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Resumo

A "Exploradora das Luas Geladas de Juipiter”, JUICE, é a préxima missdo de classe L da Agéncia
Espacial Europeia (ESA) ao sistema Joviano. Vai orbitar Jupiter e trés das suas luas, Europa, Calisto
e Ganimedes enfrentando um ambiente de radiagdo altamente varidvel e intenso, com uma grande pop-
ulacgao de electroes de energias elevadas, que podem levar a acumulagao de doses de radiagao ionizante
significativas induzindo falhas no funcionamento de instrumentos. A maior parte das missées que vis-
itaram este planeta, fizeram-no por curtos periodos de tempo, usando-o para manobras assistidas por
gravidade no seu caminho para o sistema solar exterior. As Unicas excepc¢oes até agora foram a misséo
Galileo e mais recentemente a missdo Juno, ambas da NASA. O ambiente de radiacdo em Jupiter apenas
foi medido durante um longo periodo de tempo pelo ”Detector de Particulas Energético”, EPD, a bordo
da nave Galileo. A miss@o Juno néo inclui nenhum monitor de radiagao.

A missdao JUICE incorporard o ”Monitor de Electrées Resistente a Radiacdo”, RADEM, que tem
estado a ser desenvolvido no ambito desta tese. O RADEM ¢é um instrumento de baixa massa e baixa
poténcia que contém quatro detectores: um detector de electroes; um detector de protoes; um detector
de i0es pesados; e um detector de direcionalidade. Os trés primeiros vao medir o espectro de energias da
populagao de electroes, (Detector de Stack de Electroes - EDH), protoes (Detector de Stack de Protoes
- PDH) e ies ((Detector de Stack de Ioes - HIDH)). Estes sdo baseados em detetores de ”stack” de
Silicio padrao adaptados para as energias das particulas existentes em Jupiter. Para complementar estes
detetores, o Detector de Direcionalidade (DDH) vai medir a dependéncia angular dos fluxos de electroes
existentes em Jupiter, permitindo assim evitar que se subestimem ou sobrestimem as doses de radiagao
durante a missao assim como melhorar os modelos do ambiente de radiagao do sistema Joviano, com base
nos dados da missdo JUICE.

Nesta tese foram analisados quase todos os aspectos do processo de ”Radiation Hardness Assurance”
do RADEM. A tese envolveu o desenvolvimento do Detector de Direcionalidade, incluindo a sua car-
acterizagao e testes em feixe, que permitira especificar modelos de radiagao mais precisos para futuras
missbes. Também envolveu a anélise de radiagdo e optimizagdo da blindagem do RADEM a radiacgao,
da qual resultou a criagao de um programa ”open-source”, GUIMesh, que permite converter geometrias
STEP em GDMIL, um formato compativel com Geant4. As aplicagoes deste programa extendem-se &
fisica nuclear, fisica de particulas e fisica médica.

No ambito desta tese, também foi realizada a verificacdo da validade dos testes de %°Co para compo-
nentes electrénicos utilizados em Jupiter. Estes testes mostraram que os efeitos do °Co em tecnologias
de semicondutores usadas em aplicagoes espaciais sao equivalentes aos efeitos de feixes de electrées com
energias de 12 e 20 MeV de intensidades comparéveis. As implicagdes deste estudo na missdao JUICE sao
sao de extrema importancia pois permitem manter as margens de radiacao estabelecidas para a missao,

evitando aumentar a quantidade de material (blindagem) e limitando a dose de radiagdo até a qual os

testes de componentes sao efectuados.

Palavras-chave: Jupiter, JUICE, ambiente de radiacao, RADEM, Detectores de Particulas,
Efeitos da radiacao, Proteccao radiolégica, Componentes Electrénicos, Simulagao de Monte
Carlo, Geant4, GUIMesh, Detector de Direccionalidade, electroes.
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Abstract

The JUpiter ICy moons Explorer (JUICE), ESAs next L-class mission to the Jovian system, will orbit
the Jovian system for 3.5 years and study three of its moons, Europa, Callisto and Ganymede. It will
face a highly variable and hazardous radiation environment, composed of a large electron population with
energies much higher than those found in the Van Allen belts, that can lead to high cumulative ionizing
doses in Electric, Electronic and Electromechanical (EEE) components and eventually cause instruments
malfunction. The environment is related to the large complex magnetosphere of Jupiter, far extending
into the orbit of Saturn.

The majority of missions that visited the planet, have done so briefly, using it for gravity assist
maneuvers in their way to the outer solar system. The only exceptions so far were the Galileo spacecraft,
and most recently the Juno mission both by NASA. Long-term observation of the radiation environment
in Jupiter has been done mostly by the Energetic Particle Detector (EPD) in the Galileo spacecraft. Juno
does not have any radiation monitor.

JUICE will carry the Radiation Hard Electron Monitor (RADEM) which is currently under develop-
ment and is the main focus of this thesis. RADEM is a low power, low mass instrument that has four
detectors: the Electron Detector Head; the Proton Detector Head; the Ion Detector Head; and the Direc-
tionality Detector Head. The first three will perform spectral measurements of the electron, proton and
to some extent ion populations. They are all based on standard silicon stack detectors space technologies,
extended to the higher particle energies. To complement these detectors, the Directionality Detector will
measure the electron flux angular variability known to exist in Jupiter, avoiding in-situ under or over-
estimation of radiation doses as well contributing to the development of radiation environment models
based on JUICE mission data.

In this thesis, most aspects of the Radiation Hardness Assurance for RADEM were addressed. It
covers the full development of the Directional Detector, including Geant4 simulations and beam tests,
to optimize its design and to verify its performance. It also covers the radiation analysis and shielding
optimization of RADEM, which resulted in the creation of the first open-source software, GUIMesh, to
convert STEP geometries to GDML, a Geant4 readable format. This tool can also be used in a broad
range of applications such as medical, nuclear and high energy physics.

The verification of °Co testing representativeness for EEE components flown to Jupiter was also
assessed in the framework of this thesis. It was proved that %°Co has similar effects on common semicon-
ductor technologies used in space applications, as 12 and 20 MeV electrons of equivalent intensity. This
result had major implications for the JUICE mission since it allowed to maintain the mission Radiation

Design Margins and avoid over-testing and/or over-shielding.

Keywords: Jupiter, JUICE, Radiation environment, RADEM, Particle Detectors, Radia-
tion Effects, EEE components, Radiation Hardness Assurance Monte Carlo simulations, Geant4,
GUIMesh, Directionality Detector.
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