A Guide to the TABLE OF ISOTOPES, Firestone and Shirley, Editors

The 7th edition of the "Table of the Isotopes" contains so much material that it is difficult to read (even more so with the 8th). This guide describes ⁶⁰Co in some detail, with the relevant tables and charts for ⁶⁰Co reproduced and attached to this write-up. Short comments are supplied for other commonly encountered isotopes, namely, ¹³⁷Cs, ⁵⁷Co, ²²Na, ²⁴Na, ¹⁰⁶Ru, and ²²⁸Th, with selected entries for them also attached. Be sure to examine the introductory section of the "TABLE" for detailed descriptions of format, notation, and abbreviations. Please note that the program "PCNudat" contains much of this information in electronic format. Also do familiarize yourself with the 8th edition CD-ROM (1998 Update). The WWW version of this guide provides some graphical examples from the CD-ROM.

⁶⁰Co - [γ-rays, β spectrum, Conversion Electrons]

There are several entries for each isotope, both tables of data and diagrams. The first useful data is at the beginning of the Mass = 60 section. It is a simple diagram that tells you which of the A=60 nuclei exist or have been artificially produced. It also gives some information about the decay of each system; for example, ⁶⁰Co decays to ⁶⁰Ni and is about 2.8 MeV/c² more massive (as can been seen by reading the scale to the left of the diagram or reading the Q_{β} - values). This diagram also tells you that an excited, isomeric level of ⁶⁰Co decays to ⁶⁰Ni with a half-life of 10.47 minutes, while the ground state decay has a half life of 5.271 years. The isomeric level decays 99.76% of the time to the ⁶⁰Co ground state via an isomeric transition, IT, and only .24% of the time to ⁶⁰Ni. (References: (1) pp. 369-373, (2) pp. 229-234, (3) p. 274)

Now you want to look at the diagrams for the daughter isotope, ⁶⁰Ni. (Reference (3), p. 277). There are three diagrams, do not look at the main entry (part 2). We are interested in the diagram which lists the isotopes decaying to this one (part 1). It includes the parent and daughter nuclei, the levels in the daughter which are the final product of the decay, and the subsequent gamma-ray (γ -ray) emissions. The decays are labeled by the type of decay [e.g., beta - (β^-), beta + (β^+), and electron capture (EC)] and the relative probability of each mode. The ⁶⁰Co level with the 10.47 minute half life is labeled as a meta-stable state **m**, which means that it is not the ⁶⁰Co ground state but is a long - lived excited state. The bold entry over the gamma-ray transitions are their energies, the italic entries are the branching ratios for the decay if more than one gamma decay is possible. The spin, and parity of each level in ⁶⁰Ni is listed on the left side of the line (e.g., 0+, 2+ etc.). If the lifetime of a level is known it will also be listed. This diagram is not complete. It only includes the levels in the daughter which can be reached by the radioactive decay of ⁶⁰Co and ⁶⁰Cu. There may be other levels in-between those shown. You will have to look at the main entry if you want a complete listing of levels.

The main diagram for ⁶⁰Co does not list any information about radioactive decay (ref. (3), p. 275). It does list the nuclear levels, their energies, spins, parities, and lifetimes. The vertical lines connecting states identify the known gamma ray transitions; their energies, if not given, can be calculated by taking the difference between the energies of the levels. We are seldom interested in this information because long lived radioactive decays come from the ground state of the parent nucleus. The higher energy states have very short lifetimes (pico-seconds, femto-seconds, or shorter) unless they are meta-stable, but even these will have decayed in a few minutes.

¹³⁷Cs - [γ-ray, X-ray, Conversion Electrons, β-spectrum]

 137 Cs has an additional subtlety that you must be aware of. You can start in the usual way, which is to look at the A=137 diagram (ref. (3), p. 1242). From this you will find that 137 Ba is the daughter and the important decay information will be listed there. The diagram lists the various decays and their branching ratios, but it does not point out that the de-excitation of the .661 MeV level in Ba is rather unusual. It involves a large spin change (11/2⁻ to 3/2⁺) and will be hindered so that another de-excitation mechanism, Internal Conversion, is possible. Instead of emitting a gamma-ray, the nucleus de-excites by knocking out one of the atomic electrons with kinetic energy equal to the decay energy. It is usually the K shell electron that is internally converted because it has the greatest wave function overlap with the nucleus. The hole that is left behind will be repopulated by an electron from a higher atomic shell, usually the L shell, and this L to K transition is accompanied by an X-ray. To find out how probable internal conversion is you have to look at the tabular information for 137 Ba under ~prod~ or products of the decay. The .662 MeV gamma-ray is a product of the decay and is produced 90.11 % of the time. The remaining 10% goes into internal conversion, listed under e/gamma.

134Cs - [γ-rays]

134Cs beta decays to 134 Ba with a half-life of 2.065 years. Because the ground state of 134 Cs is 4+, it decays predominantly to the 4+ states of 134 Ba. 27.28% of the decays go to the 1.970 MeV level, and 70.23% to the 1.401 MeV level. These levels subsequently decay by γ -ray emission, yielding strong lines at 0.569, 0.802, and 0.796 MeV. (The 4+, 2+, 0+ sequence is a very common decay sequence in nuclei. look for it in the attached diagram. ref. (3), p. 1208)

⁵⁷Co - [γ-rays, X-rays, Conversion Electrons]

57Co decays by electron capture to the 136.47 keV level of 57Fe. This level subsequently decays by gamma emission 10.68% of the time to the ground state, and 85.60% of the time to the 14.4 keV level. The de-population of the 14.4 keV level proceeds by a combination of gamma emission and internal conversion (e/gamma = 8.2) yielding an X-ray with each electron. This is a standard Mössbauer Effect source, and that is also frequently used for excitation of X-ray fluorescence. Reference (3), p. 254.

²²Na - [y-rays, Positronium/Annihilation Radiation]

²²Na decays by positron emission and electron capture yielding a single gamma-ray at 1.274 MeV. ²²Na in vacuum is an excellent source of positrons, otherwise (especially when in close proximity to material) the positrons annihilate and produce .511 MeV gamma-rays. [See Experiment 14] Reference (3), p. 43.

24 Na - [γ -rays]

²⁴Na is made by neutron activation, (²³Na + n \rightarrow ²⁴Na). Only the ground state lives long enough to be used as a calibration source (14.96 hours). It is a source of a uniquely high energy gamma ray (E γ = 2.754 MeV). Reference (3), p. 52.

²⁰⁷Bi - [electrons and γ-rays]

207Bi decays by electron capture to 207Pb with a half-life of 31.55 years. The decay leads to an unusual level in 207Pb that is almost stable, even though it is the excited state of the nucleus. This isomer of 207Pb has an 0.805 second lifetime due to its unusual spin (13/2 +). The γ -ray decay to the ground state is hindered because it is an M4 transition. Instead of emitting a γ -ray, the isomeric level decays by Internal Conversion (See 137Cs) and generates a monoenergetic electron which has 1.06366 MeV of kinetic energy. 207Bi also produces γ -rays at 0.569 and 1.770 MeV, but these are of less interest than the electron line.

Radioactive Series - 106Ru and 228Th

106Ru and **228**Th are examples of radioactive decay series. The parent has a long half life, but may not directly yield any interesting (useful) emissions. The daughters, on the other hand, produce useful decay products. In the case of 106Ru, the daughter's (106Rh) half life is only 29.8 seconds (ref. (3), p. 802), so short that it is frequently overlooked in the Table of Isotopes. 228Th, another parent of a decay series, is a long lived daughter (1.91 years) of yet an even longer decay series starting with 232Th (1.405×10^{10} y). 238U (4.468×10^9 y) is still another series. The Uranium and Thorium series are shown in the attached diagrams. The 238U series involves a sequence of 16 daughters before it reaches an end point at 209Pb. The 232Th series has 9 daughters have a wide variety of half-lives (milli-seconds to years), and are found in the environment in various equilibrium concentrations. The Uranium and Thorium series are responsible for the Radon gas that emanates from stone and concrete buildings, and are responsible for most of the naturally occurring lead found on the earth.

106Ru - [β - spectrum, γ - rays]

106Ru beta decays 100% of the time to the ground state of ¹⁰⁶Rh and does not yield any useful particles other than very low energy electrons. But the daughter, ¹⁰⁶Rh, is unstable and decays to ¹⁰⁶Pd yielding electrons, with a maximum end-point energy of 3.54 MeV, which can be used for calibration of plastic scintillators and spectrometers. Reference (3), p. 807.

In this decay, a neutron inside the nucleus is decaying to a proton + an electron + an anti-neutrino $(n \rightarrow p + e^- + \overline{\nu}_e)$. The total energy released in the decay will depend on the difference in binding energy between the parent and daughter nuclei with this energy manifested as the kinetic energy of the electron and anti-neutrino. (The proton also receives part of the decay energy but is so massive in comparison to the electron that the recoil energy is negligible.) The spectrum of energies available to the electron ranges between 0 and the total energy of the decay (3.54 MeV). It is most probable for the neutrino and electron to carry away about the same amount of energy and so the spectrum is peaked at mid-energies.

²²⁸Th - $[\gamma$ - rays and α -particles]

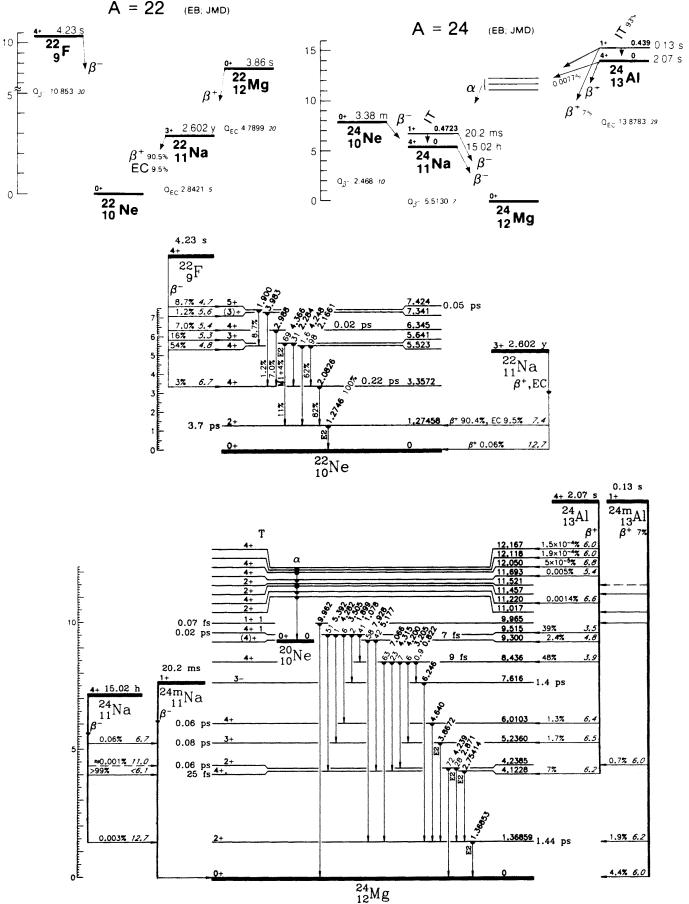
²²⁸Th decays with a half life of 1.91 years, proceeding through a chain of five α and two β decays before arriving at stable ²⁰⁸Pb. All of the intermediate daughters have short half-lives (the longest being 10.6 hours), so that their abundance is not determined by their half lives, but rather by the abundance of the parent ²²⁸Th (i.e., the daughters are in equilibrium - they are produced at the same rate that they decay.) A detailed review of the radiations emanating from a ²²⁸Th source requires that each and every daughter be looked up in the Table of Isotopes.

Briefly, the main γ -rays emitted occur at the following energies (energies in MeV and percent abundance):

0.084 (25%), 0.115 (5%), 0.239 (88%), 0.300 (5%), 0.510 (8%), 0.583 (30%), 0.727 (3%), 0.860 (8%), and 2.615 (36%). The alpha-particles are emitted at the following energies:

5.6856 (95%), 6.06 (35%), 6.2883 (99%), 6.7785 (100%), and 8.7844 (64%).

GLOSSARY OF TERMS:


- β^- (Beta -) emission: a neutron decaying inside of the nucleus emits a proton, electron, and an anti-neutrino. The electrons produce the β^- (Beta -) particle spectrum. (Reference: (2) pp. 536-541)
- β^+ (Beta +) emission: a proton decaying inside of the nucleus emits a neutron, positron (anti-electron), and a neutrino. The positrons produce the β^+ (Beta +) particle spectrum. (Reference: (2) pp. 536-541)
- **ELECTRON CAPTURE:** When a proton decays inside of the nucleus it must conserve charge. It can do this by positron emission (Beta + decay) or by capturing an orbital electron. The captured electron may come from any of the atomic orbitals and so K capture, L capture, M capture, etc. may all occur. The decay scheme is that a proton and an electron decay to a neutron and a neutrino. (Reference: (2) pp. 23-25)
- **INTERNAL CONVERSION** *(often labeled e/Y or ek/Y):* an excited state of the nucleus usually de-excites by gamma-ray emission. It may also de-excite by knocking out one of the orbital electrons, this is called *internal conversion*. It usually only occurs when the energy of the excited level is small, ~ 100 keV, or the change in spin between the initial and final state is large. Radioactive decays that lead to low energy levels in the daughter are often good sources of internal conversion electrons, which are monoenergetic, and can be used to calibrate electron detectors. (Reference: (2) pp. 23-25)
- ISOMER: nuclei with the same Z and same A, but with differing energy states. (Reference: (2) p.229-234
- **Q:** The mass difference between the parent and daughter isotopes is called the Q value. It is usually quoted in units of MeV/c^2 . (Reference: (1) p. 502)

REFERENCES:

- (1) E. Segre, Nuclei And Particles, 2nd Edition, (Benjamin/Cummings Publishing Company, 1977).
- (2) R. D. Evans, The Atomic Nucleus, (McGraw-Hill Book Company, New York, 1955).
- (3) R. B. Firestone and V. S. Shirley, Editors, *Table Of Isotopes*, 2 volume set including CD-ROM, 8th Edition, (John Wiley & Sons, New York, 1996) The 6th (1967) and 7th (1978) editions are also available in the laboratory.

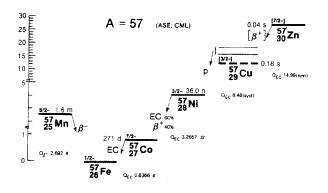
The following decay schemes are from the 7th edition of the Table of Isotopes. Check the latest literature for updated numbers.

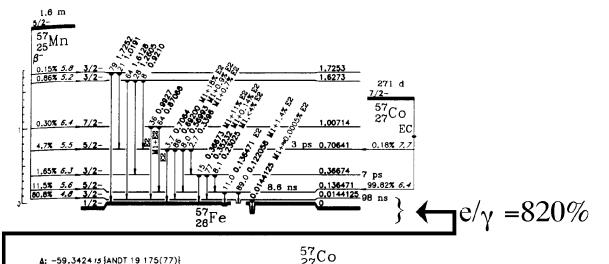
57.Fe

%: 2.15 BNL-NCS-50605(77)

A: -60.1790 # [ANDT 19 175(77)]

I: 1/2 EPR {Doki 113 1243(57), PRL 1 295(58)}


2.43 (reactor spectrum) {PC77 Holden}


- (levels): 0.014: 97.72 ns delay coinc {PPSL 89 187(66)}, 99.33 ns delay coinc {PR 184 298(69)}, ≈0.02 to 0.06% variation of t_{1/2} with chemical environment *delay coinc* {PL 39B 620(72), HPAc 46 165(73)}
 - 0.136: 8.54 ns delay coinc {NIM 71 29(69)}, 8.84 ns delay coinc {PR 121 1464(61)}
 - 0.367: 6.914ps Doppler {NP A137 658(69)}, 7.617ps Coulomb excit [NP A137 658(69)]

0,706: 2.7 + ps Coulomb excit {NP A137 658(69), ASE}, 4.1 10 ps Doppler {NP A137 658(69)}

- 2.355: ≤0.42 ps Doppler {PScr 6 11(72)]
- 2.879: ≦0.46 ps Doppler [PScr 6 11(72)]

others: [NIM 104 93(72), NP A137 658(69), PIAS A65 25(67), PR 139 B295(65), PR 129 826(63), NP 17 9(60), NP 17 1(60), PI IzF 26 992(62), Phca 21 897(55), PPSL 68A 701(55), PR 77 139(50)}

A: -59.3424 15 [ANDT 19 175(77)]

I: 7/2 EPR {PPSL 69A 353(56)}

#: EC {PR 98 66(55)}

t_{1/2}: 271.55 /3d {NP-15663(65)}; 271.23 /3d {IIso 23 219(72)}; 269.84 d {NSEg 48 319(72)}; others: {PR 99 703(55), PR 60 913(41)}

Class: A; Ident: chem, excit, cross bomb {PR 60 913(41)} Prod: gammas on ⁵⁶Ni {RaTo 12 60(63)}; ⁵⁶Fe(d,n) {PR 53 847(38), PR 53 104(38), RicS 10 464(39), PR 60 913(41)}; ⁵⁶Fe(p,γ) {PR 60 913(41)}; ⁵⁵Mn(α,2n) {PR 88 887(52)}

y: 0.01441247 29 cryst {RMP 39 78(67), ZNat 27a 1861(72)}

0.122058321, 0.136470923 cryst {ZNat 31a 387(76)}

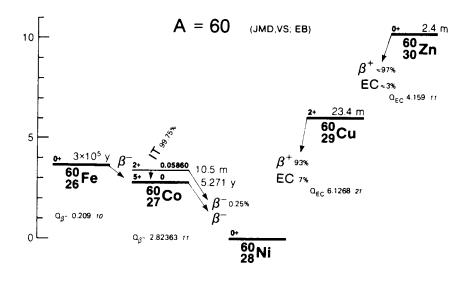
0.122063830, 0.136478535 cryst {ZNat 27a 1861(72)}

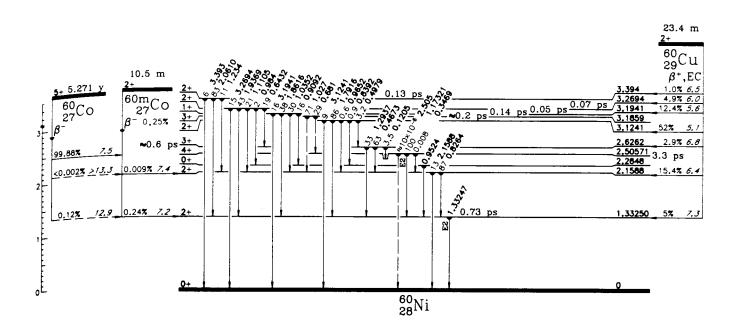
 $\begin{array}{l} \textbf{(1.1200034, 0.1364734 Ce(Li) \{NIM 96 173(71)\}} \\ \textbf{(norm: } \gamma_{0.122} (\gamma 85.64\%), \text{ from level scheme) } \gamma_{0.014} (t, 1.14150\times10^4), \textbf{ 0.122062} (t, 1\times10^5), \textbf{ 0.136473} (t, 1.304\times10^4), \textbf{ 0.23046} (t, 0.55), \\ \textbf{0.33968}_{26} (t, 4.54), \textbf{ 0.35223}_{27} (t, 3.74), \textbf{ 0.36705} (t, 1.54), \textbf{ 0.57004}_{26} (t, 19.471), \textbf{ 0.692446} (t, 18377), \textbf{ 0.70646}_{34} (t, 6.26) Ce(Li) \\ \textbf{(NIM 94 369(71))} \end{array}$

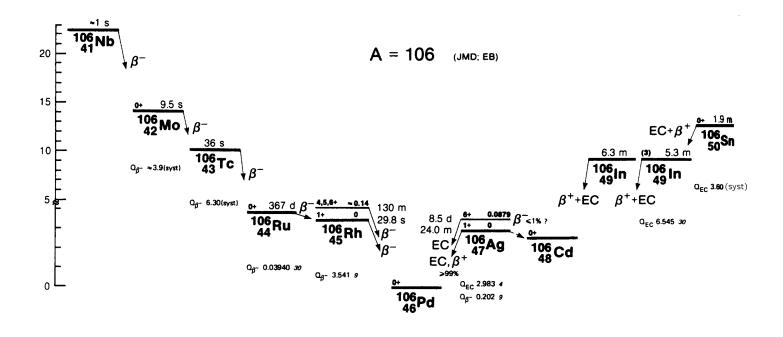
[MM 94 389(71)] $\gamma_{0.014}$ ($\uparrow_{1}.00\times10^{4}$), $\gamma_{0.122}$ ($\uparrow_{1}\times10^{5}$), $\gamma_{0.136}$ ($\uparrow_{1}.1.29\times10^{4}$), 0.23066 ($\uparrow_{1}0.6$), 0.33975 ($\uparrow_{2}5.6$), 0.35245 ($\uparrow_{2}4.4$), 0.36675 ($\uparrow_{2}0.8$), 0.57034 ($\uparrow_{1}0$), 0.69213 ($\uparrow_{1}188$), 0.70684 ($\uparrow_{2}7.9$) Ge(Li) [NP 74 177(65)] $\gamma_{0.014}$ (e/y 8.2546), $\gamma_{0.122}$ ($\uparrow_{2}\times10^{5}$), $\gamma_{0.136}$ (\uparrow_{1} , 1.25 $\times10^{4}$), 0.229810 ($\uparrow_{1}0.7$), 0.33974 ($\uparrow_{2}5.6$), 0.35254 ($\uparrow_{2}4.3$), 0.36685 ($\uparrow_{2}0.8$), 0.57034 ($\uparrow_{1}77$), 0.69213 ($\uparrow_{1}187$), 0.70644 ($\uparrow_{2}7.6$) Ge(Li), scint-scint yy coinc [PR 139 B295(65)] $\gamma_{0.122}$ ($\uparrow_{2}1.00\times10^{5}$), $\gamma_{0.136}$ ($\uparrow_{1}.20\times10^{4}$), 0.230 ($\uparrow_{2}0.22$), 0.340 ($\uparrow_{2}2.93$), 0.353 ($\uparrow_{2}2.02$), 0.367 ($\uparrow_{2}0.71$), 0.570 ($\uparrow_{2}16.71$), 0.693 ($\uparrow_{2}1885$), 0.707 ($\uparrow_{2}5.56$) Ge(Li) [NP 72 475(65)] $\gamma_{0.127}$ ($\uparrow_{2}8.19$ (\uparrow_{1} Meanbauer ($\uparrow_{2}9.12$)

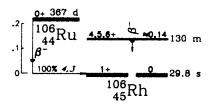
γ0.014 (e/y 8.1918) Mossbauer {PR B1 3551(70)}

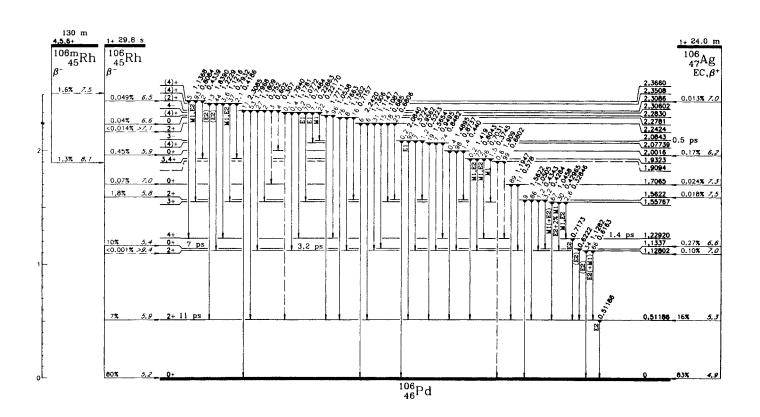
Y0.014 (e/y 8.2622) ion ch-ion ch yy coinc {PR 170 969(68), ND B3n3 103(70)}

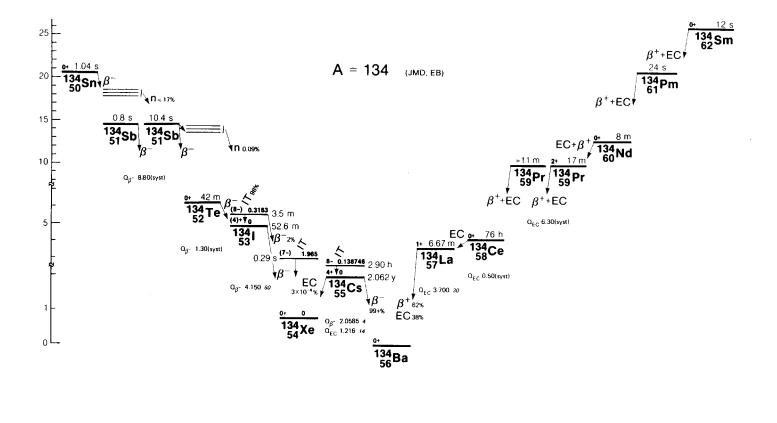

0.01+ (K/L1/L2+3/M+N+... 10725/10/0.927/1.752) mag conv {NP 19 221(60)}

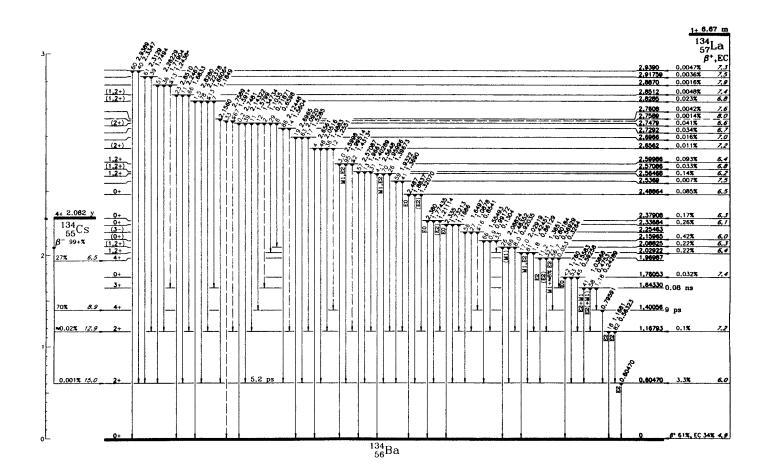

0.0144018 (e_K/ γ9.18, K/L8.7242, L/M 7.15), γ_{0.122} (e_K/γ 0.021412, K/L+M+... 8.36), γ_{0.136} (e_K/γ 0.12213, K/L+M+... 8.44) mag, mag conv, mag conv(PL 5 161(63)) {NP A91 495(67)}

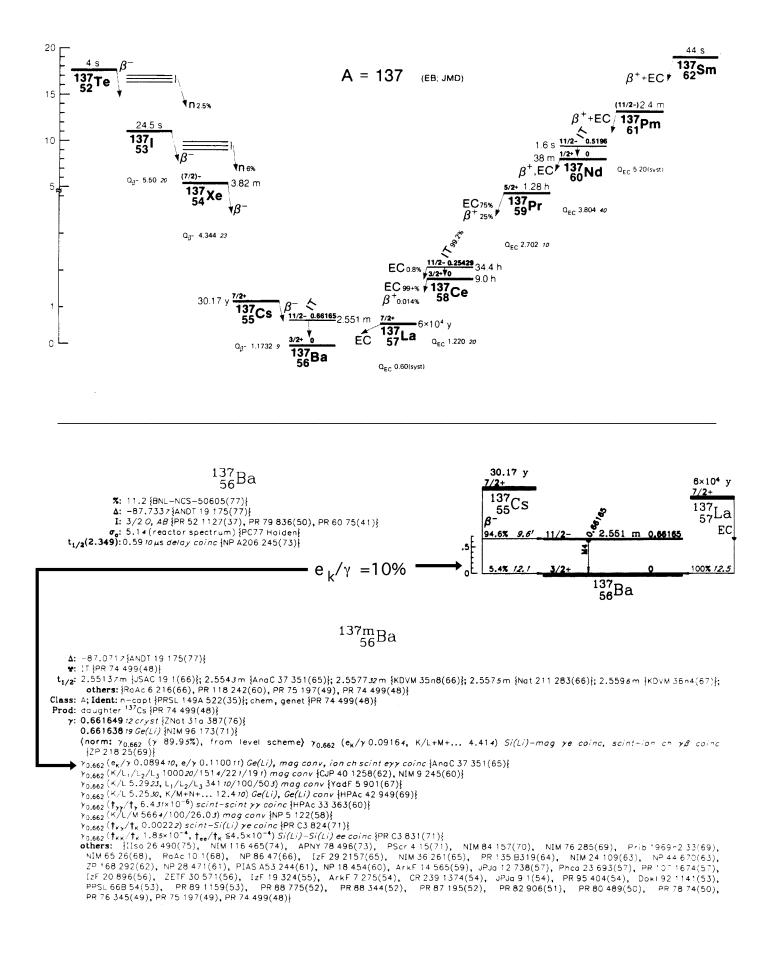

{JPPa 18 115(57), JPPa 17 532(56), CR 241 1202(55), AnP s13v2 419(57)}

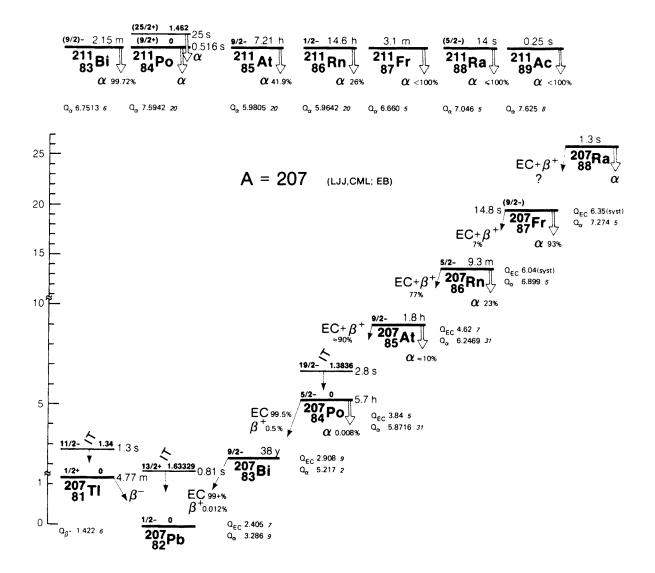

Y_{0.014} (K/L 11.4*10*, L₂₊₃/L₁ 0.0937, M+N+.../L₁ 0.1699, M₂₊₃/M₁ 0.0777, for metallic-state graphite environment, M₂₊₃/M₁ 0.0797, for oxide-state graphite environment, N₁/M₁ 0.0242, for oxide-state graphite environment) mag conv {PR C3 2285(71)}

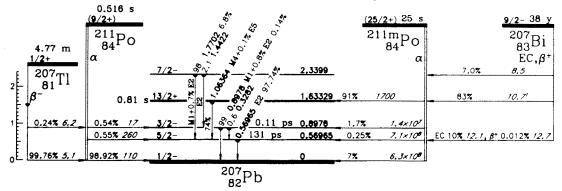

 $\begin{array}{l} \begin{array}{l} \gamma_{0.014} \ (no\ M\ shakeoff\ electrons\ with\ K\ conversion),\ \gamma_{0,122} \ (L\ and\ K\ shakeoff\ electrons\ with\ K\ conversion),\ KL/K\ \approx\!0.009,\ KK/K\ \approx\!4\times10^{-5}\ to\ 2\times10^{-6},\ \gamma_{0,136} \ (L\ shakeoff\ electrons\ with\ K\ conversion),\ KL/K\ \approx\!0.009)\ mag\ conv\ \{PR\ C3\ 2246(71)\} \ \\ \begin{array}{l} \hline others:\ \{HypI\ 1\ 93(75),\ NIM\ 109\ 509(73),\ IIso\ 22\ 405(71),\ NIM\ 92\ 421(71),\ ND\ B3n3\ 103(70),\ NIM\ 77\ 141(70),\ NP\ A107\ 177(68),\ NP\ A91\ 505(67),\ NP\ 68\ 145(65),\ PL\ 17\ 51(65),\ NP\ 44\ 268(63),\ PL\ 5\ 161(63),\ ZP\ 175\ 506(63),\ PR\ 125\ 2031(62),\ NP\ 10\ 405(59),\ PR\ 10\ 2036(58),\ PR\ 125\ 2031(62),\ PR\ 77\ 139(50),\ PR\ 75\ 139(50),$ PR 64 321(43), PR 62 181(42)}

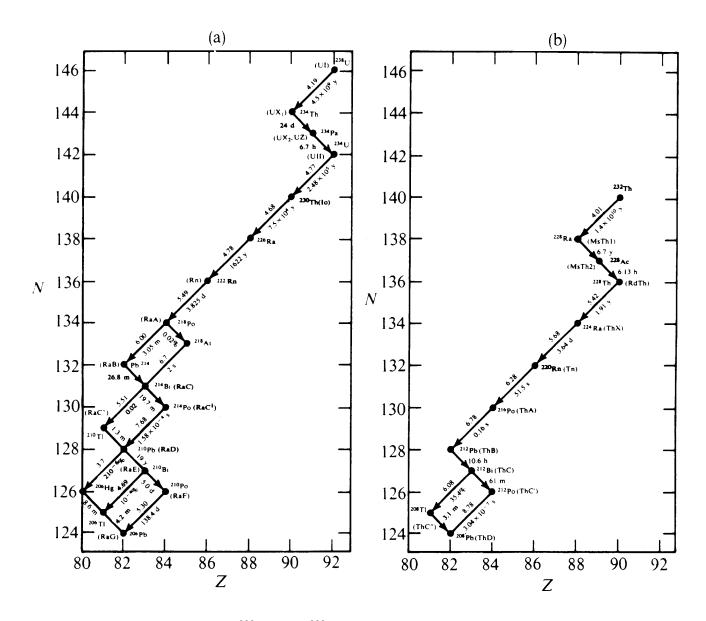












Absolute y intensities refer to ²⁰⁷Bi decay.

The natural radioactive families of (a) 238 U and (b) 232 Th in a Z-N diagram, with the associated energies and half-lives.