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The uncertainty in physics

It is generally accepted in physics that any conclusion resulting from an experimental measure is
affected by a certain degree of uncertainty!

Observation

Measused value

of a given
guantity




Some definitions

* Uncertainty :
parameter, associated with the result of a measurement, which characterizes the
dispersion of the values that can be attributed to that measurement.

* Error:
difference between the result of a measurement and the actual value to be
measured - the error is usually unknown!

e Real value

value compatible with the definition of a given quantity.



Sources of uncertainty in experimental
measurements

Statistical uncertainty

* Variations in repeated observations of the quantity to be measured under (apparently)
identical experimental conditions;

Systematic effects

* Incomplete definition/understanding of the quantity to be measured;

* Non-representative sampling for the quantity to be measured;

* Unawareness of the effects of environmental conditions on the measurement or
imperfect measurement of environmental conditions (e.g. T, P, humidity, natural
radioactivity,...);

e Parallax in the reading of analog instruments;
* Inaccurate values of measurement standards and reference materials (calibration);

* Inaccurate values of constants or other parameters obtained from sources external to
the measurement( c= 3 x 102 m/s, ....);

* Approximations and assumptions incorporated into the method / procedure



Random variables

Experimental measurements of random phenomena fluctuate from assay to assay.

These phenomena can be described by a random variable X, which can take a set of
discrete or continuous values and which is distributed according to a frequency
distribution, which associates each given value of X with a given frequency P(x).

If X is continuous, then P(x) is called probability density function (p.d.f.):

P(x) € [x,x+dx ]=P(x)dx

The sum of frequencies or the integral of the p.d.f. extended to the whole domain
must be unity:

Zn: P(x,)=1 XTXP(x) dx =1

i=1 X min



Random variables

Examples:

* Throwing of dice: x € {1, 2, 3, 4, 5, 6}
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P(x) =1/6

2 P(x) =1

* Number of disintegrations of a radioactive source per unit of time.
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Nuclear decay is a random process;

It is impossible to predict when one particular
nucleus is going to decay;

Only a decay probability per unit time can be
assigned; this can be computed using the laws
of guantum mechanics.



Moments of a random variable

Defining E[x]=Sum(x P(x)), where Sum() denotes either a summation, in the case of a
discrete random variable, or an integral in the case of a continuous variable, we define:

a) algebraic moment of order n: E[x"]

b) central moment of ordern:  E[(x-E[x])"]



Moments of a random variable

Defining E[x]=Sum(x P(x)), where Sum() denotes either a summation, in the case of a
discrete random variable, or an integral in the case of a continuous variable, we define:

a) algebraic moment of order n: E[x"]

b) central moment of ordern:  E[(x-E[x])"]

In particular:

* the algebraic moment of order O, is the sum of the probabilities :
E[x°] =1
* the algebraic moment of order 1, is the mean value (or central value) of the random
variable x :

E[x] = 1 (or X)
* The second central moment (of order 2), is the variance of x,

E[(x-E[x])’] = o2

(o is the standard deviation)



E[x]:

E[(x-E[x])?] :

Moments of a random variable

/ Discrete variable
n

X = Z xl.P(xl.)

Continuous variable \

X= xTxx P(x) dx

Xmin

xmax

o’ = j (x-x)*P(x)dx

J

X




Moments of a random variable

Given a random variable X and two constants a and b, the following relations hold :

1] = 1;

a+bx] = E[a] + E[bx] = a + b E[X]; in particular:

E
E
c) E[x-E[x]] =0 (since E[x] is a constant (= ));
E[(x-E[x])*] = E[x*] — (E[x])*

(useful relation when programming the calculation of the variance !)



Binomial distribution

N independent trials, each with only 2 possible outcomes:

heads-tails, yes-no, success-failure

P . probability for a success
g=1-p : probability of failure

N=4,n=2

The probability for a sequence of N assays
result in n successes and N-n failures is:

p'(1-p)""

However, a specific sequence of n successes given N tests
belongs to a set with

N!
n!(N—-n)!

possibilities.
We therefore have:

Py

nl(N—n)!

p"(1-p)""
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Moments of the binomial distribution

PO = o )

a) Total probability is 1 :

N N N-n _
n=0 oy P (L —p) =1
b) Mean:
S N N! n 1 — )N—n =N
n = Zn:On Tl!(N—Tl)!p ( p — p
c) Variance:

_ N! —
0% = Yn=o(n =M~ p" (1 = p)" " = Np (1-p)



Moments of the binomial distribution

PO) = (=)

Noting that P(n) is the generic term of the binomial formula one has :

Binomial formula:

a) Th=o P = (+ (1 —-p)" =1V =1 (+9)" =3 (;) eyt

k=0 v



Moments of the binomial distribution

POy = ;Vin)!p"(l—p)f“

Noting that P(n) is the generic term of the binomial formula one has :

a) Zn=oPM) = (p+ (A -p)" =1" =1

b)

N N NI

Z nPn) = 2 n— @ — n)!pn(l —p)N-n =
n=0 n=1

N
= Nz (V- 1)! n=1(1 —p)N-" = (setting N' =N —1landn’ =n —1)
- P L —n? Py = BERERE S = -

n=1




Moments of the binomial distribution

(cont.)

c) Start by computing E[n(n-1)]:

E[n(n—-1)] =

N N i

z nn—1)Pn) = z nmn-—1) TN — n)!pn(1 —p)N-n =
n=0 n=2

N
=p> N(N —1) Z o _(12\1)!—(13)!_ n)!p"‘z(l —p)N"" = (setting N' =N —2andn’ =n — 2)
n=2

N’ N’
N’! ! / /
=p2N(N — 1 E "1-p)V T =p2 N(N — 1 E P(n') = p?N(N — 1
n = n =



Moments of the binomial distribution

(cont.)

c) Start by computing E[n(n-1)]:

Eln(n—1)] =

N N .

Z =) Pl = Z n= D) P YT S
n=0 n=2

N
=p2 N(N —1) Z o _(12\1)!—(;)!_ n)!p"_z(l —p)N™" = (settingN' =N —2andn’ =n — 2)
n=2

N’ N’
N'! / '
= p?N(N — 1 E "1-pN " =p?N(N -1 EP ) =p*N(N -1
pN(N ), On/!(Nl_n/)!p ( p) p ( ), 3 (n) p ( )
n = n' =

E[n(n—1)] = p>N(N — 1)

but: E[n(n — 1)] = E[n? —n] = E[n?] — E[n], so

E[n?] = p>N(N — 1) + pN

0% = E[n®] = (E[n])* = p°N(N — 1) + pN — (pN)*= pN — p*N = pN(1 — p)



Examples of binomial distributions

Nuclear decay

For an unstable nucleus or unstable nuclear state, the decay

constant A is the probability per unit time for that nucleus to
decay;

In a sample of N identical nuclei, with decay constant A, what is the
probability P(n,N) of observing n decays in the unit of time ?

It is a case of N trials each with two possible outcomes (to decay or
not to decay !), therefore described by the binomial distribution.

N!

n!' (N —n)! A =

P(n,N) =

The mean number of decaying nuclei per unit time is N A



Examples of binomial distributions
Photoelectron emission in a photomultiplier

Phot?cathode Mul(iplied - Anqde

Visible Photon

Focusing Electrode Dynode

If € is the probability of one single photon to produce one photoelectron (¢ is
the quantum efficiency, Q.E.) then ny photons will produce ng
photoelectrons, with a binomial probability :

!
le.

Ne! (ny — ne)!

P(ne,ny) = ghe(1 — g)rNe

The mean number of photoelectronsis € ny



Probability distributions

Poisson distribution:

It is also a discrete distribution.

1
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The Poisson distribution describes cases in which the i

probability of success is very small, but the expected 04
average value for the number of successes is - '

T

constant. Usually only the average number of 02
successes is known. The probability of each success [

|
and the number of trials are unknown. 0 2 4
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Poisson distribution

* The Poisson distribution is the limit of the binomial distribution
when N->« and p->0 with u=Np=cte.

N!

lim P(n) = p"(1-p)*"
gjgo 2’:80 n!(N —n)!
N

lm s = lim N(N-D)(N =2)..(N=(n=1))~ N"

fim(1-p)"* = tim 3 LIty =3 Ly 3

lim P(n) = N ple™ = (Np ) e
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Moments of the Poisson distribution

n_—p
P(n)=£°
n!

a) Total probability is 1

z P(n) = e # z % = e Hxet =1

n=0 n=0
b) Mean
(00} (0 0] n
ﬁ=ZnP(n)= Znu—e H=
n!
n=0 n=0
c) Variance:
(0 0) (00] un
0% = Z(n — )2 P(n) = z(n —)* Fe'“ = U Very important !
n=0 n=0 '

N.B. —to prove b) and c) use the same strategy followed for the binomial distribution



Probability distributions

Gauss distribution:

Continuous distribution, defined in -0 e +o0 :

2

1 (x—p)

; 2572
N2mOo

Most instrumental errors follow a Gaussian
distribution, i.e. in the measurement of lengths,
times, temperatures, current voltages, etc., the
results follow a normal distribution.

P(x) =

Fig. 4.3, The Gaussian distribution for various o. The standard
deviation determines the width of the distribution

The width of the Gauss distribution is characterized
by the standard deviation, but also the full width at
half maximum (FWHM) can be used : FWHM = 2.35c

Fig. 4.4. Relation between the standard deviation ¢ and the full width
at half-maximum (FWHM)
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Estimators of the moments of a distribution

Sample: Representative set of data that allows to estimate the parameters that characterize an
unknown distribution.

An estimator is unbiased when its value approaches the true value of the parameter it intends
to estimate, as the sample size increases.

Given a population sample x; x,,...,x,, of size n, from a distribution of true central value y, and
variance o2, the corresponding unbiased estimators (sample moments) are :

- the sample mean, defined as the arithmetic mean of the population:

» the sample variance, defined as the mean of the quadratic deviations from the mean

value :
1 n
s? = — 1Z(xi — X)?
=1

For n-> o , the sample mean tends toward the true central value of the distribution, .,
and the sample variance tends toward the true variance, c2. 26




Geiger-Mueller counter

In this work the number of disintegrations of a radioactive source per unit of time is
measured. This is a counting experiment, in which the value obtained fluctuates from
test to test. This process is well described by a Poisson distribution: the probability of
obtaining n events for an expected average value , is:

n_—p
P(n)=2°
n

The best estimator of the central value is the mean and its dispersion can be
characterized by the standard deviation, which, for a Poisson, are <n>=pu and o?=p.

Thus, to a measure of the number of counts, n, is associated a dispersion +/ 7
n+yn

And the relative error in the number of counts is given by :

Jnoo 1

n  n

27



Error propagation

Given a quantity z calculated from variables x and y, which are directly measured: z=f(x,y), we
want to determine the error associated with the determination of z, c,.
The deviation of z from the mean (expanding in the first order around the mean values of x

andy) is:
M=Z—Z=(X—X)(?j +(r- y)( fj
x dy

X

The variance is then,

ot = (23] - [(XX)(ZJ+(yy)(ZJJ - (x—x){fl—f;jﬂy—y){ = j +2y= =3 df;j[flf; j

y

+2cov(x y)(dj;j (21]
A\ )

y

Where cov(x,y)= [y—)_/j x—)_cJ is zero if x ey are independent variables.

If x and y are proportional cov(x,y)=0.0,
28



Examples

Defining x@®y = /x? + y?, known as quadratic sum , we have the following

commonly used error propagation relations:

z=x+y : 0, =0 @ oy,

Oy

oer x(Z0Zyor (9

Exercise

: show the relations above :-)



Gamma spectroscopy

In this work, as in the work of the Geiger-Mueller counter, one is dealing with a counting
experiment. Each MCA channel is, in fact, a counting experiment, which follows a Poisson
statistic. The number of counts in each channel and the associated uncertainty are given by:

ntyn

On the other hand, the photopeaks corresponding to monochromatic ys have a width
(measured in number of channels) which is mainly due to instrumental uncertainties (in
our case dominated by the fluctuations of the light emission in the scintillating crystal),
which generally follow a Gaussian distribution. The centroid of each peak, x,, computed by
the software of the acquisition program, is in fact an average over the channels, x,,x,, ...,
Xy » under the ROI", weighted by the number of counts in each channel, n;,n,, ..., n\.

1 N
X, = E n; x;
¢ (n1+n2+'°‘+nN) = Ll

The dispersion for each peak is calculated from the width at half maximum as:
_ FWHM

- o= 30
ROI: Region Of Interest 2 .35



Combination of experimental results
Weighted mean

To combine N different samples, X4,X,,...,xy Of the same distribution, of
standard deviations o4, G ,,..., Gy , In order to obtain the average of the
samples one must use the weighted average and its variance:

i
; 1
~ N 1 o (x) —
Za Z—
If 6=6,=0 ,=...,=0) , i.€. all samples have the same dispersion, the simple
average is recovered !
N
2 =2
I O \X)=——
X =
N N

31



v? Distribution

Quality of fit estimator

2
Z2 = i (yl ~ yesp.) Peak centroid ‘T +
2
i=1 0;

y=ax+b or Channel=k *Energy + b
where o is the error of the measured y

v

(e.g. the error in the peak centroid) -
nergy

Linear least squares fit
Example of application: energy calibration of the multichannel analyzer

R | (yi_axi_b)z
X =Z 2
i:1 O-l _ n n 2 n
[, 2 5 _ _ Xi)i xia+ xib
a;zi=0:>zx"(y" = o) ;03 ;05 ;01-2
a i=1 O; h

| 2 : = ). 7 X,
dZ :O:Z(yi_a‘fi_b)zo ylzzleza-FZ—zb
i=1 B

_d—b O, ' i



Linear least squares fit

v XiYi
;;<72 ) C4=aC3+bC5
L 2 C4=Y
i i=1 O-i
o o) 1 C1| [C2
2y = 257 C4| |C3
i=1 012

Solving for the straight line parameters a and b (Cramer’s rule) :

ﬁ\\ {Clac2+bc3

C3
C5

-

a =

b —

Cl1C5—-C3C4

"~

D o, =
c2C4—-C1C3

D o, =
C2C5—C3"

or, explicitely...



Linear least squares fi
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