

The same diagram that produces WZ in SM...

...could produce Winos and Zinos.

... could produce charginos and neutralinos.

Lightest SUSY particle (LSP) is stable if R-Parity conserved.

Strong production also possible...

Strong production also possible...

Strong production also possible, including scalar tops.

Can lead to complex & varied final state signatures

Cross-section is calculable given masses.

E.g.: 10/fb for 600 GeV stop or 1 TeV gluino

Could produce thousands at lower masses.

The challenge is to discriminate them.

Varied final state search modes

Multijets + MET

Lepton + jets + MET

Dileptons + jets + MET

Same sign dileptons + jets + MET

Trileptons + jets + MET

w/ or w/o b-tagged jets

I will describe two searches...

Multijets + MET

Lepton + jets + MET

Dileptons + jets + MET

Same sign dileptons + jets + MET

Trileptons + jets + MET

w/ or w/o b-tagged jets

Single lepton + jets + MET

Many jets and large total energy

$$H_{\rm T} \equiv \Sigma_{\rm jets} |\vec{p}_{\rm T}|$$

Large missing energy,

$$MET \equiv \Sigma_{obj} \vec{p}_T$$

Single lepton + jets + MET

Many jets and large total energy

$$H_{T} \equiv \Sigma_{\text{jets}} |\vec{p}_{T}|$$

Large missing energy,

$$MET \equiv \Sigma_{obj} \vec{p}_T$$

Single lepton + jets + MET

Key experimental challenge is to predict the MET spectrum.

Monte Carlo untrustworthy: e.g., tails of kinematics & resolution, and W/top mix.

Trigger	Jets	Leptons	HT	MET
Single lepton pT>5 GeV HTtrig>70 pT(e)>17	≥4 jets, pT>40 η <2.4	pT(e)>20 or pT(mu)>20 isolated, veto dileptons	HT>500	MET >250

Predicting the MET spectrum

Three sources of MET:

- 1. Neutrino p_T
- 2. Resolutions
- 3. Missed MET

Predicting the MET spectrum; v p_T

Don't know tail of top quark p_T distribution. But, subsequent decay is well predicted.

Measure μ p_T spectrum to obtain ν p_T spectrum.

Predicting the MET spectrum; $v p_T$

Don't know tail of top quark p_T distribution. But, subsequent decay is well predicted. Measure μ p_T spectrum to obtain ν p_T spectrum.

There are several important corrections due to:

- Polarization
- Lepton p_T threshold
- Contamination to μ p_T spectrum

Small & measureable in Monte Carlo simulation

Predicting the MET spectrum; resolution

Resolution effects come from the jet system; measure it in equivalent events and add vectorially.

Det 3

Jet 4

Jet 2

Jet 1

O(1B) events of data, "stitched" together.

Predicting the MET spectrum; Missing MET

"Missing MET" from other neutrinos or lost leptons:

$$W \rightarrow \tau \nu \rightarrow \mu \nu \nu$$

contributes different MET shape.

Measure from μ events with emulated τ decay.

Predicting the MET spectrum; Missing MET

"Missing MET" from other neutrinos or lost leptons:

"Lost dilepton" events with the other W decaying as

 $W \rightarrow \mu \nu$ or $W \rightarrow \tau \nu$ (hadronic)

Measure with dilepton events and τ emulation.

Predicting the MET spectrum; QCD

Multijet events contribute via fake leptons to either the μ p_T prediction sample or the final high MET sample. Measured based on isolation shape extrapolation.

Negligible for MET; small for μ p_T ; large for e p_T . Prediction uses only μ p_T spectrum, w/a $\mu \rightarrow \mu + e$ correction.

Predicting the MET spectrum; results

Single lepton MET contribution dominates.

Uncertainty dominated by muon sample size.

Benchmark models would contribute to both high and low MET regions.

HT > 500 GeV

Predicting the MET spectrum; results

Single lepton MET contribution dominates.

Uncertainty dominated by muon sample size.

Benchmark models would contribute to both high and low MET regions.

HT > 750 GeV

Predicting the MET spectrum; results

Single lepton MET contribution dominates.

Uncertainty dominated by muon sample size.

Benchmark models would contribute to both high and low MET regions.

HT > 1000 GeV

Interpreting the results

The cMSSM plane has been a popular benchmark but it is constrained...

Interpreting the results w/ simplified models

More directly probes sensitivity of the kinematics. Use gluinos w/ 3-body decays to $\tilde{\chi}^{\pm}$ & $\tilde{\chi}^{0}$.

Higher HT cuts better for higher gluino mass, unless $\tilde{\chi}^0$ is heavy.

Interpreting the results w/ simplified models

More directly probes sensitivity of the kinematics. Use gluinos w/ 3-body decays to $\tilde{\chi}^{\pm}$ & $\tilde{\chi}^{0}$.

σ limits improve w/ $m_{\tilde{g}}$ and $m_{\tilde{g}}$ - $m_{\tilde{\chi}0}$.

Interpreting the results w/ simplified models

More directly probes sensitivity of the kinematics. Use gluinos w/ 3-body decays to $\tilde{\chi}^{\pm}$ & $\tilde{\chi}^{0}$.

 $m_{\tilde{\chi}^{\pm}}$ changes sensitivity by about a factor of 2 on the cross-section.

I will describe two searches...

Multijets + MET

Lepton + jets + MET

Dileptons + jets + MET

Same sign dileptons + jets + MET

Trileptons + jets + MET

w/ or w/o b-tagged jets

Jets, H_T, and MET

Same-sign dileptons from majorana gluino or multi-tops.

Potentially many b's.

SS is the "anchor".

Backgrounds from:

- Charge flips
- Irreducible rare processes
- Fake leptons

Background from charge flips

Negligible mis-assignment from resolution effects; the only source for μ 's.

Electron brem's dominate.

Calculated w/ simuluation $\frac{1}{2}$ η dependent: 1.0-30 x 10⁻⁴ Calibrated w/ $Z \rightarrow e^{\pm}e^{\pm}$ data.

Background from rare processes

ttW, ttZ, W[±]W[±]qq, WZ, WWW, WWZ.

Not yet observed, but calculable.

Use NLO σ with 50% uncertainty.

Background from fake leptons dominates.

- Fake lepton from jet.
- Fake lepton from semi-leptonic b-decay.

b-daughters dominate, particularly for μ case.

Measure fake lepton background using the isolation distribution: Iso $\equiv \Sigma_{\rm cone}$ E summing tracks and calorimeter deposits around the lepton.

Relative Iso divides out lepton p_T .

Measure "fake rate" a.k.a. "tight-to-loose ratio" in generic jet data as a function of the kinematics. For muons, loose \equiv Iso<0.4 and $|d_0|$ <2mm

Measure "fake rate" a.k.a. "tight-to-loose ratio" in generic jet data as a function of the kinematics. For electrons, loose \equiv Iso<0.6 and relaxed ID

The fake rates depend strongly on kinematics, e.g., flavor content, particularly for electrons, and parton p_T , measured with away jet p_T .

But cannot know parton p_T in the signal sample. $\Rightarrow 50\%$ syst. uncert.

Same-sign dileptons + jets + MET: Results

Total background prediction is a mix of irreducibles and fakes.

Model sensitivity depends on HT and MET cuts.

Same-sign dileptons + jets + MET: Results

Also look at taus and lower p_T e/ μ (10,5). Consistency across a range of samples.

Same-sign dileptons + jets + MET: b-tags

Requiring ≥2 b-tags strongly suppresses the top fake lepton contribution.

There are two b's in top events, but they cannot contribute simultaneously a tag and a fake.

Same-sign dileptons + jets + MET: b-tags

Requiring ≥2 b-tags strongly suppresses the top fake lepton contribution.

There are two b's in top events, but they cannot contribute simultaneously a tag and a fake.

Same-sign dileptons + jets + MET: b-tags

High HT or ≥3 b-tags gives very low background probes for 4 top signatures.

	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8
No. of jets	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	≥ 2
No. of b-tags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	≥ 2
Lepton charges	++/	++/	++	++/	++/	++/	++/	++/	++/
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 0 GeV	> 30 GeV	> 30 GeV	> 120 GeV	> 50 GeV	> 50 GeV	> 120 GeV	> 50 GeV	> 0 GeV
$\dot{H_{ m T}}$	> 80 GeV	> 80 GeV	> 80 GeV	> 200 GeV	> 200 GeV	> 320 GeV	> 320 GeV	> 200 GeV	> 320 GeV
Charge-flip BG	1.4 ± 0.3	1.1 ± 0.2	0.5 ± 0.1	0.05 ± 0.01	0.3 ± 0.1	0.12 ± 0.03	0.03 ± 0.01	0.008 ± 0.004	0.20 ± 0.05
Fake BG	4.7 ± 2.6	3.4 ± 2.0	1.8 ± 1.2	0.3 ± 0.5	1.5 ± 1.1	0.8 ± 0.8	0.15 ± 0.45	0.15 ± 0.45	1.6 ± 1.1
Rare SM BG	4.0 ± 2.0	3.4 ± 1.7	2.2 ± 1.1	0.6 ± 0.3	2.1 ± 1.0	1.1 ± 0.5	0.4 ± 0.2	0.12 ± 0.06	1.5 ± 0.8
Total BG	10.2 ± 3.3	7.9 ± 2.6	4.5 ± 1.7	1.0 ± 0.6	3.9 ± 1.5	2.0 ± 1.0	0.6 ± 0.5	0.3 ± 0.5	3.3 ± 1.4
Event yield	10	7	5	2	5	2	0	0	3
N _{UL} (12% unc.)	9.1	7.2	6.8	5.1	7.2	4.7	2.8	2.8	5.2
N _{UL} (20% unc.)	9.5	7.6	7.2	5.3	7.5	4.8	2.8	2.8	5.4
N _{UL} (30% unc.)	10.1	7.9	7.5	5.7	8.0	5.1	2.8	2.8	5.7

Same-sign dileptons + jets + MET: interpretation

Limits in cMSSM similar to others, almost.

Same-sign dileptons + jets + MET: interpretation

High HT or ≥3 b-tags gives very low background probes for 4 top signatures.

Same-sign dileptons + jets + MET: interpretation

High HT or ≥3 b-tags gives very low background probes for sbottom decays through stop.

Multijets + MET

Lepton + jets + MET

Dileptons + jets + MET

Same sign dileptons + jets + MET

Trileptons + jets + MET

w/ or w/o b-tagged jets

CMS Preliminary

T1:
$$\tilde{g} \rightarrow qq\tilde{\chi}^0$$

T1tttt:
$$\tilde{g} \rightarrow tt \tilde{\chi}_1^0$$

T2:
$$\tilde{q} \rightarrow q \tilde{\chi}^0$$

T3w:
$$\tilde{g} \rightarrow qq(W)\tilde{\chi}^0$$

T3Lh:
$$\tilde{g} \rightarrow qq\tilde{\chi}_2^0 |\tilde{\chi}^0|$$

T5zz:
$$\tilde{g} \rightarrow qq\tilde{\chi}_2^0$$

T5Lnu:
$$\tilde{g} \rightarrow qq\tilde{\chi}^{\pm}$$

TChiSlep:
$$\tilde{\chi}_2^0, \tilde{\chi}^\pm \to lll \tilde{\chi}^0 \tilde{\chi}^0$$

And many more to come...

