The same diagram that produces WZ in SM... ...could produce Winos and Zinos. ... could produce charginos and neutralinos. Lightest SUSY particle (LSP) is stable if R-Parity conserved. Strong production also possible... Strong production also possible... Strong production also possible, including scalar tops. Can lead to complex & varied final state signatures Cross-section is calculable given masses. E.g.: 10/fb for 600 GeV stop or 1 TeV gluino Could produce thousands at lower masses. The challenge is to discriminate them. ### Varied final state search modes Multijets + MET Lepton + jets + MET Dileptons + jets + MET Same sign dileptons + jets + MET Trileptons + jets + MET w/ or w/o b-tagged jets ### I will describe two searches... Multijets + MET Lepton + jets + MET Dileptons + jets + MET Same sign dileptons + jets + MET Trileptons + jets + MET w/ or w/o b-tagged jets # Single lepton + jets + MET Many jets and large total energy $$H_{\rm T} \equiv \Sigma_{\rm jets} |\vec{p}_{\rm T}|$$ Large missing energy, $$MET \equiv \Sigma_{obj} \vec{p}_T$$ # Single lepton + jets + MET Many jets and large total energy $$H_{T} \equiv \Sigma_{\text{jets}} |\vec{p}_{T}|$$ Large missing energy, $$MET \equiv \Sigma_{obj} \vec{p}_T$$ # Single lepton + jets + MET Key experimental challenge is to predict the MET spectrum. Monte Carlo untrustworthy: e.g., tails of kinematics & resolution, and W/top mix. | Trigger | Jets | Leptons | HT | MET | |--|------------------------------|---|--------|----------| | Single lepton
pT>5 GeV
HTtrig>70
pT(e)>17 | ≥4 jets,
pT>40
 η <2.4 | pT(e)>20 or
pT(mu)>20
isolated,
veto dileptons | HT>500 | MET >250 | # Predicting the MET spectrum ### Three sources of MET: - 1. Neutrino p_T - 2. Resolutions - 3. Missed MET # Predicting the MET spectrum; v p_T Don't know tail of top quark p_T distribution. But, subsequent decay is well predicted. Measure μ p_T spectrum to obtain ν p_T spectrum. # Predicting the MET spectrum; $v p_T$ Don't know tail of top quark p_T distribution. But, subsequent decay is well predicted. Measure μ p_T spectrum to obtain ν p_T spectrum. There are several important corrections due to: - Polarization - Lepton p_T threshold - Contamination to μ p_T spectrum Small & measureable in Monte Carlo simulation ## Predicting the MET spectrum; resolution Resolution effects come from the jet system; measure it in equivalent events and add vectorially. Det 3 Jet 4 Jet 2 Jet 1 O(1B) events of data, "stitched" together. # Predicting the MET spectrum; Missing MET "Missing MET" from other neutrinos or lost leptons: $$W \rightarrow \tau \nu \rightarrow \mu \nu \nu$$ contributes different MET shape. Measure from μ events with emulated τ decay. # Predicting the MET spectrum; Missing MET "Missing MET" from other neutrinos or lost leptons: "Lost dilepton" events with the other W decaying as $W \rightarrow \mu \nu$ or $W \rightarrow \tau \nu$ (hadronic) Measure with dilepton events and τ emulation. # Predicting the MET spectrum; QCD Multijet events contribute via fake leptons to either the μ p_T prediction sample or the final high MET sample. Measured based on isolation shape extrapolation. Negligible for MET; small for μ p_T ; large for e p_T . Prediction uses only μ p_T spectrum, w/a $\mu \rightarrow \mu + e$ correction. ## Predicting the MET spectrum; results Single lepton MET contribution dominates. Uncertainty dominated by muon sample size. Benchmark models would contribute to both high and low MET regions. #### HT > 500 GeV ## Predicting the MET spectrum; results Single lepton MET contribution dominates. Uncertainty dominated by muon sample size. Benchmark models would contribute to both high and low MET regions. #### HT > 750 GeV ## Predicting the MET spectrum; results Single lepton MET contribution dominates. Uncertainty dominated by muon sample size. Benchmark models would contribute to both high and low MET regions. #### HT > 1000 GeV ## Interpreting the results The cMSSM plane has been a popular benchmark but it is constrained... ## Interpreting the results w/ simplified models More directly probes sensitivity of the kinematics. Use gluinos w/ 3-body decays to $\tilde{\chi}^{\pm}$ & $\tilde{\chi}^{0}$. Higher HT cuts better for higher gluino mass, unless $\tilde{\chi}^0$ is heavy. ## Interpreting the results w/ simplified models More directly probes sensitivity of the kinematics. Use gluinos w/ 3-body decays to $\tilde{\chi}^{\pm}$ & $\tilde{\chi}^{0}$. σ limits improve w/ $m_{\tilde{g}}$ and $m_{\tilde{g}}$ - $m_{\tilde{\chi}0}$. ## Interpreting the results w/ simplified models More directly probes sensitivity of the kinematics. Use gluinos w/ 3-body decays to $\tilde{\chi}^{\pm}$ & $\tilde{\chi}^{0}$. $m_{\tilde{\chi}^{\pm}}$ changes sensitivity by about a factor of 2 on the cross-section. ### I will describe two searches... Multijets + MET Lepton + jets + MET Dileptons + jets + MET Same sign dileptons + jets + MET Trileptons + jets + MET w/ or w/o b-tagged jets Jets, H_T, and MET Same-sign dileptons from majorana gluino or multi-tops. Potentially many b's. SS is the "anchor". ### Backgrounds from: - Charge flips - Irreducible rare processes - Fake leptons Background from charge flips Negligible mis-assignment from resolution effects; the only source for μ 's. Electron brem's dominate. Calculated w/ simuluation $\frac{1}{2}$ η dependent: 1.0-30 x 10⁻⁴ Calibrated w/ $Z \rightarrow e^{\pm}e^{\pm}$ data. Background from rare processes ttW, ttZ, W[±]W[±]qq, WZ, WWW, WWZ. Not yet observed, but calculable. Use NLO σ with 50% uncertainty. Background from fake leptons dominates. - Fake lepton from jet. - Fake lepton from semi-leptonic b-decay. b-daughters dominate, particularly for μ case. Measure fake lepton background using the isolation distribution: Iso $\equiv \Sigma_{\rm cone}$ E summing tracks and calorimeter deposits around the lepton. Relative Iso divides out lepton p_T . Measure "fake rate" a.k.a. "tight-to-loose ratio" in generic jet data as a function of the kinematics. For muons, loose \equiv Iso<0.4 and $|d_0|$ <2mm Measure "fake rate" a.k.a. "tight-to-loose ratio" in generic jet data as a function of the kinematics. For electrons, loose \equiv Iso<0.6 and relaxed ID The fake rates depend strongly on kinematics, e.g., flavor content, particularly for electrons, and parton p_T , measured with away jet p_T . But cannot know parton p_T in the signal sample. $\Rightarrow 50\%$ syst. uncert. ### Same-sign dileptons + jets + MET: Results Total background prediction is a mix of irreducibles and fakes. Model sensitivity depends on HT and MET cuts. ## Same-sign dileptons + jets + MET: Results Also look at taus and lower p_T e/ μ (10,5). Consistency across a range of samples. ## Same-sign dileptons + jets + MET: b-tags Requiring ≥2 b-tags strongly suppresses the top fake lepton contribution. There are two b's in top events, but they cannot contribute simultaneously a tag and a fake. ## Same-sign dileptons + jets + MET: b-tags Requiring ≥2 b-tags strongly suppresses the top fake lepton contribution. There are two b's in top events, but they cannot contribute simultaneously a tag and a fake. ## Same-sign dileptons + jets + MET: b-tags High HT or ≥3 b-tags gives very low background probes for 4 top signatures. | | SR0 | SR1 | SR2 | SR3 | SR4 | SR5 | SR6 | SR7 | SR8 | |----------------------------------|----------------|---------------|---------------|-----------------|---------------|-----------------|-----------------|-------------------|-----------------| | No. of jets | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 3 | ≥ 2 | | No. of b-tags | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 2 | ≥ 3 | ≥ 2 | | Lepton charges | ++/ | ++/ | ++ | ++/ | ++/ | ++/ | ++/ | ++/ | ++/ | | $E_{\mathrm{T}}^{\mathrm{miss}}$ | > 0 GeV | > 30 GeV | > 30 GeV | > 120 GeV | > 50 GeV | > 50 GeV | > 120 GeV | > 50 GeV | > 0 GeV | | $\dot{H_{ m T}}$ | > 80 GeV | > 80 GeV | > 80 GeV | > 200 GeV | > 200 GeV | > 320 GeV | > 320 GeV | > 200 GeV | > 320 GeV | | Charge-flip BG | 1.4 ± 0.3 | 1.1 ± 0.2 | 0.5 ± 0.1 | 0.05 ± 0.01 | 0.3 ± 0.1 | 0.12 ± 0.03 | 0.03 ± 0.01 | 0.008 ± 0.004 | 0.20 ± 0.05 | | Fake BG | 4.7 ± 2.6 | 3.4 ± 2.0 | 1.8 ± 1.2 | 0.3 ± 0.5 | 1.5 ± 1.1 | 0.8 ± 0.8 | 0.15 ± 0.45 | 0.15 ± 0.45 | 1.6 ± 1.1 | | Rare SM BG | 4.0 ± 2.0 | 3.4 ± 1.7 | 2.2 ± 1.1 | 0.6 ± 0.3 | 2.1 ± 1.0 | 1.1 ± 0.5 | 0.4 ± 0.2 | 0.12 ± 0.06 | 1.5 ± 0.8 | | Total BG | 10.2 ± 3.3 | 7.9 ± 2.6 | 4.5 ± 1.7 | 1.0 ± 0.6 | 3.9 ± 1.5 | 2.0 ± 1.0 | 0.6 ± 0.5 | 0.3 ± 0.5 | 3.3 ± 1.4 | | Event yield | 10 | 7 | 5 | 2 | 5 | 2 | 0 | 0 | 3 | | N _{UL} (12% unc.) | 9.1 | 7.2 | 6.8 | 5.1 | 7.2 | 4.7 | 2.8 | 2.8 | 5.2 | | N _{UL} (20% unc.) | 9.5 | 7.6 | 7.2 | 5.3 | 7.5 | 4.8 | 2.8 | 2.8 | 5.4 | | N _{UL} (30% unc.) | 10.1 | 7.9 | 7.5 | 5.7 | 8.0 | 5.1 | 2.8 | 2.8 | 5.7 | ### Same-sign dileptons + jets + MET: interpretation #### Limits in cMSSM similar to others, almost. ## Same-sign dileptons + jets + MET: interpretation High HT or ≥3 b-tags gives very low background probes for 4 top signatures. ## Same-sign dileptons + jets + MET: interpretation High HT or ≥3 b-tags gives very low background probes for sbottom decays through stop. Multijets + MET Lepton + jets + MET Dileptons + jets + MET Same sign dileptons + jets + MET Trileptons + jets + MET w/ or w/o b-tagged jets #### **CMS Preliminary** T1: $$\tilde{g} \rightarrow qq\tilde{\chi}^0$$ T1tttt: $$\tilde{g} \rightarrow tt \tilde{\chi}_1^0$$ T2: $$\tilde{q} \rightarrow q \tilde{\chi}^0$$ T3w: $$\tilde{g} \rightarrow qq(W)\tilde{\chi}^0$$ T3Lh: $$\tilde{g} \rightarrow qq\tilde{\chi}_2^0 |\tilde{\chi}^0|$$ T5zz: $$\tilde{g} \rightarrow qq\tilde{\chi}_2^0$$ T5Lnu: $$\tilde{g} \rightarrow qq\tilde{\chi}^{\pm}$$ TChiSlep: $$\tilde{\chi}_2^0, \tilde{\chi}^\pm \to lll \tilde{\chi}^0 \tilde{\chi}^0$$ And many more to come...