Knowing o, we can predict through Eq.
(28) a definite scaling law binding on the
iterates of any scheme possessing period
doubling. The law has, indeed, been am-
ply verified experimentally. By Eq. (29),
we see that the relevant operation upon
functions that underlies period doubling
is functional composition followed by
magnification, where the magnification
is determined by the fixed-point condi-
tion of Eq. (29) with the function g the
fixed point in this space of functions.
However, Eq. (29) does not describe a
stable fixed point because we have not
incorporated in it the parameter increase
from A, to A,.,. Thus, g is not the
limiting function of the curves in the cir-
culation squares, although it is intimately
related to that function. The full theory is
described in the next section. Here we
merely state that we can determine the
limiting function and thereby can deter-
mine the location of the actual elements
of limiting 2"-cycles. We also have es-
tablished that g is an unstable fixed point
of functional composition, where the rate
of divergence away from g is precisely &
of Eq. (3) and so is computable. Accor-
dingly, there is a full theory that deter-
mines, in a precise quantitative way, the
aperiodic limit of functional iterations
with an unspecified function f.

Some Details of the Full Theory

Returning to Eq. (28). we are in a
position to describe theoretically the uni-
versal scaling of high-order cycles and
the convergence to a universal limit.
Since d, is the distance between x = Y
and the element of the 2"-cycle at A,
nearest to x = %, and since this nearest
element is the 2"' iterate of x = Y,
(which is true because these two points
were coincident before the n' period
doubling began to split them apart), we
have

GRETES (VAR (32)

Fig. 8. The superposition of the suitably magnified dotted squares of f*" " at ) (as in

Figs. 5a, 7a, ...).

For future work it is expedient to per-
form a coordinate translation that moves
X = to x = 0. Thus, Eq. (32) becomes
di= e (20)) (33)

Equation (28) now determines that the
rescaled distances,

I = (_a)n dn+1 $

will converge to a definite finite value as
n — oo. That is,

éim (—a)"f?" (A, ,,0) (34)

n—aow

must exist if Eq. (28) holds.

However, from Fig. 8 we know
something stronger than Eq. (34). When
the n'" iterated function is magnified by
(—a)", it converges to a definite function.
Equation (34) is the value of this func-
tion at x = (0. After the magnification,
the convergent functions are given by

(__a)nf-zﬂ (Aps X/ (—)") .
Thus,

8i(x) = am(—a)"f*' (A, x/(—a)?)  (35)

n— a0
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Fig. 9. The function g,. The squares locate cycle elements.

is the limiting function inscribed in the
square of Fig. 8. The function g,(x) is, by
the argument of the restriction of f to in-
creasingly small intervals about its max-
imum, the universal limit of all iterates of
all s with a quadratic extremum. In-
deed. it is numerically easy to ascertain
that g, of Eq. (35) is always the same
function independent of the f in Eq. (32).

What is this universal function good
for? Figure 5a shows a crude approx-
imation of g, [n = 0 in the limit of Eq.
(35)]. while Fig. 7a shows a better ap-
proximation (n = 1). In fact, the extrema
of g, near the fixed points of g, support
circulation squares each of which con-
tains two points of the cycle. (The two
squares shown in Fig. 7a locate the four
elements of the cycle.) That is, g, deter-
mines the location of elements of high-
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order 2"-cycles near x = 0. Since g, is
universal, we now have the amazing
result that the location of the actual ele-
ments of highly doubled cycles is univer-
sal! The reader might guess this is a very
powerful result. Figure 9 shows g, out to
x sufficiently large to have 8 circulation
squares, and hence locates the 15 ele-
ments of a 2"-cycle nearest to x = 0.
Also, the universal value of the scaling
parameter a. obtained numerically, is
a = 2.502907875 ... (36)
Like 8, a is a number that can be
measured |through an experiment that
observes the d, of Eq. (28)] in any
phenomenon exhibiting period doubling.
If g, is universal, then of course its
iterate g} also is universal. Figure 7b

depicts an early approximation to this
iterate. In fact, let us define a new uni-
versal function g, obtained by scaling
g}

go(x) = —ugi(—x/a). (37
(Because g, is universal and the iterates
of our quadratic function are all sym-
metric in x, both g, and g, are symmetric
functions. Accordingly, the minus sign
within g} can be dropped with impunity.)
From Eq. (35), we now can write

2o(x) = (im(—a)"f2"(A.x/(—a)") .

n— oo

(38)

|We introduced the scaling of Eq. (37) to
provide one power of a per period dou-
bling, since each successive iterate of f2"
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reduces the scale by al.

In fact, we can generalize Eqgs. (35)
and (38) to a family of universal func-
tions g,:

g(x) = fim(—a)" "\, .x/(—a)") . (39)

n— oo

To understand this, observe that g,
locates the cycle elements as the fixed
points of g, at extrema; g, locates the
same elements by determining two ele-
ments per extremum. Similarly, g, deter-
mines 2" elements about each extremum
near a fixed point of g.. Since each 2" is
always magnified by (—a)" for each r.
the scales of all g, are the same. Indeed.
g forr > 1 looks like g, of Fig. 9. except
that each extremum is slightly higher. to
accommodate a 2"-cycle. Since each ex-
tremum must grow by convergently
small amounts to accommodate higher
and higher 2"-cvcles, we are led to con-
clude that

g(x) = fim g (x) (40)
must exist. By Eq. (39),
g(x) = fim(—a)"f*(A_x/(—a)").  (41)

n— oo

Unlike the functions g,, g(x) is obtained
as a limit of f2"s at a fixed value of . In-
deed, this is the special significance of
A1 it is an isolated value of A at which
repeated iteration and magnification lead
to a convergent function.

We now can write the equation that g
satisfies. Analogously to Eq. (37), it is
easy to verify that all g, are related by

gri(X) = —og (g (—x/a)). (42)

By Eq. (40). it follows that g satisfies
g(x) = —ag(g(x/a)) . (43)

The reader can verify that Eq. (43) is in-
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variant under a magnification of g. Thus,
the theory has nothing to say about ab-
solute scales. Accordingly, we must fix
this by hand by setting
g0)=1. (44)
Also, we must specify the nature of the
maximum of g at x = 0 (for example,
quadratic). Finally, since g is to be built
by iterating a — x% it must be both
smooth and a function of x through x*.
With these specifications., Eq. (43) has a
unigue solution. By Egs. (44) and (43).

g(0) = I = —ag(g(0)) = —ag(l) ,
so that

a=—1/gl). (45)

Accordingly. Eq. (43) determines «
together with g.

Let us comment on the nature of Eq.
(43). a so-called functional equation.
Because g is smooth, if we know its
value at a finite number of points, we
know its value to some approximation
on the interval containing these points by
any sufficiently smooth interpolation.
Thus. to some degree of accuracy, Eq.
(43) can be replaced by a finite coupled
system of nonlinear equations. Exactly
then. Eq. (43) is an infinite-dimensional,
nonlinear vector equation. Accordingly,
we have obtained the solution to one-
dimensional period doubling through our
infinite-dimensional, explicitly universal
problem. Equation (43) must be infinite-
dimensional because it must keep track
of the infinite number of cycle elements
demanded of any attempt to solve the
period-doubling problem. Rigorous
matliematics for equations like Eq. (43)
is just beyond the boundary of present
mathematical knowledge.

At this point, we must determine two
items. First. where is 8? Second, how do
we obtain g,. the real function of interest
for locating cycle elements? The two

problems are part of one question. Equa-
tion (42) is itself an iteration scheme.
However, unlike the elements in Eq. (4),
the elements acted on in Eq. (42) are
JSunctions. The analogue of the function
of fin Eq. (4) is the operation in function
space of functional composition followed
by a magnification. If we call this opera-
tion T, and an element of the function
space y. Eq. (42) gives

Tly|(x) = —ay*(—x/a) . (46)
In terms of T, Eq. (42) now reads
g1 =Tlgl. (47)
and Eq. (43) reads

g=Tlg|. (48)

Thus. g is precisely the fixed point of T.
Since g is the limit of the sequence g, we
can obtain g, for large r by linearizing T
about its fixed point g. Once we have g,
in the linear regime, the exact repeated
application of T by Eq. (47) will provide
g,. Thus, we must investigate the
stability of T at the fixed point g.
However, it is obvious that T is unstable
at g: for a large enough r, g, is a point ar-
bitrarily close to the fixed point g; by Eq.
(47). successive iterates of g under T
move away from g. How unstable is T?
Consider a one-parameter family of
functions f,, which means a “line” in the
function space. For each f, there is an
isolated parameter value A _, for which
repeated applications of T lead to con-
vergence towards g |Eq. (41)]. Now, the
function space can be “packed” with all
the lines corresponding to the various f’s.
The set of all the points on these lines
specified by the respective A_°s deter-
mines a “surface” having the property
that repeated applications of T to any
point on it will converge to g. This is the
surface of stability of T (the *stable
manifold” of T through g). But through
each point of this surface issues out the
corresponding line, which is one-
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dimensional since it is parametrized by a
single parameter. A. Accordingly. T is
unstable in only one direction in function
space. Linearized about g. this line of in-
stability can be written as the one-
parameter family

f;(x) = g(x) — A h(x) . (49)

which passes through g (at A = 0) and
deviates from g along the unique direc-
tion h. But f; is just one of our transfor-
mations |Eq. (4)]! Thus, as we vary A, f;
will undergo period doubling, doubling
to a 2"-cycle at A, By Eq. (41), A for
the family of functions f, in Eq. (49) is

L,=0. (50)
Thus. by Eqg. (1)
Nob (51)

Since applications of T by Eq. (47)
iterate in the opposite direction (diverge
away from g), it now follows that the
rate of instability of T along h must be
precisely 0.

Accordingly. we find & and g, in the
following way. First. we must linearize
the operation T about its fixed point g.
Next. we must determine the stability
directions of the linearized operator.
Moreover, we expect there to be
precisely one direction of instability. In-
deed. it turns out that infinitesimal defor-
mations (conjugacies) of g determine
stable directions, while a unique unstable
direction. h, emerges with a stability rate
(eigenvalue) precisely the & of Eq. (3).
Equation (49) at A, is precisely g, for
asymptotically large r. Thus g, is known
asymptotically. so that we have entered
the sequence g, and can now. by
repeated use of Eq. (47). step down to g,.
All the ingredients of a full description of
high-order 2"-cyvcles now are at hand
and evidently are universal.

Although we have said that the func-
tion g, universally locates cycle elements
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near x = 0. we must understand that it
doesn’t locate all cycle elements. This is
possible because a finite distance of the
scale of g, (for example, the location of
the element nearest to x = 0) has been
magnified by o" for n diverging. Indeed,
the distances from x = 0 of all elements
of a 2"-cycle. ““accurately” located by g,,
are reduced by —u in the 2""'-cycle.
However. it is obvious that some ele-
ments have no such scaling: because f(0)
= a, in Eq. (13). and a, — a_. which is
a definite nonzero number, the distance
from the origin of the element of the 2"-
cycle farthest to the right certainly has
not been reduced by —a at each period
doubling. This suggests that we must
measure locations of elements on the far
right with respect to the farthest right
point. If we do this. we can see that these
distances scale by . since they are the
images through the quadractic max-
imum of f at x = 0 of elements close to x
= 0 scaling with —a. In fact, if we image
g, through the maximum of f (through a
quadratic conjugacy). then we shall in-
deed obtain a new universal function
that locates cycle elements near the
right- most element. The correct descrip-
tion of a highly doubled cycle now
emerges as one of universal local
clusters.

We can state the scope of universality
for the location of cycle elements
precisely. Since f(,, x) exactly locates
the two elements of the 2'-cycle, and
since f(A,. x) is an approximation to g, [n
= 0 in Eq. (35)]. we evidently can locate
both points exactly by appropriately
sealing g,. Next. near x = 0, fi(A,. x) is a
better approximation to g, (suitably
scaled). However. in general, the more
accurately we scale g, to determine the
smallest 2-cycle elements, the greater is
the error in its determination of the right-
most elements. Again, near x = 0, f{(A,.
x) is a still better approximation to g,. In-
deed. the suitably scaled g, now can
determine several points about x = 0 ac-
curately. but determination of the right-

most elements is still worse. In this
fashion, it follows that g,, suitably
scaled, can determine 2" points of the 2™
cycle near x = 0 for r € n. If we focus on
the neighborhood of one of these 2'
points at some definite distance from x =
0. then by Eq. (35) the larger the n, the
larger the scaled distance of this regior
from x = 0, and so, the poorer the ap-
proximation of the location of fixec
points in it by g,. However, just as we
can construct the version of g, that ap-
plies at the right-most cycle element, we
also can construct the version of g, that
applies at this chosen neighborhood. Ac-
cordingly, the universal description is set
through an acceptable tolerance: if we
“measure” f*" at some definite n, then we
can use the actual location of the ele-
ments as foci for 2" versions of g,, each
applicable at one such point. For all
further period doubling, we determine
the new cycle elements through the g,’s.
In summary, the more accurately we
care to know the locations of arbitrarily
high-order cycle elements, the more
parameters we must measure (namely.
the cycle elements at some chosen order
of period doubling). This is the sense in
which the universality theory is
asymptotic. Its ability to have serious
predictive power is the fortunate conse-
quence of the high convergence rate
8(~4.67). Thus, typically after the first
two or three period doublings, this
asymptotic theory is already accurate to
within several percent. If a period-
doubling system is measured in its 4- or
8-cycle. its behavior throughout and
symmetrically beyond the period-
doubling regime also is determined tc
within a few percent.

To make precise dynamical predic-
tions. we do not have to construct all the
local versions of g,: all we really need
to know is the local scaling everywhere
along the attractor. The scaling is —a at
x = 0 and o? at the right-most element.
But what is it at an arbitrary point? We
can determine the scaling law if we order
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elements not by their location on the x-
axis, but rather by their order as iterates
of x = 0. Because the time sequence in
which a process evolves is precisely this
ordering, the result will be of immediate
and powerful predictive value. It is
precisely this scaling law that allows us
to compute the spectrum of the onset of
turbulence in period-doubling systems.
What must we compute? First, just as
the element in the 2"-cycle nearest to x =
0 is the element halfway around the cy-
cle from x = 0, the element nearest to an
arbitrarily chosen element is precisely
the one halfway around the cycle from it.
Let us denote by d,(m) the distance bet-
ween the m'™ cycle element (x,,) and the
element nearest to it in a 2"-cycle. [The
d, of Eq. (28)is d(0)]. As just explained.

d(m)=x, — " (A.x). (52)

However. x,, is the m"" iterate of x, = 0.
Recalling from Eq. (6) that powers com-
mute. we find
d,(m) = f"(A,.0)
= W0 PP 0)) (53)
Let us. for the moment. specialize to m
of the form 2", in which case
d,2"" = " (A,.0)
S P T))
5 f\Zn_r(}"(n—r)H'O)
= fzn_r(}"[n—r)ﬂ‘f‘zn_I(ln'o)) :
(54)
For r « n (which can still allow r » 1 for
n large). we have. by Eq. (39),
d,(2") ~ (~a) " 7[g,(0)
~ e(Co)E R (A0))]

or

42" ~ () " ]g,(0)

—ed(—) " g, (0)] . (59)

20

The object we want to determine is the
local scaling at the m'™ element. that is.
the ratio of nearest separations at the m*"
iterate of x = 0, at successive values of n.
That is. if the scaling is called o,

O'H(m) = dni l(m)

d, (m) ()
|Observe by Eq. (28). the definition of a.
that 6,(0) ~ (—a)"".| Specializing again
to m = 2""", where r « n. we have by Eq.
(55)

n-r gr+](0) 58 gr+l{(_a)_rg1(0))
2 ~ =
o) > 20— Bl g 0))

(57)

Finally. let us rescale the axis of iterates
so that all 2" iterates are within a unit
interval. Labelling this axis by t. the
value of t of the m™ element in a 2"-cycle
is

t(m)=m/2". (38)
In particular. we have
(2" =27". (59)

Defining o along the t-axis naturally as

o(t,(m)) ~ o,(m) (as n — ),

we have by Egs. (57) and (39).

—-—y _ gH-l(O) = gr+l((_a)7rg1(0))
o) =50 - ) 5 0)

(60)

It is not much more difficult to obtain o
for all t. This is done first for rational t
by writing t in its binary expansion:

Exoploniopal ngl

In the 2"-cycle approximation we require
o, at the 2" 4+ 2" L iterate of the
origin. But, by Eq. (8),

f2n~r1 Tl

= f‘2n7r! 2 f‘zn-—l‘z i

It follows by manipulations identical to
those that led from Eq. (54) to Eq. (60)
that o at such values of t is obtained by
replacing the individual g, terms in Eq.
(60) by appropriate iterates of various
g.’s.

There is one last ingredient to the
computation of a. We know that o(0) =
—a~'. We also know that o (1) ~ a2
But, by Eq. (59).

B =20 O

Thus o is discontinuous at t = 0, with
o(0—¢)=—a"and o(0 + &) = a (e —
0%). Indeed, since x,, . is always very
close to the origin, each of these points is
imaged quadratically. Thus Eq. (60) ac-
tually determines o(27"' — g), while
o(27' + g) is obtained by replacing
each numerator and denominator g, by
its square. The same replacement also is
correct for each multi-g, term that
figures into ¢ at the binary expanded
rationals.

Altogether, we have the following
results. o(t) can be computed for all t,
and it is universal since its explicit com-
putation depends only upon the uni-
versal functions g. o is discontinuous
at all the rationals. However, it can be
established that the larger the number of
terms in the binary expansion of a
rational t. the smaller the discontinuity
of o. Lastly, as a finite number of iterates
leaves t unchanged as n — oo, 6 must be
continuous except at the rationals.
Figure 10 depicts 1/o(t). Despite the
pathological nature of o, the reader will
observe that basically it is constant half
the time at a™' and half the time at ¢ 2
for 0 < t < %. In a succeeding approx-
imation, it can be decomposed in each
half into two slightly different quarters,
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Fig. 10. The trgjectory scaling function. Observe that o (x + 1/2)

= — o (x).

Fig. 11. The plotted points lie on the “strange attractor” of Duyffing’s equation.
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and so forth. [It is easy to verify from
Eq. (52) that o is periodic in t of period
1. and has the symmetry

ot + %) = —o(t) .

Accordingly. we have paid attention to
its first half 0 < t < '.| With ¢ we are at
last finished with one-dimensional
iterates per se.

Universal Behavior in Higher Dimen-
sional Systems

So far we have discussed iteration in
one variable: Eq. (15) is the prototype.
Equation (14), an example of iteration in
two dimensions. has the special property
of preserving areas. A generalization of
Eq. (14),

2

Xnt1 = Yo — X
and
Yos1 = a1+ bx, (61)

with Ibl < I, contracts areas. Equation
(61) is interesting because it possesses a
so-called strange attractor. This means
an attractor (as before) constructed by
folding a curve repeatedly upon itself
(Fig. 11) with the consequent property
that two initial points very near to one
another are, in fact, very far from each
other when the distance is measured
along the folded attractor, which is the
path they follow upon iteration. This
means that after some iteration, they will
soon be far apart in actual distance as
well as when measured along the attrac-
tor. This general mechanism gives a
system highly sensitive dependence upon
its initial conditions and a truly
statistical character: since very small dif-
ferences in initial conditions are
magnified quickly, unless the initial con-
ditions are known to infinite precision,
all known knowledge is eroded rapidly to
future ignorance. Now, Eq. (61) enters
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into the early stages of statistical
behavior through period doubling.
Moreover. & of Eq. (3) is again the rate X
of onset of complexity. and a of Eq. (31) a
is again the rate at which the spacing of /”"“\ it
adjacent attractor points is vanishing. / S o
Indeed, the one-dimensional theory / \\\ //
determines all behavior of Eq. (61) in the N
onset regime. \
In fact, dimensionality is irrelevant. /X .
The same theory, the same numbers, etc. ( \ oy
/

also work for iterations in N dimensions,
provided that the system goes through s l\
period doubling. The basic process, N/
wherever period doubling occurs ad | N
infinitum. is functional composition from \ o \\_\
one level to the next. Accordingly, a 7
modification of Eq. (29) is at the heart of % o e
the process, with composition on func- o

tions from N dimensions to N dimen- ———

sions. Should the specific iteration func-
tion contract N-dimensional volumes (a
dissipative process), then in general there
is one direction of slowest contraction,
so that after a number of iterations the
process is effectively one-dimensional.
Put differently. the one-dimensional solu-
tion to Eq. (29) is always a solution to its 5
N-dimensional analogue. It is the rele- b

vant fixed point of the analogue if the e
iteration function is contractive. 7 \

Universal Behavior in Differential
Systems

The next step of generalization is to /
include systems of differential equations.
A prototypic equation is Duffing’s os-
cillator, a driven damped anharmonic
oscillator,

A A\
X + kx + x* = bsin 27t . (62) /)// \_,
The periodic drive of period | determines \ /

: \#/

a natural time step. Figure 12a depicts a
period | attractor, usually referred to as
a limit cyele. 1t is an attractor because, X
for a range of initial conditions, the solu-
tion to Eq. (62) settles down to the cycle.

It is period I because it repeats the same Fig. 12b. The most stable 2-cycle of Dyffing’s equation. Observe that it is two dis-
curve in every period of the drive.  placed copies of Fig. 12a.
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Fig. 12¢. The most stable 4-cycle of Dyffing’s equation. Observe that the displaced

copies of Fig. 12b have either a broad or a narrow separation.

Figures 12b and c depict attractors of
periods 2 and 4 as the friction or damp-
ing constant k in Eq. (62) is reduced
systematically. The parameter values k
= Ag» Aps Ay .., are the damping cons-
tants corresponding to the most stable
2"-cycle in analogy to the A, of the one-
dimensional functional iteration. Indeed,
this oscillator’s period doubles (at least
numerically!) ad infinitum. In fact, by k
= As the 8; of Eq. (2) has converged to
4.69. Why is this? Instead of considering
the entire trajectories as shown in Fig.
12, let us consider only where the trajec-
tory point is located every 1 period of
the drive. The I-cycle then. produces
only one point, while the 2-cycle
produces a pair of points, and so forth.
This time-one map |[if the trajectory
point is (x,x) now, where is it one period
later?] is by virtue of the differential
equation a smooth and invertible func-
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tion in two dimensions. Qualitatively, it
looks like the map of Eq. (61). In the
present state of mathematics, little can
be said about the analytic behavior of
time-one’ maps: however, since our
theory is universal, it makes no dif-
ference that we don’t know the explicit
form. We still can determine the com-
plete quantitative behavior of Eq. (62) in
the onset regime where the motion tends
to aperiodicity. If we already know, by
measurement. the precise form of the
trajectory after a few period doublings.
we can compute the form of the trajec-
tory as the friction is reduced
throughout the region of onset of com-
plexity by carefully using the full power
of the universality theory to determine
the spacings of elements of a cycle.

2t us see how this works in some
detail. Consider the time-one map of the

Duffing’s oscillator in the superstable 2"-
cycle. In particular, let us focus on an
element at which the scaling function o
(Fig. 10) has the value o,, and for which
the next iterate of this element also has
the scaling o,. (The element is not at a
big discontinuity of ¢.) It is then intuitive
that if we had taken our time-one ex-
amination of the trajectory at values of
time displaced from our first choice, we
would have seen the same scaling o, for
this part of the trajectory. That is, the
differential equations will extend the
map-scaling function continuously to a
function along the entire trajectory so
that, if two successive time-one elements
have scaling o,, then the entire stretch of
trajectory over this unit time interval has
scaling o,. In the last section, we were
motivated to construct o as a function of
t along an interval precisely towards this
end.

To implement this idea, the first step is
to define the analogue of d,. We require
the spacing between the trajectory at
time t and at time T,/2 where the period
of the system in the 2"-cycle is

T2 (63)
That is, we define
dn(t) = xn(t) T xn(t e Tn/z) : (64)

(There is a d for each of the N variables
for a system of N differential equations.)
Since o was defined as periodic of period
I, we now have

Ay o) ~ 0(t/ Ty )dy(1) - (65)

The content of Eq. (65), based on the n-
dependence arising solely through the T,
in o, and not on the detailed form of o,
already implies a strong scaling predic-
tion, in that the ratio

i
dy(t)
when plotted with t scaled so that T, =
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1. is a function independent of n. Thus if
Eq. (65) is true for some o, whatever it
might be. then knowing x(t). we can
compute d,(t) and from Eq. (65) d,,,(t).
As a consequence of periodicity. Eq.
(64) for n — n + 1 can be solved for
X,.,(t) (through a Fourier transform).
That is, if we have measured any chosen
coordinate of the system in its 2"-cycle,
we can compute its time dependence in
the 2™ !-cycle. Because this procedure is
recursive, we can compute the coor-
dinate’s evolution for all higher cycles
through the infinite period-doubling
limit. If Eq. (65) is true and ¢ not known,
then by measurement at a 2"-cycle and
at a 2" 'cycle. o could be constructed
from Eq. (65). and hence all higher order
doublings would again be determined.
Accordingly. Eq. (65) is a very powerful
result. However, we know much more.
The universality theory tells us that
period doubling is universal and that
there is a unique function ¢ which, in-
deed. we have computed in the previous
section. Accordingly. by measuring x(t)
in some chosen 2"-cycle (the higher the
n. the more the number of effective
parameters to be determined empirically,
and the more precise are the predic-
tions). we now can compute the entire
evolution of the system on its route to
turbulence.

How well does this work? The em-
pirically determined o [for Eq. (62)] of
Eq. (65) is shown for n = 3 in Fig. 13a
and n = 4 in Fig. 13b. The figures were
constructed by plotting the ratios of d, .,
and d, scaled respective to T = 16 in
Fig. 13a and T = 32 in Fig. 13b.
Evidently the scaling law Eq. (65) is be-
ing obeyed. Moreover. on the same
graph Fig. 14 shows the empirical o for
n = 4 and the recursion theoretical ¢ of
Fig. 10. The reader should observe the
detail-by-detail agreement of the two. In
fact. if we use Eq. (65) and the
theoretical ¢ with n = 2 as empirical in-
put. the n = 5 frequency spectrum agrees
with the empirical n = 5 spectrum to
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Fig. 13a. The ratio of nearest copy separations in the 8-cycle and 16-cycle for Dyff-

ing’s equation.

Fig. 13b. The same quantity as in Fig. 13a, but for the 16-cycle and 32-cycle. Here, the
time axis is twice as compressed.
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Fig. 14. Figure 13b overlayed with Fig. 10 compares the universal scah

within 10%. (The n = 4 determines n = 5
to within 1%.) Thus the asymptotic un-

iversality theory is correct and is already

well obeyed, even by n = 2!
Equations (64) and (65) are solved, as

mentioned above,

transforming. The result is a recursive

" scheme that determines the Fourier coef-
ficients of x,,,(t) in terms of those of -

X,(t) and the Fourier transform of the
(known) function of(t). To employ the
formula accurately requires knowledge
of the entire spectrum of x, (amplitude
and phase) to determine each coefficient
of x,,,. However, the formula enjoys an
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through Fourier

approximate local prediction, which

‘roughly determines the - amplitude of a

coefficient of X4y in terms of the am-
plitudes (alone) of x,, near the desired fre-
quency of x,,,. :

What does the spectrum of a period-
doubling system look like? Each time the
period doubles, the fundamental fre-
quency halves; period doubling in the
continuum version is termed half-
subharmonic bifurcation, a typical
behavior of coupled nonlinear differen-

tial equations. Since the motion almost.

reproduces itself every period of the
drive, the amplitude at this original fre-

ng function c with the empirically determined scaling of
nearest copy separations from the 16-cycle to the 32- cyclefor Duyffing’s equation.

quency is high. At the first subharmonic
halving, spectral components of the odd
halves of the drive frequency come in.
On the route to aperiodicity they
saturate at a certain amplitude. Since the
motion more nearly reproduces itself
every two periods of drive, the next
saturated subharmonics, at the odd

fourths of the original frequency, are

smaller still than the first ones, and so
on, as each set of odd 2"ths comes into
being. A crude approximate prediction
of the theory is that whatever the system,
the saturated amplitudes of each set of
successively lower half-frequencies
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define a smooth interpolation located 8.2
dB below the smooth interpolation of the
previous half-frequencies. [This is shown
in Fig. 15 for Eq. (62).] After subhar-
monic bifurcations ad infinitum, the
system is now no longer periodic; it has
developed a continuous broad spectrum
down to zero frequency with a definite
internal distribution of the energy. That
is, the system emerges from this process
having developed the beginnings of
broad-band noise of a determined
nature. This process also occurs in the
onset of turbulence in a fluid.

The Onset of Turbulence

The existing idea of the route to tur-
bulence is Landau’s 1941 theory. The
idea is that a system becomes turbulent
through a succession of instabilities,
where each instability creates a new
degree of freedom (through an indeter-
minate phase) of a time-periodic nature
with the frequencies successively higher
and incommensurate (nof harmonics);
because the resulting motion is the
superposition of these modes, it is quasi-
periodic.

In fact, it is experimentally clear that
. quasi-periodicity is incorrect. Rather, to
produce the observed noise of rapidly
decaying correlation the spectrum must
become continuous (broad-band noise)
down to zero frequency. The defect can
be eliminated through the production of

successive  half-subharmonics,. which -

then emerge as an allowable route to tur-
bulence. If the general idea of a succes-
sion of instabilities is maintained, the
new modes do not have indeterminate
“phases. However, only a small number
of modes need be excited to produce the
- required spectrum. (The number of
modes participating in the transition is,
as of now, an open experimental ques-
tion.) Indeed, knowledge of the phases of
a small number of amplitudes at an early
stage of period doubling suffices to
“determine the phases of the transition
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Fig. 15. The subharmonic spectrum of Duffing’s equation in the 32-cycle. The dotted
curve is an interpolation of the odd 32nd subharmonics. The shorter dashed curve is
constructed similarly for the odd 16th subharmonies, but lowered by 8.2 dB. The
longer dashed curve of the 8th subharmonics has been dropped by 16.4 dB, and the
solid curve of the 4th subharmonics by 24.6 dB.

Fig. 16. The experimental spectrum (redrawn from Libchaber and Maurer) of a con-
vecting fluid at its transition to turbulence. The dashed lines result from dropping a
horizontal line down through the odd 4th subharmonics (labelled 2)by 8.2 and 16.4
dB. . -
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spectrum. What is important is that a
purely causal system can and does
possess essentially statistical properties.
Invoking ad hoc statistics is unnecessary
and generally incompatible with the true
dynamics.

A full theoretical computation of the
onset demands the calculation of suc-
cessive instabilities. The method used
traditionally is perturbative. We start at
the static solution and add a small time-
dependent piece. The fluid equations are
linearized about the static solution, and
the stability of the perturbation is
studied. To date, only the first instability
has been computed analytically. Once
we know the parameter value (for exam-
ple. the Rayleigh number) for the onset
of this first time-varying instability, we
must determine the correct form of the
solution after the perturbation has grown
large beyond the linear regime. To this
solution we add a new time-dependent
perturbative mode, again linearized (now
about a time-varying. nonanalytically
available solution) to discover the new
instability. To date. the second step of
the analysis has been performed only
numerically. This process, in principle,
can be repeated again and again until a
suitably turbulent flow has been ob-
tained. At each successive stage. the
computation grows successively more
intractable.

However, it is just at this point that
the universality theory solves the
problem: it works only after enough in-
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stabilities have entered to reach the
asymptotic regime. Since just two such
instabilities already serve as a good ap-
proximate starting point, we need only a
few parameters for each flow to em-
power the theory to complete the hard
part of the infinite cascade of more com-
plex instabilities.

Why should the theory apply? The
fluid equations make up a set of coupled
field equations. They can be spatially
Fourier-decomposed to an infinite set of
coupled ordinary differential equations.
Since a flow is viscous, there is some
smallest spatial scale below which no
significant excitation exists. Thus, the
equations are effectively a finite coupled
set of nonlinear differential equations.
The number of equations in the set is
completely irrelevant. The universality
theory is generic for such a dissipative
system of equations. Thus it is possible
that the flow exhibits period doubling. If
it does. then our theory applies.
However. to prove that a given flow (or
any flow) actually should exhibit dou-
bling is well beyond present un-
derstanding. All we can do is experi-
ment.

Figure 16 depicts the experimentally
measured spectrum of a convecting li-
quid helium cell at the onset of tur-
bulence. The system displays measurable
period doubling through four or five
levels: the spectral components at each
set of odd half-subharmonics are labelled
with the level. With n = 2 taken as

asymptotic, the dotted lines show the
crudest interpolations implied for the n =
3., n = 4 component. Given the small
amount of amplitude data, the interpola-
tions are perforce poor, while ignorance
of higher odd multiples prevents con-
struction of any significant interpolation
at the right-hand side. Accordingly, to
do the crudest test, the farthest right-
hand amplitude was dropped, and the
oscillations were smoothed away by
averaging. The experimental results,
—8.3 dB and —8.4 dB, are in surprisingly
good agreement with the theoretical 8.2!

From this good experimental agree-
ment and the many period doublings as
the clincher, we can be confident that the
measured flow has made its transition
according to our theory. A measurement
of & from its fundamental definition
would, of course, be altogether convinc-
ing. (Experimental resolution is insuf-
ficient at present.) However, if we work
backwards, we find that the several per-
cent agreement in 82 dB is an ex-
perimental observation of a in the system
to the same accuracy. Thus, the present
method has provided a theoretical
calculation of the actual dynamics in a
field where such a feat has been impossi-
ble since the construction of the Navier-
Stokes equations. In fact, the scaling law
Eq. (65) transcends these equations, and
applies to the true equations, whatever
they may be.
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