Recent results of the CNS experiment

parte callia.

Joao Varela LIP Lisbon CMS Deputy Spokesperson

17 May 2013, Instituto Superior Técnico

esion by Michael Boch@CERN.CH

- Data and pileup
- Higgs
- Jets, vector bosons and top
- Searches
- (Heavy ions not covered)

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

Pileup in 2012

Lepton, jets, MET & pileup

Muons & electrons

٠

CMS Results for Moriond

EXOTICA searches (7):

- EXO-12-026 Heavy Stable Charged Particles
- EXO-12-027/031 –Large extra dimensions in dileptons
- EXO-12-059 Dijet resonances
- EXO-12-060 W'(lv)
- EXO-12-061 Z'(II)
- EXO-12-048 Dark Matter, Extra Dims with monojets
- Beyond the 2nd Generation Searches (3):
 - B2G-12-012 T^{5/3} top-quark partners
 - B2G-12-010 W'(tb)
 - B2G-12-014 t*
- SUSY searches (3):
 - SUS-12-024 In b-jets+MET
 - SUS-13-007 In single-lepton + b-jets
 - SUS-13-003 RPV SUSY in trileptons
- HIGGS studies (7):
 - HIG-12-053 VH(ττ)
 - HIG-13-002 H(ZZ -> 4l)
 - HIG-13-003 H(WW -> 2I+MET)
 - HIG-13-004 H(ττ)
 - HIG-13-006 H(Ζγ)
 - HIG-13-009 WH(WW)
 - HIG-13-001 H(γγ) Twiki public

- TOP Physics (9):
 - TOP-12-015 W helicity in ttbar dileptons
 - TOP-12-020 W helicity in single-top events
 - TOP-12-025 LHC combination on W helicities
 - TOP-12-027 tt xsec at 8 TeV with I+jets
 - TOP-12-028 tt xsec at 8 TeV with dileptons
 - TOP-12-029 Top mass dependence on event kinematics
 - TOP-12-035 Measurement of B(t -> Wb)/B(t -> Wq) ratio
 - TOP-12-038 t/tbar ratio in single-top production
 - TOP-12-031 Measurement of t tbar mass difference
- Standard Model Physics (9):
 - EWK-11-015 Angular correlations Z+b-jets update
 - QCD-11-005 Direct photon production
 - SMP-12-004 Z/γ + jet angular distributions
 - SMP-12-005 WW xsec 8 TeV, limits anomalous couplings
 - SMP-12-019 Jet substructure studies-paper submitted
 - SMP-12-020 Zγ xsec, limits anomalous couplings
 - SMP-12-025 p_T distribution of the Z bosons at 8 TeV
 - SMP-12-002 Measurement of W+charm
 - SMP-12-026 Measurement of W+bb
- FORWARD and Soft QCD Physics (1):
 - FSQ-12-010 Exclusive WW, limits on WWγγ couplings

https://twiki.cern.ch/twiki/bin/view/CMSPublic PhysicsResults

Excess of events in the low mass region seen in ATLAS and CMS

Exclusions of M_{H} :

- LEP < 114 GeV (arXiv:0602042v1)
- Tevatron [156,177] GeV (arXiv:1107.5518)
- LHC [~127, 600] GeV arXiv:1202.1408 (ATLAS) arXiv:1202.1488 (CMS)

Higgs discovery

http://www.elsevier.com/locate/physletb

5 decay modes exploited:

		Exp Sig @125.	σ _M /M 7 GeV	ng ratios	bb		ww '	100
•	bb	2.2σ	10%	anchir 10-1	_ττ 99		\bigcap	tī
٠	ττ	2.6 σ	10%	Bu	2X			
٠	WW	5.3σ	20%	2				
•	ZZ	7.1σ	1-2%	10*2				
•	γγ	3.9σ	1-2%	2	γγ Ζ΄			_
				10-3	100	200 300	500	1000

and searches in $Z\gamma$

M_H [GeV]

- Gluon fusion is dominant in the entire m_H mass range
- Vector boson fusion is the next most important

H→ZZ→2l2v

SM-like heavy Higgs boson search, mass > 200 GeV.

- Two leptons (e, μ) from one Z and large missing energy (2 ν)
- Mass not reconstructed.
- Shape analysis based on missing ET and transverse mass

Re-interpretation of results as a search for an electroweak singlet scalar mixing with the Higgs 125 GeV.

 Upper limits at 95% CL on the cross section as function of mass (gg and VBF production)

C (C') scale factor of the couplings of the low (high) mass state with respect to the SM.

Assume that the boson does not decay to new particles.

HIG-13-014

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

Results from $H \rightarrow ZZ \rightarrow 4I$

HIG-13-002

4 lepton mass resolution = 1 - 2% with uncertainty: 20%

Validated in situ with Z(4I)

- Background models:
 - irreducible ZZ^(*)
 - Estimated using simulation
 - Corrected for data/simulation scale
 - reducible Z+jets, ttbar, WZ
 - Estimated from control samples

Event selection:

requires the highest possible efficiencies (lepton Reco/ID/ Isolation).

Results

 $\sigma/\sigma SM (m_{H}=125.7 \text{ GeV}) = 0.92 \pm 0.28$

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

Results from $H \rightarrow \gamma \gamma$

HIG-13-001

Signature:

- Two energetic and isolated photons
- Narrow mass peak on top of a large steeply falling background

Relevant aspects:

- Photon identification/ background rejection
- Di-photon mass resolution
- Background estimation
- Primary vertex determination (pile-up!)

- Two inclusive analyses:
 - MVA: photons selected with a BDT. Variables in the BDT: photon kinematics, photon ID MVA score (shower shape, isolation), di-photon mass resolution.
 4 MVA categories with different S/B
 - Cut-based: photons selected with cuts. 4 categories based on: γ in Barrel/Endcap, (un)converted γ. Each category has different mass resolution and S/B
- 3 VH channels (e, μ and MET tag) + VBF (2 dijet categories)

Output of the MVA validated using $Z \rightarrow ee$ (where e are reconstructed as γ)

IST 2013, CMS physics highlights, J. Varela

Cut-based

MVA

New data, new analysis: Significance decreased compared to the published results

MVA

$H \to WW \to I_V I_V$

HIG-13-003

$\mathsf{H} \to \mathsf{WW} \to \mathsf{IvIv}$

- Channel with very high σ .BR
- Clean signature:
 - 2 isolated, high p_T leptons with small opening angle
 - High Missing E_T
 - Analysis performed on exclusive jet multiplicities (0, 1, 2-jet bins)
 - Different Flavour, Same Flavour leptons
- Discriminant Variables:
 - $\quad p_T{}^I, \, M_I, \, M_T, \, \Delta \varphi$
 - VBF selections for the 2-jets case
- Cut-based and Shape analysis in $(M_{\rm II}\text{-}M_{\rm T})$ plane

good sensitivity to spin small opening angle between leptons

IST 2013, CMS physics highlights, J. Varela

All the backgrounds are estimated from data in "control regions"

- **Drell Yan:** Suppressed by M_{\parallel} and Missing E_{T} cuts
- W+jets (with one jet faking a lepton): lepton ID is important
- **Top (tt and single top):** b-tag veto (or additional soft muon)
- WW: M(II), M_T and $\Delta \phi$

$H \rightarrow WW \rightarrow I_V I_V$: results

σ/σ_{SM} at 125 GeV = 0.76 ± 0.21

 $H \rightarrow \tau \tau$

HIG-12-053

- Reconstructed τ decays: e, μ , τ_{had}
- Categorize events based on number of jets and τp_{T} (VH, VBF)
- Template fit to m_{ττ} shape

ττ mass spectrum

IST 2013, CMS physics highlights, J. Varela

All $\tau\tau$ channels combined: m_H = 120⁺⁹₋₇ (stat+syst) GeV

Signal strength:

 $\mu = 1.1 \pm 0.4$

2.85 σ @ mH = 125 GeV

- 2 central b jets plus V (W, Z) decaying into leptons
- Background from V+jets, VV, top+X
- Improved dijet mass resolution
- BDT shape analysis: jets and V kinematics, b tagging

IST 2013, CMS physics highlights, J. Varela

Higgs properties

HIG-13-005

IST 2013, CMS physics highlights, J. Varela

H mass

$H \rightarrow ZZ \rightarrow 4I$:

Mass estimation with $m_{4|}$, KD and $\sigma(m_{4|})$ Very small systematics due the very good control of the leptons scale and resolution: $m_{\rm H} = 125.8 \pm 0.5$ (stat.) ± 0.2 (syst.) GeV

$H \rightarrow \gamma \gamma$:

Systematics on the extrapolation from the $Z \rightarrow ee$ to $H \rightarrow \gamma\gamma$ (0.25% from e to γ , 0.4% from Z to H):

*m*_H = 125.4 ± 0.5 (stat.) ±0.6 (syst.) GeV

m_X = 125.7 ± 0.3^(stat) ± 0.3^(syst) GeV = 125.7 ± 0.4 GeV

 μ signal strength: ration of $\sigma.BR$ measurement and SM prediction

- LHC XS WG benchmark models:
 - Fermionic vs bosonic couplings modifiers: $\kappa_{\rm V}\,\kappa_{\rm f}$
 - Search for asymmetries: λ_{WZ} , λ_{du} , λ_{Iq}
 - Search for new physics in loops: $\kappa_{g}\,\kappa_{\gamma}\,BR_{BSM}$

Custodial symmetry

 λ_{WZ} [0.73,1.00] @ 68% CL

 $\Gamma_{BSM} = 0.$

Spin-Parity: 0⁺ vs 0⁻

Kinematic Discriminant : $D_{JP} = P_{SM} / (P_{SM} + P_{JP})$ Second observable: $D_{bkg} = P_{sig}/(P_{sig} + P_{bkg})$ P_{bkg} and P_{sig} include the m_{4l} parameterizations Likelihood fit of events to 2D distributions (D_{JP}, D_{bka}) CMS preliminary $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L = 19.6 \text{ fb}^{-1} \sqrt{s}$ CMS preliminary s = 7 TeV, L = 5.1 fb⁻¹ s = 8 TeV, L = 19.6 fb⁻¹ Events Pseudoexperiments 0.1 data 0⁺, m_=126 GeV J^P=0⁻, m_u=126 GeV 0⁺ vs 0⁻ CMS data 0.08 $ZZ/Z\gamma$ Z+X 0.06 0.04 $CL_{s} = 0.16\%$

 $\textbf{H} \rightarrow \textbf{ZZ}^{(*)} \rightarrow \textbf{4I}$

The distribution of the likelihood ratio $q = -2\ln(L_{JP}/L_{SM})$ is obtained with generated samples of background and signal of seven types (SM 0⁺ and six J^P) for m_H=126 GeV.

More J^P hypotheses tested

The data disfavours 0⁻ (pseudoscalar) hypothesis with a CLs value of 0.16%

-30

-20

-10

0

10

20

 $-2 \times \ln(L_{0^{-}} / L_{0^{+}})$

30

0.02

 D_0

IST 2013, CMS physics highlights, J. Varela

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CLs values for 2⁺_m(gg): Observed results at measured μ ZZ WW Comb 1.4% 14% 0.6%

- WW: observed results weaker than expected due to best fit µ < 1
- ZZ: observed better than expected due to a fluctuation

The data disfavours $2_{m}^{+}(gg)$ hypothesis with a CLs value of 0.6%

The observations are compatible with SM Higgs expectation (scalar)

Jets, vector bosons, top

First determination of α_s at momentum scales > 0.4 TeV

- Comparing the ratio in the range 0.42< <p>T1,2
 <1.39 TeV to the predictions of perturbative
- QCD at next-to-leading order
- Measurement dominated by TH uncertainty: PDF & scale

W, Z, WW, and ZZ cross sections at 8 TeV (Special Low PU runs used for W,Z at 8 TeV)

SMP-12-011 SMP-12-013 SMP-12-014

Measured σ (ZZ) = 8.4 ± 1.3 pb SM (NLO) σ (ZZ) = 7.7 ± 0.4 pb Measured σ (WW) =69.9 ± 7.0 pb SM (NLO) σ (WW) = 57.3 ± 2.0 pb

V + heavy quarks

W+c production with exclusive charm tagging via full reconstruction of D[±], D^{*}, and semileptonic decays

Direct access to the strange-quark PDF

W+bb and Z+bb cross section measurements:

- $\sigma \text{ x Br}(W \rightarrow \mu v) = 0.53 \pm 0.12 \text{ pb} @ 7 \text{ TeV}$ ($p_T^{b,\mu} > 25 \text{ GeV}$), in good agreement with NLO prediction of 0.52 ± 0.03 pb
- σ x Br(Z→II) = 0.36 ± 0.07 pb @ 7 TeV (p_T^b > 25 GeV) SMP-13-004

VBF Z production

- First-time ever observed !
- Benchmark for VBF Higgs searches
- Dominant background from standard DY production
 → BDT discriminant used to extract the signal

 $\sigma_{\text{meas, }\mu\mu+ee}^{EWK} = 154 \pm 24(\text{stat.}) \pm 46(\text{exp.syst.}) \pm 27(\text{th.syst.}) \pm 3(\text{lumi.}) \text{ fb}$

Anomalous TGCs

$Z(\nu\nu)\gamma$ cross section:

 σ = 21.3 ± 4.2 (stat.) ± 4.3 (syst.) ± 0.5 (lumi.) fb

In good agreement with the theoretical prediction of 21.9 ± 1.1 fb (BAUR).

Forbidden in SM

aTGCs in CMS: EWK-11-009 (Vγ), SMP-12-015 (WW,WZ) SMP-12-007 (ZZ), SMP-12-020 (Ζγ)

50

Anomalous TGCs (cont.)

Neutral TGCs

	Feb 2013					
					ATLAS Limits CMS Limits CDF Limit	
	h ^γ	H	Zγ		-0.015 - 0.016	4.6 fb ⁻¹
	n ₃	н	Zγ		-0.003 - 0.003	5.0 fb ⁻¹
		⊢−−−−	Zγ		-0.022 - 0.020	5.1 fb ⁻¹
	ьZ	⊢	Zγ		-0.013 - 0.014	4.6 fb ⁻¹
	n ₃	н	Zγ		-0.003 - 0.003	5.0 fb ⁻¹
		⊢−−−−−	Zγ		-0.020 - 0.021	5.1 fb ⁻¹
	$h_4^{\gamma}x100$	⊢I	Zγ		-0.009 - 0.009	4.6 fb ⁻¹
		н	Zγ		-0.001 - 0.001	5.0 fb ⁻¹
	$h_4^Z x 100$	⊢—–I	Zγ		-0.009 - 0.009	4.6 fb ⁻¹
		н	Zγ		-0.001 - 0.001	5.0 fb ⁻¹
	-0.5	0	0.5	1	1.5	x10

aTGC Limits @95% C.L.

Feb 2013			
			ATLAS Limits
εŶ	⊢I	ZZ	-0.015 - 0.015 4.6 fb ⁻¹
4	HH	ZZ	-0.013 - 0.015 5.0 fb ⁻¹
۶Z	⊢I	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
T_4^-	⊢−−−− 1	ZZ	-0.011 - 0.012 5.0 fb ⁻¹
۶Ŷ		ZZ	-0.016 - 0.015 4.6 fb ⁻¹
1 ₅	—	ZZ	-0.014 - 0.014 5.0 fb ⁻¹
۶Z	I	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
1 ₅	⊢−−−− 1	ZZ	-0.012 - 0.012 5.0 fb ⁻¹
-0.5	0	0.5	1 1.5 x10 ⁻¹
			aTGC Limits @95% C.L.

LHC measurements already exceeded LEP sensitivities

eb 2013	Chary	euige	13	
-			ATLAS Limits CMS Limits D0 Limit LEP Limit	
٨ĸ		Wγ	-0.410 - 0.460	4.6 fb ⁻¹
Διγ		Wγ	-0.380 - 0.290	5.0 fb ⁻¹
	⊢−−−−	WW	-0.210 - 0.220	4.9 fb ⁻¹
	⊢−−−−	WV	-0.110 - 0.140	5.0 fb ⁻¹
	⊢	D0 Combination	-0.158 - 0.255	8.6 fb ⁻¹
	⊢ ●	LEP Combination	-0.099 - 0.066	0.7 fb ⁻¹
2	⊢–−1	Wγ	-0.065 - 0.061	4.6 fb ⁻¹
\mathcal{N}_{γ}	H	Wγ	-0.050 - 0.037	5.0 fb ⁻¹
	⊢ −−1	WW	-0.048 - 0.048	4.9 fb ⁻¹
	н	WV	-0.038 - 0.030	5.0 fb ⁻¹
	юч	D0 Combination	-0.036 - 0.044	8.6 fb ⁻¹

0.5

H

0

-0.5

Charged TCCa

1 1.5 aTGC Limits @95% C.L.

LEP Combination -0.059 - 0.017 0.7 fb⁻

Feb 2013			
			ATLAS Limits CMS Limits D0 Limit LEP Limit
٨r	\vdash	WW	-0.043 - 0.043 4.6 fb ⁻¹
	H	WV	-0.043 - 0.033 5.0 fb ⁻¹
	⊢●⊣	LEP Combination	-0.074 - 0.051 0.7 fb ⁻¹
2	\vdash	WW	-0.062 - 0.059 4.6 fb ⁻¹
⁷ Z	H	WW	-0.048 - 0.048 4.9 fb ⁻¹
	\vdash	WZ	-0.046 - 0.047 4.6 fb ⁻¹
	H	WV	-0.038 - 0.030 5.0 fb ⁻¹
	ю	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	HeH	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
۸aZ	\vdash	WW	-0.039 - 0.052 4.6 fb ⁻¹
$\Delta 9_1$	⊢−−−−	WW	-0.095 - 0.095 4.9 fb ⁻¹
	\vdash	WZ	-0.057 - 0.093 4.6 fb ⁻¹
	HOH	D0 Combination	-0.034 - 0.084 8.6 fb ⁻¹
	Heil	LEP Combination	-0.054 - 0.021 0.7 fb ⁻¹
-0.5	0	0.5 1	1.5
		aTGC L	imits @95% C.L

LHC measurements approaching LEP sensitivities

Top quark mass

Single top quark production

TOP-11-018

$m_{top} = 173.4 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)} \text{ GeV}$

- Top events in dilepton channel
- Requires good understanding of b-tagging efficiency and ISR/FSR background jets
- Background estimated from data

$$R = 1.023_{-0.034}^{+0.036} (stat. + syst.)$$

If R $\leq 1 \rightarrow R > 0.945$ @ 95% CL

 $R \rightarrow |V_{tb}|$ with the assumption of CKM unitarity and 3 generations

$$R = \frac{B(t \to Wb)}{\sum_{q=d,s,b} B(t \to Wq)} = |V_{tb}|^2$$

$$|V_{tb}| = 1.011_{-0.017}^{+0.018} (stat. + syst.)$$

if $|V_{tb}| < 1 \rightarrow |V_{tb}| > 0.972 @ 95\% CL$

The most precise measurement of R and the most stringent direct lower bound on $|V_{tb}|$.

IST 2013, CMS physics highlights, J. Varela

W polarization in single top events

- First measurement in singletop events (µ+jets)
- Helicities obtained from likelihoods with reweighted signals.
 - Helicity fractions and W+jets contribution simultaneously extracted.
- Consistent with the SM and with the measurement in ttbar channels

$$\begin{split} F_L &= 0.293 \pm 0.069(stat.) \pm 0.030(syst.) \\ F_0 &= 0.713 \pm 0.114(stat.) \pm 0.023(syst.) \\ F_R &= -0.006 \pm 0.057(stat.) \pm 0.027(syst.) \end{split}$$

TOP-12-020

Beyond Standard Model Searches

The standard model and beyond

Standard Model

The astonishing brain power of a certain ape species

Higgs mass is a huge problem:

Miraculous cancelations are needed to keep the Higgs mass < 1 TeV

The connection to cosmology

Precision cosmology measurements give strong motivations for new physics: Galaxies rotations, accelerating expansion, CMB uniformity, space flatness

- Relatively light stops are needed for naturalness
- Search for stops and sbottoms in gluino decays
 - In natural SUSY the gluino cannot be too heavy
 - If the other squarks are very heavy, then the gluino will decay into sbottoms and stops with high BR
- Search for direct stop and sbottom pair production
 - To close the loophole that the "gluino is too heavy"

gluino→stop searches

Search for gluino decaying to sbottom then bottom quarks and neutralinos

- R-parity violation
 - − No stable SUSY particle \rightarrow less MET than conventional SUSY
- ≥3 leptons+b
 - − Including up to $1 \tau \rightarrow$ had

χ⁺χ⁰ searches

Models with decays into sleptons

- Trilepton + MET
- Same-sign dileptons

Models with decays into W and Z

- Z→{{ + { + MET
- Z→{{ + W/Z→jet-jet + MET
- Four leptons

IST 2013, CMS physics highlights, J. Varela

SUS-12-022

Dijet Resonance Search

Dilepton resonance search

- $Z' \rightarrow e + e /\mu + \mu$ -
- Data to almost 2 TeV, limits to almost 3 TeV

EXO-12-061

Heavy W'

- Predicted by little Higgs, extra dimensions, technicolor, etc

Lepton+jets+MET signature

 Use W,t mass constraints to solve for neutrino momentum and reconstruct W' mass
 B2G-12-010

- LHC achieved an astonishing performance in Run 1.
- CMS succeeded to meet all challenges, and to produce an unprecedented wave of physics results (> 230 papers).
- Many new measurements with full proton-proton dataset collected in 2011-12 (~25 fb⁻¹). The agreement of data with the Standard Model is impressive.
- In the H \rightarrow ZZ(4I) channel, a signal significance of 6.7 σ is now observed. In H $\rightarrow \gamma\gamma$ updated results on the signal strength, $\mu = \sigma/\sigma_{SM} \sim 0.8 \pm 0.3$.
- Two independent determinations of the Higgs mass: 125.8±0.6 GeV, in H \rightarrow ZZ(4I); and 125.4±0.8 GeV, in H $\rightarrow \gamma\gamma$.

- The pure pseudoscalar hypothesis is excluded at 99.8% C.L. and simple spin 2 models are excluded with greater than 99.4% C.L.
- Strong evidence is seen in $H \rightarrow \tau \tau$ channel (significance ~3 σ).
- These measurements strongly indicates that the new particle is a Higgs boson, responsible for the Electroweak Symmetry Breaking.
- However they are still fall from the precision required to rule out all BSM scenarios.
- No evidence of new physics in the 7-8 TeV data (even if we may still have surprises) creates a big expectation on the LHC restart at 13 TeV in 2015.