Taus and Higgs physics with taus at LHC (CMS)

A. Nikitenko, Imperial College. Seminar in LIP, 26th May

CMS TN/95 -195 December 14, 1995

CMS Tau roots are from Lisbon !

A STUDY OF THE 1ST LEVEL τ TRIGGER

A. Nikitenko^{1,a)}, J. Varela^{2,b)}

1) LIP, Av. Elias Garcia 14, P-1000 Lisbon, Portugal

2) CERN/PPE, CH-1211 Geneva 23, Switzerland

a) On leave from ITEP, Moscow

b) On leave from LIP, Lisbon.

ABSTRACT

We present a simulation study of two possible 1st level τ triggers. It is shown that a trigger efficiency between 50 and 70% can be achieved for τ jets with E_t above 50 GeV, for a background rate, at L=10³³cm⁻²s⁻¹, of 10kHz and 0.3 kHz in the single and double τ mode, respectively.

The main motivation was to increase trigger acceptance for SUSY H-> $\tau\tau$ and H⁺-> $\tau\nu$

Outline

- Tau (τ_{had}) reconstruction and identification
- Expected reach of Higgs boson searches with τs at 14 TeV with ~ 30 fb⁻¹
- Preparation for Higgs discovery and expectations for 7 TeV with 1 fb⁻¹

Tau reconstruction and identification in CMS:

at Trigger level

τ trigger at Level-1

New L1 Tau Algorithm

- Working on a L1 jet (3x3 regions)
- Requires specific patterns in the central region denoting a narrow jet
- Isolation applied in 7/8 neighbors
 - Latest addition to GCT firmware (Thanks!)
- Jet energy corrections is an issue

τ trigger at HLT: calo part

 $P_{isol} = \sum E_T^{ECAL}(r<0.4) - \sum E_T^{ECAL}(r<0.13) < cut$ (CMS PTDR vol.1)

τ trigger at HLT: tracker part

Tau identification at LvI-3 with Pixels

Algorithm steps

 reconstruct tracks p_t > 1 GeV with pixels only resolution : σ(p_t)/p_t=[3.6+1.7p_t(GeV)]%
 find primary vertices (histogramming method)

□ find highest p_t track with good LvI-2 jet matching $\Delta R(j - tr_1) < R_m (\sim 0.1)$, $p_t^{tr1} > p_t^m (\sim 3 \text{ GeV})$, tr_1 defines signal primary vertex (PV)

count number of tracks from PV in the isolation cone and signal cone :

$$\begin{split} &\mathsf{N_i} \text{ tracks with } \Delta \; \mathsf{R}(\; j - \text{tr}) < \mathsf{R_i} \; (\sim 0.3) \;, \\ &\mathsf{N_s} \; \text{tracks with } \Delta \; \mathsf{R}(\; \text{tr}_1 - \text{tr}) < \mathsf{R_s} \; (\sim 0.05) \;, \\ &\mathsf{p_t^{tr}} > \mathsf{p_t^i} \; (\sim 1 \; \text{GeV}) \end{split}$$

□ accepts as τ if tracks found only in signal cone N_s = N_i

HLT – double τ tagging, no E_T thresholds on τ -jet candidates: <u>QCD bkg. rejection = 10³</u>

D. Kotlinski et al., CMS Note 2006/028

Tau reconstruction and identification in CMS:

in off-line analysis

	Basic τ so (very simi	elections lar to HLT)	T-jet axis			
Basic Tau ID with PF and tcTau τ s						
	PF Tau	tcTau				
1.	Jet-track matching,	$\Delta R(jet-track) < 0.1$				
jet	build from PF objects	calo jet corrected	with tracks			
2. Cut on p_T of leading track in signal cone (R_s =0.07 or R_s =5/ E_T)						
3. No tracks in annulus between signal and isolation cones						
4.	Electromagn	etic isolation				
no	γ s in isolation annulus	E_{τ} in ECAL isolation of	annulus < cut			
5. electron and muon vetoes (no μ veto yet for tcTau)						

PF τ **ID** efficiency vs p_T

December Data

PFT-10-001

MinBias fake rate in December data

- More advanced IDs exploiting τ_{had} decay modes:
 - Tau Neural Classifier (CMS AN-2010/099)
 - Hadron Plus Strip Algorithm (CMS AN-2010/082)

τ energy / direction reconstruction with PF and tcTau algorithms

Full ϕ -> $\tau\tau$ mass reconstruction method

Collinear approximation : $m_{\tau} << p_{T}^{\tau}$:

$$E_{v1} x_{\tau jet1} + E_{v2} x_{\tau jet2} = E_{TX}^{miss}$$
$$E_{v1} y_{\tau jet1} + E_{v2} y_{\tau jet2} = E_{TY}^{miss}$$

 $\begin{aligned} \mathbf{x}_{\tau \text{ jet}} &= \sin(\theta_{\tau \text{ jet}}) \cos(\phi_{\tau \text{ jet}}) \\ \mathbf{y}_{\tau \text{ jet}} &= \sin(\theta_{\tau \text{ jet}}) \sin(\phi_{\tau \text{ jet}}) \end{aligned}$

 $E_{\tau} = E_{\tau jet} + E_{\nu}$

Negative E_v solutions due to E_T^{miss} measurement error :

Higgs boson mass can not be reconstructed if $E_{\tau iet} + E\nu < 0$

Higgs boson searches with τs in the final state

Higgs boson channels with τ's studied so far in ATLAS and CMS (PTDRs)

- qq->qqH, H->ττ (VBF H->ττ) in SM and MSSM
- MSSM ϕ -> $\tau\tau$ in gg-> ϕ and gg->bb ϕ production
- MSSM H⁺->τ ν from tt~(t->H⁺b) and gb->tbH⁺
- NMSSM H₁->a₁a₁->ττττ
 arXiv:0805.3505 [hep-ph], arXiv:0801.4321[hep-ph]
- H⁺⁺H⁻⁻ -> llll (l= μ, τ)
- 5D Randall-Sundrum model: φ->hh->ττbb

SM Higgs boson couplings and Br. ratios

H->ττ in SM is available only through VBF Higgs production

Why VBF channels are very important ?

- Significantly extend the possibility of Higgs coupling measurements
- Provide possibility of the indirect measurement of the light Higgs boson width
 - D. Zeppenfeld, R. Kinnunen,
 A. Nikitenko and E. Richter-Waz, Phys.Rev. D62 (2000) 013009
 - M. Duehressen et al., Phys.Rev. D70 (2004) 113009

The only way to measure Higgs coupling to down type fermions; Important in MSSM

Selection strategy and bkgs for VBF H->ττ->l+jet

Trigger

- with early data (< 1fb⁻¹) : single lepton
- with higher lumi: single lepton plus $l+\tau$
 - Lepton + "VBF jets" is under unvestigation
- Off-line
 - a) Lepton counting: only 1 e or 1 μ ; b) $p_T^l > 15$ GeV
 - τ->hadrons (τ_{jet}) selection; E_T > 30 GeV
 - VBF jet selections: E_T >30 GeV, cuts on $\Delta \eta_{j1j2}$, M_{j1j2}
 - Central rapidity gap selection
 - upper cut on $m_T(l, E_T^{miss}) < 40$ GeV against Ws
 - Higgs boson mass reconstruction: l+ τ_{iet} or full $\tau\tau$ mass
- Backgrounds considered:
 - Z+jets, W+jets, tt~, QCD

Rapidity gap in VBF (WW->H) production first discussed in :

Yu. Dokshitzer, V. Khoze and S. Troyan, Sov.J.Nucl. Phys. 46 (1987) 712 Yu. Dokshitzer, V. Khoze and T. Sjostrand, Phys.Lett., B274 (1992) 116

From D. Zeppenfeld talk on TeV4LHC, 2004

Full simulation analysis of qqH, H->ττ->l+jet at LHC 14 TeV

Discovery in Standard Model

M _H [GeV]	115	125	135	145
Production σ [fb]	4.65×10^{3}	4.30×10^{3}	3.98×10^{3}	3.70×10^{3}
$\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]	157.3	112.9	82.38	45.37
$ m N_S$ at 30 fb $^{-1}$	10.5	7.8	7.9	3.6
$ m N_B$ at 30 fb $^{-1}$	3.7	2.2	1.8	1.4
Significance at 30 fb ⁻¹ ($\sigma_{\rm B}$ = 7.8%)	3.97	3.67	3.94	2.18
Significance at 60 fb ⁻¹ ($\sigma_{\rm B} = 5.9\%$)	5.67	5.26	5.64	3.19

Exploit 7 TeV data to be prepared for VBF H->ττ analysis at 14 TeV

- Check the methods of central rapidity gap selection using Z+2 jet events:
 - central jet veto
 - track counting veto
 - CMS Analysis Note 2007/035, CMS-PAS-HIG-08-001, arXiv:0803.1154 [hep-ph]
- Start getting tagging quark jet energy scale using
 - W->qq (from tt~)
 - J.D'Hondt, P. Van Mulders, CMS Analysis Note 2007/029.
 - Z+jet events
 - A. Nikitenko, E. Yazgan CMS Analysis Note 2010/044

Searches for MSSM neutral Higgs bosons->ττ

Heavy CP-odd Higgs boson (A) branching ratios

Cross sections for MSSM Higgs bosons production at LHC for 14 TeV

 $X_t=6^{1/2}M_s$ (m_h^{max} scenario), M_s=2TeV, m_t=178 GeV, m_b(m_b)=4.9 GeV; NLO QCD corrections for all channels, but tt Φ , bb Φ ; $\mu_R=\mu_F=1/2(M_{\Phi}+2m_t)$ for tt Φ and $\frac{1}{4}(M_{\Phi}+2m_b)$ for bb Φ . NLO MRST set of PDF

Tevatron: pp->(bb) ϕ , ϕ -> $\tau\tau$ Exclusion limits in M_A-tan β

 High tanβ and M_A = 100-800 Gev is the region for MSSM Higgs searches at LHC with

pp->(bb)φ, φ->ττ

CMS: φ->2τ **analyses 2006** mφ > 150-200 GeV with pp->bbφ

Final states and background processes

H $\rightarrow \tau \tau \rightarrow e \mu + X$ Branching ratio BR($\tau \tau \rightarrow e \mu$)~6.3%

 $H \rightarrow \tau \tau \rightarrow l + jet + X$ Branching ratio BR($\tau \tau \rightarrow lj$)~45.6%

> Main backgrounds: $Z,\gamma^* \rightarrow \tau\tau$ (all channels) $Z,\gamma^* \rightarrow ll$ (ll) tt (all channels) tW (all channels) bb (eµ,ll,lj) W+jet (lj,jj) QCD (jj)

Background suppression after HLT: lepton isolation τ-jet identification (isol etc.) τ-tagging (tau impact param.) b-tagging jet veto

 $H \rightarrow \tau \tau \rightarrow H + X$

Branching ratio BR(tt→ll)~12.5%

H->tt->jet+jet+X

Branching ratio BR(tt→jj)~41.5%

positive neutrino energy

Selections include single b tagging, thus selecting gg->bbA/H production process

$m_{\tau\tau}$ with e/µ+j and j+j modes after selections

A->2τ->2jet is most challenging topology due to multi-jet backgound

MSSM neutral Higgs bosons: Teatron vs LHC

CMS 5σ discovery region

Tevatron exclusion region

100 tau 50 tanβ Tevatron Run II Preliminary, L= 1.8-2.2 fb⁻¹ m_b max, μ=+200 GeV 90 hμ o > rt > jet+jet, 60 fb 40 80 Excluded by LEP , eµ bserved limit 70 xpected limit Expected limit $\pm 1\sigma$ 22 5 30 Expected limit \pm 2 σ 60 CMS, 30 fb⁻¹ 50 $pp \rightarrow bb\phi, \phi = h, H, A$ 20 40 m^{max} scenario $M_{susy} = 1 \text{ TeV/c}^2$ 30 $M_{2} = 200 \text{ GeV/c}^{2}$ 10 $\mu = 200 \text{ GeV/c}^2$ 20 10 m_{gluino} = 800 GeV/c² $\phi \rightarrow \tau\tau \rightarrow e+iet$ Stop mix: X₁ = 2 M_{SUSY} 800 700 800 M_A,GeV/c² 500 100 200 300 400 600 100 140 160 180 200 120 m_A [GeV/c²]

Preparation for pp->(bb)φ, φ->ττ discovery with 7 TeV data

• "discover" Z-> $\tau\tau$ => limits in M_A-tan β for M_A < 200 GeV =>exploit both gg-> ϕ and bb ϕ production

- Measure Z + b as benchmark for H + 1b
- Z->ττ mass shape from Z->μμ data

H+1 b

Les Houches 2003 (hep-ph/0405302):

5F scheme (Campbell, Ellis, Maltoni, Willenbrock);

4F scheme (Dittmaier, Kramer, Spira, Dawson, Jackson, Riena, Wackeroth) LHC xs adreed within ~ 20 % uncertainties due to variation of μ_{F} , μ_{R} by factor 2

Z+1 b

Z + b as a test case

- The production of Z + b is very similar to that of H + b, even lying in a similar kinematic region for a low mass Higgs.
- Theoretically, the two processes have the same inputs and uncertainties.
 - same initial state, similar (x, Q^2)
 - the same H and Z decays
- Test the experimental analysis procedure by re-discovering the Z –
 - a) Z + one jet which is b-tagged ;
 - b) Z+ two jets, one or more b-tags.

^g 000000 b b Z taus

Slide from J. Campbell talk

Different MCs for b(b)H production gives different predictions: => need bbZ data to tune/verify Monte Carlo

Campbell, Kalinowski and Nikitenko; Les Houches 2005 hep-ph/0604120

PYTHIA gg->bbH describes p_T^b spectra at NLO within 5-10 %; Kinnunen, Lehti, Moortgat, Nikitenko, Spira. Eur.Phys.J. C40n5:23-32,2005

want to measure Z + 1(2) b + X

at least 1 b tagged jet

- Campbell, Ellis, Maltoni, Willenbrock, McElmurry hepph/0312024, hep-ph/0505014. m_b = 0
- at least two jets with at least 1 b-tagged jets
 - Campbell, Ellis, Maltoni, Willenbrock hep-ph/0510362, m_b=0
- at least two jets with 2 b-tagged
 - Cordero, Reina, Wackeroth arXiv:0906.1923 [hep-ph], massive b
- MagGraph generator preselections (agreed with F. Maltoni):
 - LO gg->bbZ with massive b; $p_T^b > 10$ GeV for at least one b
 - corresponding σNLO needs 4- and 5-flavour merging. L. Rieina,
 F. Cordero work in progress

CMS expectations for Z+1b at 7 TeV (rescaling of 10 TeV result)

A.M. Magnan, A. Nikitenko . CMS Analysis Note 2010/027 A. Nayak, T. Aziz, A. Nikitenko, CMS Analysis Note 2008/020

- 2*l* p_T > 20 GeV, |η|<2.1
- E_T^{miss} < 40 GeV
- >= 1 b-jet, E_T >15 GeV, $|\eta| < 2.1$
- N_s = 84 ev.
- Background:
 - *Z*+*jets:* 39 *ev*.
 - Z+cc: 14 ev
 - tt~: 15 ev

Z->ττ mass shape from Z->μμ data – replace μ by generated τ

Expectation for 200 pb⁻¹

MSSM charged Higgs boson: m_{H+} < m_t and m_{H+} > m_t

MSSM charged Higgs boson

M_{H+} < M_t, tt->H⁺bWb Br (t->H⁺b):

Light charged Higgs: tt->WbH⁺b: Tevatron limits

Search for heavy charged Higgs in pp->tH⁺, H⁺-> τv

The channel $H^+ \rightarrow \tau \nu \rightarrow h + E_T^{miss} + X$ from pp->t H^+ , t->qq'b production is potentially the best channel to look at massive H^+

Backgrounds : tt~, Wt, W+jets. a) gg->H⁺tb, H⁺->τν, t->bqq

Selections 2006:

$$\begin{split} & \mathsf{E}_{\mathsf{T}}^{\mathsf{miss}} \geq 100 \; \mathsf{GeV} \\ & \mathsf{E}_{\mathsf{T}}^{\tau \; \mathsf{jet}} \geq 100 \; \mathsf{GeV} \\ & \boldsymbol{\tau} \; \mathsf{polarization:} \\ & \mathsf{R}_{\tau} = \mathsf{p}^{\; \mathsf{ltr}} / \mathsf{E}^{\tau \; \mathsf{jet}} \geq 0.8 \\ & \mathsf{M}_{\mathsf{top}} + \mathsf{b} \; \mathsf{tagging} \\ & \mathsf{veto} \; \mathsf{of} \; \mathsf{4}^{\mathsf{th}} \; \mathsf{jet} \\ & \mathsf{E}_{\mathsf{T}}^{\; \mathsf{Higgs}} \geq 50 \; \mathsf{GeV} \end{split}$$

The 5 σ discovery reach of CMS 2003 for MSSM charged Higgs bosons with m_h^{max} scenario.

CMS Note 2003/033

NLO cross section for pp->tH⁻ +X

NLO cross section (no Δ_b SUSY corrections) : T. Plehn et al., hep-ph/0312286

The 5 σ discovery reach of CMS 2006 (PTDR) for MSSM charged Higgs bosons with m_h^{max} scenario.

Plan of action for 7 TeV data in tt->bH+Wb-> lv τ_{had}v bb analysis (LIP)

- 1-10 pb⁻¹:
 - study τ fake rate in multi-jet samples
 - lepton/jets/MET
 - validate data-driven bkg method with
 W+jets
- 10-100 pb⁻¹:
 - estimate fake τ background
 - look at ttbar events (with/without taus,
- 100-500 pb⁻¹:
 - establish signal/set limits

Very reach program for Higgs physics with τs ! THE END

Uncertainties involved in the tan(β) measurement

At large tan(β), σ x Br ~ tan²(β)_{eff} f(M_A) at fixed μ , M₂, A_t, M_{SUSY}

 $N_s = tan^2(\beta)_{eff} f(M_A) L \epsilon_{sel}$

 $\tan(\beta) = \tan(\beta)_{mes} + - \Delta_{stat} + - \Delta_{syst} + - \Delta_{MCgen}$

 $\Delta_{syst} = 0.5 \ sqrt(\Delta L^2 + \Delta \sigma_{th}^2 + \Delta Br_{th}^2 + \Delta \sigma(\Delta M_H)^2 + \Delta \varepsilon_{sel}^2 + \Delta B^2)$

 $\Delta \sigma_{th} = 20$ % due to NLO scale dependence $\Delta Br_{th} = 3$ % uncertainties of SM input parameters $\Delta L = 5$ % luminosity uncertainty $\Delta \sigma (\Delta M_{H}) = 10-12$ % due to mass measurement at 5 σ discovery limit $\Delta B = \Delta N_{B} / N_{S} = 10$ % at 5 σ discovery limit (preliminary)

$$\Delta \varepsilon_{sel}^{2} = \Delta \varepsilon_{calo}^{2} + \Delta \varepsilon_{b tag}^{2} + \Delta \varepsilon_{\tau tag}^{2}$$

$$\Delta \varepsilon_{b tag} = 2.0 \% \text{ (preliminary)}$$

$$\Delta \varepsilon_{\tau tag} = 2.5 \% \text{ (preliminary)}$$

$$\Delta \varepsilon_{calo} = 2.9 \% \text{ (preliminary)}$$

Measurement of the SM Higgs boson couplings

ATL-PHYS-PUB-2003/030

SM Higgs physics with 100-300 fb⁻¹ (II)

precise measurement of width qq->qqh. h->2γ,WW^(*), 2τ together with gg->WW^(*) allows indirect measurement of Higgs width

observation of other Higgs channels :

Wh with h->bb, h-> $\gamma\gamma$ tth with h-> $\gamma\gamma$, WW qqh, with h-> $\mu\mu$ (?)

MSSM gg->bbA/H, A/H-> 2τ : accuracy of tan(β) measurement

tan(β) "measurement" with MSSM bbA

Cross section (and width) exhibits a large sensitivity to $tan(\beta)$ and thus can add a significant observable to a global fit of the SUSY parameters

From width measurement with A->μμ, by G. Masetti, PTDR

From cross section of A->ττ

R. Kinnunen, S. Lehti, F. Moortgat,A. Nikitenko, M. Spira. CMS Note 2004/027Need to be updated for PTDR 2006 results

PF τ **ID** efficiency vs η

