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The uncertainty in	physics
It	is	generally	accepted	in	physics	that	any	conclusion	resulting	from	an	experimental	measure	is	

affected	by	a	certain	degree	of	uncertainty!

Observation

Measused value
of a	given
quantity

Theory
(model)

Hipothesis



Some	definitions

• Uncertainty :
parameter, associated with the result of a measurement, which characterizes the
dispersion of the values that can be attributed to that measurement.

• Error :
difference between the result of a measurement and the actual value to be
measured - the error is usually unknown!

• Real value
value compatible with the definition of a given quantity.



Sources of uncertainty in	experimental	
measurements

Statistical uncertainty
• Variations in	repeated observations of the quantity to	be measured under (apparently)	

identical experimental	conditions;	

Systematic effects
• Incomplete definition/understanding of the quantity to	be measured;
• Non-representative sampling for	the quantity to	be measured;
• Unawareness of the effects of environmental conditions on the measurement or

imperfect measurement of environmental conditions (e.g.	T,	P,	humidity,	natural	
radioactivity,...);

• Parallax in	the reading of analog instruments;
• Inaccurate values of measurement standards	and reference materials (calibration);
• Inaccurate values of constants or other parameters obtained from sources external to	

the measurement(	c=	3	x	108 m/s,	....);
• Approximations and assumptions incorporated into the method /	procedure



Random variables
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Experimental	measurements of random phenomena fluctuate from assay to	assay.

These phenomena can be described by a random variable X, which can take a set of
discrete or continuous values and which is distributed according to a frequency
distribution, which associates each given value of X with a given frequency P(x).
If X	is continuous,	then P(x)	is called probability density function (p.d.f.):

P(x)	Î [x,x+dx ]=P(x)dx

The sum	of frequencies or the integral	of the p.d.f.	extended to	the whole domain
must	be unity:



Examples:

• Throwing of dice:	x	Î {1,	2,	3,	4,	5,	6}	

• Number of disintegrations of a	radioactive source per	unit of time.

Random variables

P(x)	=	1/6	

S P(x)	=1

• Nuclear	decay	is	a	random	process;

• It	is	impossible	to	predict	when	one	particular	
nucleus	is	going	to	decay;

• Only	a	decay	probability	per	unit	time	can	be	
assigned;	this	can	be	computed	using	the	laws	
of	quantum	mechanics.



Moments of a	random variable
Defining E[x]=Sum(x P(x)), where Sum() denotes either a summation, in the case of a
discrete random variable, or an integral in the case of a continuous variable, we define:

a)		algebraic	moment	of	order	n	:		E[xn]		

b)	central	moment	of	order	n	:							E[(x-E[x])n]



Moments of a	random variable

In	particular:

• the	algebraic	moment	of	order	0,	is	the	sum	of	the	probabilities	:
E[x0]	=	1

• the	algebraic	moment	of	order	1,	is	the	mean	value	(or	central	value)	of	the	random	
variable	x	:	

E[x]	=	µ (or �̅�)
• The	second	central	moment	(of	order	2),	is	the	variance	of	x,

E[(x-E[x])2]	=	s2

(s is	the	standard	deviation)

Defining E[x]=Sum(x P(x)), where Sum() denotes either a summation, in the case of a
discrete random variable, or an integral in the case of a continuous variable, we define:

a)		algebraic	moment	of	order	n	:		E[xn]		

b)	central	moment	of	order	n	:							E[(x-E[x])n]
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Moments of a	random variable

E[x]	:	

E[(x-E[x])2]	:	



Moments of a	random variable

a) E[1]	=	1;

b) E[a+bx]	=	E[a]	+	E[bx]	=	a	+	b	E[x];	in	particular:

c) E[x-E[x]]	=	0		(since	E[x]	is	a	constant	(=	µ));	

d) E[(x-E[x])2]	=	E[x2]	– (E[x])2	

(useful	relation	when	programming	the	calculation	of	the	variance	!)

Given	a	random	variable	X	and	two	constants a	and	b,	the	following	relations	hold	:



Binomial	distribution

N	independent trials,	each with only 2	possible outcomes:	

heads-tails,	yes-no,	success-failure

p									:			probability for	a	success
q=1-p	:			probability of failure

The probability for	a	sequence of N	assays
result in	 n	successes and N-n	failures is:

However,	a	specific sequence of n	successes given N	tests
belongs to	a	set	with

possibilities.
We therefore have:
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b) Mean:

c) Variance: 

Moments of the binomial	distribution

a) Total probability is 1 : 
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Moments of the binomial	distribution

a)	∑ 𝑃 𝑛 = 	 𝑝 + (1 − 𝑝) $$
&+, = 1$ = 1

Noting	that	P(n)	is	the	generic	term	of	the	binomial	formula	one	has	:		

Binomial	formula:
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Moments of the binomial	distribution

b)	
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Noting	that	P(n)	is	the	generic	term	of	the	binomial	formula	one	has	:		



Moments of the binomial	distribution
(cont.)

c)	Start	by	computing	E[n(n-1)]:
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Moments of the binomial	distribution

𝐸 𝑛 𝑛 − 1 = 	𝑝3𝑁 𝑁 − 1 			

but :	𝐸 𝑛(𝑛 − 1) = 𝐸 𝑛3 − 𝑛 = 𝐸 𝑛3 − 𝐸 𝑛 ,	so	

𝐸 𝑛3 = 𝑝3𝑁 𝑁 − 1 + 𝑝𝑁

𝜎3 = 𝐸 𝑛3 − 𝐸 𝑛 3 = 𝑝3𝑁 𝑁 − 1 + 𝑝𝑁 − (𝑝𝑁)3= 𝑝𝑁 − 𝑝3𝑁 = 𝑝𝑁(1 − 𝑝)

(cont.)

c)	Start	by	computing	E[n(n-1)]:
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The	mean	number	of	decaying	nuclei	per	unit	time	is	N l

𝑃 𝑛,𝑁 = 	
𝑁!

𝑛! 𝑁 − 𝑛 ! 𝜆
& 1 − 𝜆 $'&

For an unstable nucleus or unstable nuclear state, the decay
constant l is the probability per unit time for that nucleus to
decay;

In a sample of N identical nuclei, with decay constant l, what is the
probability P(n,N) of observing n decays in the unit of time ?

It is a case of N trials each with two possible outcomes (to decay or
not to decay !), therefore described by the binomial distribution.

Examples of binomial	distributions
Nuclear	decay



Examples of binomial	distributions

If e is the probability of one single photon to produce one photoelectron (e is
the quantum efficiency, Q.E.) then ng photons will produce ne
photoelectrons, with a binomial probability :

𝑃 𝑛D, 𝑛E = 	
𝑛E!

𝑛D! 𝑛E − 𝑛D !
𝜀&G 1 − 𝜀 &H'&G

The	mean	number	of	photoelectrons	is	e ng

Photoelectron	emission	in	a	photomultiplier



Probability distributions
Poisson distribution:

It is also a	discrete distribution.

The Poisson distribution describes cases in which the
probability of success is very small, but the expected
average value for the number of successes is
constant. Usually only the average number of
successes is known. The probability of each success
and the number of trials are unknown.

The Poisson distribution is the limit of the binomial
distribution* when N->¥ and p->0 with µ=Np=cte.
The probability of obtaining n	successes for	an
expected average value µ,	is:
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Binómio	de	Newton

Poisson distribution
* The Poisson distribution is the limit of the binomial distribution
when N-> ¥ and p->0  with µ=Np=cte.
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Moments of the Poisson distribution

a) Total probability is 1
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b) Mean:

c) Variance: 
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N.B.	– to	prove	b)	and	c)	use	the	same	strategy	followed	for	the	binomial	distribution	

Very	important	!



Gauss	distribution:	

Continuous distribution,	defined in	-¥ e	+¥ :	

Most instrumental errors follow a Gaussian
distribution, i.e. in the measurement of lengths,
times, temperatures, current voltages, etc., the
results follow a normal distribution.
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Probability distributions

The	width	of	the	Gauss	distribution	is	characterized	
by	the	standard	deviation,	but	also	the	full	width	at	
half	maximum	(FWHM)	can	be used :	FWHM	=	2.35s



The Gauss	distribution is the limit of the Poisson distrtibution for	
large values of µ

Probability distributions



Gauss	distribution :
Meaning of s

Dx ∫	P(x)	dx

µ±s 68,3%
µ±2s 95.5%
µ±3s 99.7%

Probability distributions



Probability distributions
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Distribution pdf Mean Variance

Binomial

Poisson

Gaussiana
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Sample: Representative set	of data	that allows to	estimate the parameters that characterize an
unknown distribution.

An estimator is unbiased when its value approaches the true value of the parameter it intends
to	estimate,	as	the sample	size increases.

Estimators of the moments of a	distribution

26

Given a	population sample	x1,x2,...,xn, of size n,	from a	distribution of true central	value µ,	and
variance s2,	the corresponding unbiased estimators (sample	moments)	are	:	

• the sample mean, defined as the arithmetic mean of the population:

• the sample variance, defined as the mean of the quadratic deviations from the mean
value :

For n-> ¥ , the sample mean tends toward the true central value of the distribution, µ,
and the sample variance tends toward the true variance, s2.

𝑠3 =
1

𝑛 − 19 𝑥O − �̅� 3	
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Geiger-Mueller counter
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In	this	work	the	number	of	disintegrations	of	a	radioactive	source	per	unit	of	time	is	
measured.	This	is	a	counting	experiment,	in	which	the	value	obtained	fluctuates	from	
test	to	test.	This process is well described by a	Poisson distribution:	the probability of
obtaining n events for	an expected average value µ,	is:

The best estimator of the central value is the mean and its dispersion can be
characterized by the standard deviation, which, for a Poisson, are <n>=µ and s2=µ.

Thus,	to	a	measure of the number of counts,	n,	is associated a	dispersion

And the relative error	in	the number of counts is given by :
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Given	a	quantity	z	calculated	from	variables	x	and	y,	which	are	directly	measured:	z=f(x,y),	we
want to	determine	the error	associated with the determination of z,	sz.
The deviation of z	from the mean (expanding in	the first order around the mean values of x	
and y)	is:

The variance is then,

Where is zero	if x	e	y	are	independent variables.

If x	and y	are	proportional
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Error	propagation
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Examples

𝑧 = 𝑥 + 𝑦		 ∶ 	 𝜎S =	𝜎T ⨁	𝜎V;

𝑧 = T
V
			 ∶ 		 𝜎S =	𝑧 × 	XY

T
⨁ 	XZ

V
;		or

𝜎S
𝑧 =

	𝜎T
𝑥 ⨁

	𝜎V
𝑦

Defining			𝑥⨁𝑦 = 𝑥3 + 𝑦3� ,	known	as	quadratic	sum	,	we	have	the	following	

commonly	used	error	propagation	relations:

𝑧 = ln 𝑥 ∶ 	 𝜎S	 =
XY
T

Exercise	:	show	the	relations	above	:-)	



Gamma spectroscopy

30

In this work, as in the work of the Geiger-Mueller counter, one is dealing with a counting
experiment. Each MCA channel is, in fact, a counting experiment, which follows a Poisson
statistic. The number of counts in each channel and the associated uncertainty are given by:

On the other hand, the photopeaks corresponding to monochromatic gs have a width
(measured in number of channels) which is mainly due to instrumental uncertainties (in
our case dominated by the fluctuations of the light emission in the scintillating crystal),
which generally follow a Gaussian distribution. The centroid of each peak, xc, computed by
the software of the acquisition program, is in fact an average over the channels, x1,x2, ...,
xN , under the ROI* , weighted by the number of counts in each channel, n1,n2, ..., nN.

* ROI:	Region	Of	Interest

𝒙𝒄 =
1

(𝑛: + 𝑛3 + ⋯+ 𝑛$)
9𝑛O	𝑥O

$

O+:

The	dispersion	for	each	peak	is	calculated	from	the	width	at	half	maximum	as:
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To combine N different samples, x1,x2,...,xN of the same distribution, of
standard deviations s1, s 2,..., sN , in order to obtain the average of the
samples one must use the weighted average and its variance:

If s=s1=s 2=...,=sN , i.e. all samples have the same dispersion, the simple
average is recovered ! 
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Combination	of	experimental	results
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Quality of fit estimator
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Linear	least squares fit
Example of application:	energy calibration of the multichannel analyzer
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or,	explicitely…
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Linear	least squares fit




