — 4\ (19)

For 0 < A < Y, only x* = 0 is stable. At
A= /i x%=0and I(x%) = 1. For, <A
< Y, x* is unstable and x% is stable,
while at A = ¥, f'(x*;) = —1 and x* also
has become unstable. Thus, for 0 < A <
Y. the eventual behavior is known.



Period 2 from the Fixed Point

What happens to the system when A is
in the range % < A < 1, where there are
no attracting fixed points? We will see
that as A increases slightly beyond A =
Y. [ undergoes period doubling. That is,
instead of having a stable cycle of period
1 corresponding to one fixed point, the
system has a stable cycle of period 2;
that is. the cycle contains two points.
Since these two points are fixed points of
the function f? (f applied twice) and since
stability is determined by the slope of a
function at its fixed points, we must now
focus on f2. First, we examine a graph of
f2 at A just below %. Figures 2a and b
show f and f2, respectively, at A = 0.7.

To understand Fig. 2b, observe first
that. since f is symmetric about its max-
imum at x = Y, 2 is also symmetric
about x = %,. Also, f* must have a fixed
point whenever f does because the
second iterate of a fixed point is still that
same point. The main ingredient that
determines the period-doubling behavior
of f as A increases is the relationship of
the slope of f? to the slope of f. This
relationship is a consequence of the
chain rule. By definition

%= (%)
where
%= 0G) s X=X

We leave it to the reader to verify by the
chain rule that

(%) = F(xo)F(x,) (20)
and
M) = PR Bl ) (21)

an elementary result that determines
period doubling. If we start at a fixed
point of f and apply Eq. (20) to x, = x*.
so-that Xy = x = x¥then

f2(x*) = f(x*)F(x*) = |F(x®)]*. (22)

Fig. 2. & = 0.7. x* is the stable fixed point. The extrema of f* are located in (a) by

constructing the inverse iterates of x = 0.5.
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Fig. 3. .. = 0.75. (a) depicts the slow convergence to the fixed point. * osculates about

the fixed point.
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Since at L = 0.7, If(x*)| < 1, it follows
from Eq. (22) that

0 < HGE < ]

Also, if we start at the extremum of f, so
that x, = % and f(x,) = 0, it follows
from Eq. (21) that

(%) =0 (23)

for all n. In particular, f* is extreme (and
a minimum) at Y. Also, by Eq. (20), f?
will be extreme (and a maximum) at the
X, that will iterate under f to x = Y, since
then x, = ' and f'(x,) = 0. These points,
the inverses of x = Y%, are found by going
vertically down along x = %, to y = x
and then horizontally to y = f(x).
(Reverse the arrows in Fig. 1, and see
Fig. 2a.) Since f has a maximum, there
are fwo horizontal intersections and,
hence, the two maxima of Fig. 2b. The
ability of f to have complex behaviors is
precisely the consequence of its double-
valued inverse, which is in turn a reflec-
tion of its possession of an extremum. A
monotone f, one that always increases,
always has simple behaviors, whether or
not the behaviors are easy to compute. A
linear f is always monotone. The f’s we
care about always fold over and so are
strongly nonlinear. This folding non-
linearity gives rise to universality. Just as
linearity in any system implies a definite
method of solution, folding nonlinearity
in any system also implies a definite
method of solution. In fact folding non-
linearity in the aperiodic limit of period
doubling in any system is solvable, and
many systems, such as various coupled
nonlinear differential equations, possess
this nonlinearity.

To return to Fig. 2b, as A — ¥, and
the maximum value of f increases to ¥,
f(x*) — —1 and f¥(x*) — +1. As A in-
creases beyond ¥, If(x*)] > 1 and
f(x*) > 1, so that f? must develop two
new fixed points beyond those of f; that
is, f? will cross y = x at two more points.
This transition is depicted in Figs. 3a
and b for f and % respectively, at A =



0.75. and similarly in Figs. 4a and b at A
= (.785. (Observe the exceptionally slow
convergence to x* at A = 0.75, where
iterates approach the fixed point not
geometrically, but rather with deviations
from x* inversely proportional to the
square root of the number of iterations.)
Since x* and x%, the new fixed points of
f2, are not fixed points of f, it must be
that f sends one into the other:

Xy = f(x%)
and
x3 = f(x}) .

Such a pair of points, termed a 2-cycle, is
depicted by the limiting unwinding cir-
culating square in Fig. 4a. Observe in
Fig. 4b that the slope of f* is in excess of
1 at the fixed point of f and so is an un-
stable fixed point of f2, while the two new
fixed points have slopes smaller than I,
and so are stable; that is, every two
iterates of f will have a point attracted
toward x* if it is sufficiently close to x*}
or toward x3% if it is sufficiently close to
x%. This means that the sequence under
f,

Yo XX ares

eventually becomes arbitrarily close to
the sequence

* * * *
XAt e X

(TR

so that this is a stable 2-cycle, or an at-
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Fig. 4. ). = 0.785. (a) shows the outward spiralling to a stable 2-cycle. The elements of
the 2-cycle, X, and x,, are located as fixed points in (b).
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tractor of period 2. Thus, we have obser-

ved for Eq. (15) the first period doubling

as the parameter A has increased.

There is a point of paramount impor-

tance to be observed; namely, f? has the
same slope at x% and at x*. This point is
a direct consequence of Eq. (20), since if
Xo = x%, then x, = x%, and vice versa, so
that the product of the slopes is the
same. More generally, if x%, x%, ..., x* is
an n-cycle so that

=128 ni— 1

X%y = f(x%)
and
x$ =fixY), (24)

then each is a fixed point of f" with iden-
tical slopes:

X% =(x%)

and

r=1.2%5n (25)

Fig. 5. = .. A superstable 2-cycle. x* and x*% are at extrema of .
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£Y(x%) = F(x%) ... F(x*) . (26)

From this observation will follow period
doubling ad infinitum.

As A is increased further, the
minimum at x = ', will drop as the slope
of f? through the fixed point of f in-
creases. At some value of A, denoted by
Ay x = ', will become a fixed point of f2.
Simultaneously, the right-hand max-
imum will also become a fixed point of

f2. [By Eq. (26), both elements of the 2-
cycle have slope 0.] Figures 5a and b
depict the situation that occurs at A = A,.

11



Period Doubling Ad Infinitum

We are now close to the end of this
story. As we increase A further, the
minimum drops still lower, so that both
x% and x% have negative slopes. At some
parameter value, denoted by A,, the
slope at both x¥ and x*% becomes equal to
—1. Thus at A, the same situation has
developed for f* as developed for f at A,
= ¥, This transitional case is depicted in
Figs. 6a and b. Accordingly, just as the
fixed point of f at A, issued into being a
2-cycle, so too does each fixed point of f*
at A, create a 2-cycle, which in turn is a
4-cycle of f. That is, we have now en-
countered the second period doubling.

The manner in which we were able to
follow the creation of the 2-cycle at A,
was to anticipate the presence of period
2, and so to consider f%, which would
resolve the cycle into a pair of fixed
points. Similarly, to resolve period 4 into
fixed points we now should consider f*.

Beyond being the fourth iterate of f, Eq.
(8) tells us that f* can be computed from
2

f=fa i

From this point, we can abandon f itself,
and take f? as the “fundamental” func-
tion. Then, just as f* was constructed by
iterating f with itself we now iterate f?
with itself. The manner in which f?
reveals itself as being an iterate of f is the
slope equality at the fixed points of f?,
which we saw imposed by the chain rule.
Since the operation of the chain rule is
“automatic,” we actually needed to con-
sider only the fixed point of f* nearest to
x = '4: the behavior of the other fixed
point is slaved to it. Thus, at the level of
f*, we again need to focus on only the
fixed point of f* nearest to x = Y%: the
other three fixed points are similarly
slaved to it. Thus. a recursive scheme
has been unearthed. We now increase A
to A,. so that the fixed point of f* nearest
to x = ' is again at x = %, with slope 0.

12

Fig. 6. . = A,. x| and X, in (b) have the same slow convergence as the fixed point in

Fig. 3a.
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should be compared with all of Fig. 5a.
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- Ay A superstable 4-cycle. The region within the dashed square in (a)

Figures 7a and b depict this situation for
f and f*, respectively. When A increases
further, the maximum of f* at x = %, now
moves up, developing a fixed point with
negative slope. Finally, at A; when the
slope of this fixed point (as well as the
other three) is again —1, each fixed point
will split into a pair giving rise to an 8-
cycle, which is now stable. Again, f® = f*
O f* and f* can be viewed as fundamen-
tal. We define A, so that x = !/, again is a
fixed point, this time of f®. Then at A, the
slopes are —1, and another period doubl-
ing occurs. Always,

Ml o 2" (27)

Provided that a constraint on the range
of A does not prevent it from decreasing
the slope at the appropriate fixed point
past —1, this doubling must recur ad
infinitum.

Basically, the mechanism that f*" uses
to period double at A ,, is the same
mechanism that 2" will use to double
at A,,,. The function """ is constructed
from 2" by Eq. (27), and similarly f2"**
will be constructed from f2"*'. Thus,
there is a definite operation that, by
acting on functions, creates functions; in
particular, the operation acting on f*" at
Any s (Or better, £2" at A,) will determine
f2""" at A, ,. Also, since we need to keep
track of f2" only in the interval including
the fixed point of f*" closest to x = %, and
since this interval becomes increasingly
small as A increases, the part of f that
generates this region is also the restric-
tion of f to an increasingly small interval
about x = Y,. (Actually, slopes of f at
points farther away also matter, but
these merely set a “scale,” which will be
eliminated by a rescaling.) The behavior
of f away from x = Y, is immaterial to
the period-doubling behavior, and in the
limit of large n only the nature of fs
maximum can matter. This means that
in the infinite period-doubling limit, all
functions with a quadratic extremum will
have identical behavior. [f"(%,) # O is the

13



generic circumstance.|] Therefore, the
operation on functions will have a stable
fixed point in the space of functions,
which will be the common universal limit
of high iterates of any specific function.
To determine this universal limit we
must enlarge our scope vastly, so that
the role of the starting point, x,, will be
played by an arbitrary function; the at-
tracting fixed point will become a univer-
sal function obeying an equation im-
plicating only itself. The role of the func-
tion in the equation x, = f(x,) now must
be played by an gperation that yields a
new function when it is performed upon
a function. In fact, the heart of this
operation is the functional composition
of Eq. (27). If we can determine the ex-
act operator and actually can solve its
fixed-point problem, we shall understand
why a special number, such as 0 of Eq.
(3), has emerged independently of the
specific systeni (the starting function) we
have considered.

The Universal Limit of High Iterates

In this section we sketch the solution
to the fixed-point problem. In Fig. 7a, a
dashed square encloses the part of f* that
we must focus on for all further period
doublings. This square should be com-
pared with the unit square that com-
prises all of Fig. 5a. If the Fig. 7a square
is reflected through x = %, y =/, and
then magnified so that the circulation
squares of Figs. 4a and 5a are of equal
size. we will have in each square a piece
of a function that has the same kind of
maximum at x = % and falls to zero at
the right-hand lower corner of the cir-
culation square. Just as f produced this
second curve of f? in the square as A in-
creased from A, to A, so too will f?
produce another curve, which will be
similar to the other two when it has been
magnified suitably and reflected twice.
Figure 8 shows this superposition for the
first five such functions; at the resolution
of the figure, observe that the last three
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A DISCOVERY

The inspiration for the universality theory came from two sources. First,
1971 N. Metropolis, M. Stein, and P. Stein (all in the LASL Theoretical Di’
sion) discovered a curious property of iterations: as a parameter is varied, t
behavior of iterates varies in a fashion independent of the particular functi
iterated. In particular for a large class of functions, if at some value of t
parameter a certain cycle is stable, then as the parameter increases, the cycle
replaced successively by cycles of doubled periods. This period doubling co
tinues until an infinite period, and hence erratic behavior, is attained.

Second, during the early 1970s, a scheme of mathematics called dynamic
system theory was popularized, largely by D. Ruelle, with the notion of
“strange attractor.” The underlying questions addressed were (1) how coulc
purely causal equation (for example, the Navier-Stokes equations that descri
fluid flow) come to demonstrate highly erratic or statistical properties and (
how could these statistical properties be computed. This line of thought merg
with the iteration ideas, and the limiting infinite “cycles” of iteration syster
came to be viewed as a possible means to comprehend turbulence. Indeed
became inspired to study the iterates of functions by a talk on such matters |
S. Smale, one of the creators of dynamical system theory, at Aspen in the su
mer of 1975.

My first effort at understanding this problem was through the compl
analytic properties of the generating function of the iterates of the quadra
map

Xpip = A (= x)%

This study clarified the mechanism of period doubling and led to a rather d
ferent kind of equation to determine the values of A at which the period do
bling occurs. The new equations were intractable, although approximate sol
tions seemed possible. Accordingly, when I returned from Aspen,
numerically determined some parameter values with an eye toward discerni
some patterns. At this time I had never used a large computer—in fact my sc
computing power resided in a programmable pocket calculator. Now, su
machines are very slow. A particular parameter value is obtained iterative
(by Newton’s method) with each step of iteration requiring 2" iterates of t
map. For a 64-cycle, this means | minute per step of Newton’s method. At t
same time as n increased, it became an increasingly more delicate matter
locate the desired solution. However, I immediately perceived the A,’'s we
converging geometrically. This enabled me to predict the next value with i
creasing accuracy as n increased, and so required just one step of Newtor
method to obtain the desired value. To the best of my knowledge, this observ
tion of geometric convergence has never been made independently, for the sii
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ple reason that the solutions have always been performed automatically on
large and fast computers!

That a geometric convergence occurred was already a surprise. I was in-
terested in this for two reasons: first, to gain insight into my theoretical work,
as already mentioned, and second, because a convergence rate is a number in-
variant under all smooth transformations, and so of mathematical interest. Ac-
cordingly, I spent a part of a day trying to fit the convergence rate value,
4.669. to the mathematical constants I knew. The task was fruitless, save for
the fact that it made the number memorable.

At this point I was reminded by Paul Stein that period doubling isn’t a u-
nique preperty of the quadratic map, but also occurs, for example, in

Xor = ASInETX s

However, my generating function theory rested heavily on the fact that the
nonlinearity was simply quadratic and not transcendental. Accordingly, my in-
terest in the problem waned.

Perhaps a month later I decided to determine the A’s in the transcendental
case numerically. This problem was even slower to compute than the quadratic
one. Again, it became apparent that the A's converged geometrically, and
altogether amazingly, the convergence rate was the same 4.669 that I remem-
bered by virtue of my efforts to fit it.

Recall that the work of Metropolis, Stein, and Stein showed that precise
qualitative features are independent of the specific iterative scheme. Now I
learned that precise quantitative features also are independent of the specific
function. This discovery represents a complete inversion of accustomed ritual.
Usually one relies on the fact that similar equations will have qualitatively
similar behavior, but quantitative predictions depend on the details of the equa-
tions. The universality theory shows that qualitatively similar equations have
the identical quantitative behavior. For example, a system of differential equa-
tions naturally determines certain maps. The computation of the actual
analytic form of the map is generally well beyond present mathematical
methods. However, should the map exhibit period doubling, then precise quan-
titative results are available from the universality theory because the theory ap-
plies independently of which map it happens to be. In particular, certain fluid
flows have now been experimentally observed to become turbulent through
period doubling (subharmonic bifurcations). From this one fact we know that
the universality theory applies—and indeed correctly determines the precise
way in which the flow becomes turbulent, without any reference to the under-
lying Navier-Stokes equations.
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curves are coincident. Moreover, the
scale reduction that f? will determine for
f* is based solely on the functional com-
position, so that if these curves for 2",
(2 converge (as they obviously do in
Fig. 8), the scale reduction from level to
level will converge to a definite constant.
But the width of each circulation square
is just the distance between x =/, when
it is a fixed point of f*" and the fixed
point of f2" next nearest to x = %, (Figs.
7a and b). That is, asymptotically, the
separation of adjacent elements of
period-doubled attractors is reduced by
a constant value from one doubling to
the next. Also from one doubling to the
next, this next nearest element alternates
from one side of x = !, to the other. Let
d, denote the algebraic distance from x
= !, to the nearest element of the attrac-
tor cycle of period 2", in the 2"-cycle at
A, A positive number a scales this dis-
tance down in the 2"*'-cycle at A, :

d
L ~—a. 28
0 (28)

But since rescaling is determined only by
functional composition, there is some
function that composed with itself will
reproduce itself reduced in scale by —a.
The function has a quadratic maximum
at x = Y, is symmetric about x = !, and
can be scaled by hand to equal 1 at x =
%,. Shifting coordinates so that x =/, —
x = 0, we have

—ag(g(x/a)) = g(x) . (29)

Substituting g(0) = 1, we have

g(1)=—+. (30)

a
Accordingly, Eq. (29) is a definite equa-
tion for a function g depending on x
through x? and having a maximum of 1
at x = 0. There is a unique smooth solu-
tion to Eq. (29), which determines

a = 2.502907875 .... (31)
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Knowing o, we can predict through Eq.
(28) a definite scaling law binding on the
iterates of any scheme possessing period
doubling. The law has, indeed, been am-
ply verified experimentally. By Eq. (29),
we see that the relevant operation upon
functions that underlies period doubling
is functional composition followed by
magnification, where the magnification
is determined by the fixed-point condi-
tion of Eq. (29) with the function g the
fixed point in this space of functions.
However, Eq. (29) does not describe a
stable fixed point because we have not
incorporated in it the parameter increase
from A, to A,.,. Thus, g is not the
limiting function of the curves in the cir-
culation squares, although it is intimately
related to that function. The full theory is
described in the next section. Here we
merely state that we can determine the
limiting function and thereby can deter-
mine the location of the actual elements
of limiting 2"-cycles. We also have es-
tablished that g is an unstable fixed point
of functional composition, where the rate
of divergence away from g is precisely &
of Eq. (3) and so is computable. Accor-
dingly, there is a full theory that deter-
mines, in a precise quantitative way, the
aperiodic limit of functional iterations
with an unspecified function f.

Some Details of the Full Theory

Returning to Eq. (28). we are in a
position to describe theoretically the uni-
versal scaling of high-order cycles and
the convergence to a universal limit.
Since d, is the distance between x = Y
and the element of the 2"-cycle at A,
nearest to x = %, and since this nearest
element is the 2"' iterate of x = Y,
(which is true because these two points
were coincident before the n' period
doubling began to split them apart), we
have

GRETES (VAR (32)

Fig. 8. The superposition of the suitably magnified dotted squares of f*" " at ) (as in

Figs. 5a, 7a, ...).

For future work it is expedient to per-
form a coordinate translation that moves
X = to x = 0. Thus, Eq. (32) becomes
di= e (20)) (33)

Equation (28) now determines that the
rescaled distances,

I = (_a)n dn+1 $

will converge to a definite finite value as
n — oo. That is,

éim (—a)"f?" (A, ,,0) (34)

n—aow

must exist if Eq. (28) holds.

However, from Fig. 8 we know
something stronger than Eq. (34). When
the n'" iterated function is magnified by
(—a)", it converges to a definite function.
Equation (34) is the value of this func-
tion at x = (0. After the magnification,
the convergent functions are given by

(__a)nf-zﬂ (Aps X/ (—)") .
Thus,

8i(x) = am(—a)"f*' (A, x/(—a)?)  (35)

n— a0
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