

Nuno Leonardo (Purdue)

LIP/IST LHC Seminar

"Physics on the road to discovery" Instituto Superior Técnico, 12/9/2012

The Large Hadron Collider

Géneva airport

6 miles

2038235

Switzerland

CERN

Large

- 27 km circular tunnel
- I,600 superconducting magnets
- huge cryogenic facility
- Hadron Collider
 - accelerates and collides beams of hadrons (composed of quarks): protons (7-8 TeV) and atomic nuclei (PbPb, 2.76 TeV per nucleon)
- energy frontier
 - x4(7) larger wrt Tevatron
 - xI4(28) larger wrt RHIC

will likely remain the leading high-energy particle physics facility for next decade(s)

N.Leonardo, Sígnals from the LHC

12/9/12

proton-proton

the LHC detectors

N.Leonardo, Sígnals from the LHC

N.Leonardo, Sígnals from the LHC

12/9/12

going beyond the SM

The official list of big questions:

- O. What is the origin of mass for fundamental particles?
- Are there undiscovered principles of nature: new symmetries new physical laws?
- 2. How can we solve the mystery of dark energy?
- 3. Are there extra dimensions of space?
- 4. Do all the forces become one?
- 5. Why are there so many kinds of particles?
- 6. What is dark matter? How can we make it in the laboratory?
- 7. What are neutrinos telling us?
- 8. How did the universe come to be?
- 9. What happened to the antimatter?

Paced on "The Quantum I Injuerse" HEPAP 2004

"This is probably not the right list of big questions"

N.Leonardo, Sígnals from the LHC

12/9/12

7

going beyond the standard model

(some popular theory conjectures)

plan of action

- calibrate the detectors, understand the data
 - hardware and physics commissioning of the experiment
- measure 'known' processes
 - explore extended LHC-accessible phase space
- search for new effects
 - find deviations from expectations
 - directly look for new phenomena, guidance from exp. signals/signatures
- explore properties of the dense medium in heavy-ion collisions
 - use pp as reference

the Compact Solenoid détector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

Lead tungstate E/M Calorimeter (ECAL)

Hadron

ison return yoke interspersed

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

Solenoid

trigger: real-time event selection

trigger:

- the first determining stage of any physics analysis
- the single most important item in hadron colliders

pp collisions (@ $\sqrt{s} = 7-8$ TeV)

a dimuon candidate: $X \rightarrow \mu^+ \mu^-$

event display

re-discovering the benchmarks of the standard model

re-discovering the benchmarks of the standard model

re-discovering the benchmarks of the standard model: going beyond

Upsilons: then... & now

- heavy quarkonia is a suitable laboratory for understanding the strong force / QCD
 - short-distance/perturbative vs long-distance, aka factorization
 - non-perturbative evolution of QQ into quarkonium: non-perturbative, effective theories (NRQCD, CSM, CEM...)
- production not satisfactorily understood -- theoretically and experimentally puzzling
 - no model is currently capable of describing both cross section and polarization

quarkonium decay

		→ + -	Г	т
Ŷ	b <u>b</u>	~2%	54 keV	1.21×10 ⁻²⁰ s
J/ψ	с <u>с</u>	~7%	93 keV	7.2×10 ^{−21} s

- standard model standard candles
- detector/trigger calibration tools
- and important steps to wisdom

HADRON'2011

bottomonía@LHC,20

production cross section

$$\frac{d^2\sigma}{dp_T dy} (Q\bar{Q}) BR(Q\bar{Q} \to \mu^+ \mu^-) = \frac{N_{fit}(Q\bar{Q})}{\int L dt \cdot A \cdot \epsilon \cdot \Delta p_T \Delta y}$$

- N: fitted signal yield
- A: detector acceptance from simulation
 - dependent on unknown production polarization
- E: track, muon reconstruction and trigger efficiencies, from data-driven (T&P) methods
- L: integrated sample luminosity
 - Acceptance and efficiency corrections applied event-per-event or as bin averages 1/< Α, ε>

tag & probe

explore J/ ψ , Υ , Z $\rightarrow \mu\mu$

- data driven method
- example:
 µ-identification efficiency
- data:
 - single muon dataset
- tag
 - good global muon
 - matched to single muon path to remove trigger bias
- probe
 - inner track
 - passing criteria: identified as muon

tag & probe

explore J/ ψ , Υ , Z $\rightarrow \mu\mu$

12/9/12

production cross section

Y(nS) differential cross sections

Y(nS) spin alignment

J/ψ cross section

- similar analysis strategy as employed for the $\Upsilon(nS)$ is applied for the J/ψ and ψ'
 - dominant systematics from efficiency measurement, dimuon correlations and polarization

Signals from the LHC

28

CMS $\sqrt{s} = 7$ TeV L = 37 pb⁻

↔ 0.0 < |v| < 1.2 (×25)</p>

- 1.6 < |y| < 2.4 (×1)

20 30 p_ (GeV/c)

1.2 < V < 1.6 (×5)

EONL I

particle lifetime

- if an unstable particle lives for a relatively long time before decaying, it may leave a distinct signature in the detector: a displaced vertex
- its proper decay time t can then be measured from the flight distance and momentum (projected onto transverse plane)

 $t = L/c\beta\gamma = L m/p$

non-prompt J/ψ

- inspecting the displacement of the J/ψ decay vertex, we can separate the prompt and nonprompt components
- the J/ψ itself decays promptly(!), its displacement arises from:

 by measuring the J/Ψ displacement we inferred the contribution from another, heavier particle ...

displaced Upsilon? Zee? ...

- a long-lived signal component would be smoking gun for new physics
- but would these not have been detected already elsewhere?
 - relevant exotic scenarios may become accessible only at LHC energies

- + can apply standard lifetime technique, for Υ and Z as just done for J/ψ
- Alternative: generic displaced-vertex search, performed with lifetime threshold

search for new resonances

Iook for new, exotic bumps in the dilepton mass spectrum

I. prompt

- eg: light scalars (SM&BSM Higgs), new gauge bosons Z', RS graviton G_{kk}, ...
- use known resonances eg $Z \rightarrow \mu \mu$ peak for normalization
- direct search for NP

2. short lived

- eg: D, B $\rightarrow \mu\mu$: tiny in SM, may be enhanced by new physics (SUSY)
- Iow mass: use other known B,D decays for normalization
- indirect search for NP

3. long lived

- eg: SUSY with weak R-parity violation, 'hidden' SUSY, hidden valleys
- distinct topological signature: (highly) displaced vertices
- direct search for NP

N.Leonardo, Sígnals from the LHC

12/9/12

$h_0 \rightarrow \mu \mu$ [prompt]

- light Higgs predicted eg NMSSM
 - add singlet scalar to MSSM
- search in range 5.5 -- 14 GeV around the Y(nS) region
- no excess found above SM background, set limit on $\sigma(pp \rightarrow a) \times BR(a \rightarrow \mu^+\mu^-)$

SM Higgs search: $H \rightarrow 4I, 2\gamma$ [prompt]

68% CL band

Z', $G_{kk} \rightarrow \mu \mu$ [prompt]

highly suppressed in SM

- effective FCNC, helicity suppressed
- $B(B_s \rightarrow \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$
- $B(B_d \rightarrow \mu^+\mu^-) = (1.0 \pm 0.1) \times 10^{-10}$
- high sensitivity to new physics
 - eg MSSM: B \propto $(tan\beta)^6$
- no NP enhancement detected
 - strict constraints to NP phase phase, flavor sector contributions

 $BR(B_d \rightarrow \mu^+\mu^-)$

X

109

phenomenology [long lived]

VS ~ NHS suppressed coupling >> long lived hidden particles

12/9/12

displaced vertices search

search for neutral, long lived, narrow heavy resonances decaying to leptons inside the CMS tracker volume

- benchmark signal model:
 - Higgs (scalar) decay: $H^0 \rightarrow 2X, X \rightarrow I^+I^-$
 - variety of Higgs mass, X mass/lifetime
 - further models constrained by our results
- backgrounds:
 - ▶ QCD, tt, Z/γ, Z+jets, WW/WZ/ZZ
- look for a (displaced)peak in invariant mass spectrum of X→µµ

candidate selection

- online selection
 - dedicated double muon trigger, with no tracker nor vertex requirements
- track selection
 - high purity, oppositely charged tracks
 - impact parameter: remove prompt tracks
 - muon ID = matching trigger muon
 - isolation
- vertex selection
 - vertex fit quality
 - vertex displacement from PV \Rightarrow
 - collinearity angle (<u>pt</u>, <u>Lxy</u>)
 - back to back tracks: eliminate cosmic rays
 - dimuon separation, ΔR >0.2, to avoid region of poor trigger efficiency

CMS Preliminary \sqrt{s} =7 TeV L=5.1 fb ⁻¹

results & limits

- look for signal as a narrow resonance in dilepton mass spectra
- no excess observed so far \Rightarrow limits set for ranges of m_H, m_X, τ_X
 - observe zero (4) events in $\mu\mu$ (ee) channel, expected: 0.02±0.09 (1.4±1.8)
- exclusion limits from Tevatron significantly extended

PbPb collisions (@ $\sqrt{s_{NN}}=2.76$ TeV)

Dimuon (Y) candidate in PbPb

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-12 03:55:57.236106 GMT(04:55:57 CEST) Run / Event: 150887 / 1792020

μ⁺μ⁻ pair:
 mass: 9.46 GeV/c²
 p_T: 0.06 GeV/c
 rapidity:-0.33

μ⁺: p_T = 4.74 GeV/c² η = -0.39

 μ^{-1} : $p_{T} = 4.70 \text{ GeV/c}^{2}$

 $\eta = -0.28$

aim: explore the QGP

at large energy densities, QCD predicts the existence of a deconfined state of quarks and gluons -- the quark gluon plasma (QGP)

the goal is to characterize and quantify the properties of the dense and hot medium produced at the unprecedented LHC energies

quarkonia as probe for QGP

- heavy quarks produced early in the collision
 - they map the evolution of the medium
- quarkonia state in a deconfined, color-charged medium: Debey screening
 - induced the suppression of individual states
 - different states melt at different temperatures

Q and Q cannot "see" each other r_D < r_{QQ}

State	J/ψ	Ψ'	Ŷ	Υ'	Υ"
mass [GeV]	3.10	3.68	9.46	10.02	10.36
ΔE [GeV]	0.64	0.05	1.10	0.54	0.20
radius [fm]	0.25	0.45	0.14	0.28	0.39

N.Leonardo, Sígnals from the LHC

			-		
1	2	$1 \cap$	11	2	
		19	/ /		
-	-		-	-	

QCD thermometer

Sequential melting

RAA & centrality

- pp data employed as baseline for heavy-ion measurements
- nuclear modification factor, RAA

$$R_{AA} = \frac{\text{Yield (PbPb)}}{\text{Yield (pp) } \times \langle N_{coll} \rangle} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{MB}} \frac{N_{PbPb}(Q\overline{Q})}{N_{pp}(Q\overline{Q})} \cdot \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}}$$

 $\uparrow \text{ average number of NN collisions in AA collisions}$ > I enhancement
 $\downarrow \text{ enhancement}$

- centrality dependence
 - impact parameter, b, of the collision
 - central collisions (small b): hot, large
 N_{part} (number of participating nucleons)
 - peripheral collisions (large b): cold, large spectators (fly away undisturbed)
 - measured from energy deposit in HF

J/ψ suppression

- prompt and non-prompt J/ ψ separated for first time in heavy-ions
- prompt J/ ψ is strongly suppressed as a function of coll. centrality
- non-prompt J/ ψ shows for first time b-jets are quenched (high p_T)

N. Leonardo

charmonia vs bottomonia

- J/ψ
 - extensively studied already at the SPS and RHIC
 - various competing factors complicate interpretation of observed suppression: feeddown (incl. b-hadrons), possible regeneration, etc ...
 - + at CMS & LHC access higher p_T reach; detailed $\psi(2S)$ studies needing larger datasets

• Υ

- individual states measured for the first time by CMS (before unavailable)
- no b feeddown; 3S not significantly affected by feeddown
- Y(nS) system offer multiple states: study relative peak suppression, where many 'cold-nuclear effects cancel; statistical regeneration likely negligible;
- bottomonia provide a powerful new QGP probe, opens a new avenue @LHC

$\Upsilon(nS)$ in pp... and in PbPb: where did Υ' go?

$$\chi_{23} = \frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31^{+0.19}_{-0.15} \pm 0.03$$

2S and 3S excited states suppressed significance of effect 2.4 σ (p-value 0.9%)

CMS, PRL107 (2011) 052302

$\Upsilon(nS)$ in pp... and in PbPb: where did Υ' go?

800

 $\chi_{23} = 0.15 \pm 0.15 \pm 0.03$

'no or reduced Y signal'(=suppression) is our signal !

11 PbPb data

observation of relative suppression of the excited 2S and 3S states wrt IS

14

statistical significance $>5\sigma$

Y(nS) suppression

 $R_{AA} = \frac{\sigma(PbPb)}{\sigma(pp)}$ >I enhancement =I no medium effect <I suppression

 $\begin{aligned} R_{AA}(Y(1S)) &= 0.56 \pm 0.08 \, (\text{stat.}) \pm 0.07 \, (\text{syst.}) \\ R_{AA}(Y(2S)) &= 0.12 \pm 0.04 \, (\text{stat.}) \pm 0.02 \, (\text{syst.}) \\ R_{AA}(Y(3S)) &= 0.03 \pm 0.04 \, (\text{stat.}) \pm 0.01 \, (\text{syst.}) \\ &< 0.10 \quad (95\% \text{ C.L.}) \, . \end{aligned}$

• all Y states are suppressed, and sequentially

$$\Upsilon(3S) \rightarrow \Upsilon(2S) \rightarrow \Upsilon(1S)$$

Y sequential melting!

Υ suppression pattern established: $\Upsilon(IS) < \Upsilon(2S) < \Upsilon(3S)$

sequential suppression

(centrality dependence)

- both IS and 2S suppressions increase with centrality/N_{part}
- 2S,3S are more suppressed

sequential suppression

(centrality dependence)

- both IS and 2S suppressions increase with centrality/N_{part}
- 2S,3S are more suppressed than IS
- data allow discrimination amongst models/parameters

suppression pattern observed: $\Upsilon(IS) < \Upsilon(2S) < \Upsilon(3S)$

sequential suppression

(centrality dependence)

- both IS and 2S suppressions increase with centrality/N_{part}
- 2S,3S are more suppressed than IS
- data allow discrimination amongst models/parameters
- J/ ψ is more suppressed than $\Upsilon(IS)$, and less than $\Upsilon(2S)$

suppression pattern observed: $\Upsilon(IS) < J/\psi < \Upsilon(2S) < \Upsilon(3S)$

quarkonia sequential suppression

summary

- the LHC machine and experiments are doing fantastically well
- many signals have been extracted, and many relevant measurements continue to be diligently carried out
- a new boson observed with about 125 GeV, consistent with SM Higgs
- no clear evidence for signals from Beyond the Standard Model yet
 - search reinforced with higher energy, luminosity, and extended approaches
- observed suppression of quarkonium states in strongly-coupled medium
 - and established its sequential pattern
- more data (pp, PbPb, pPb) will continue to be accumulated, allowing extended measurements and novel searches
 - evidence for new phenomena, ground breaking signals remain excitingly imminent.

Thank you.

[exotica exclusion thresholds] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

N.Leonardo, Sígnals from the LHC

[long-lived exotica] data-driven efficiencies

- trigger efficiency: evaluated with tag & probe on Z peak
 - (also J/ ψ for boosting effects)

- tracking efficiency: evaluated employing cosmic muon data
 - data-mc systematic: 20%

Overall signal efficiency range 4-30% (electrons), 5-50% (muons)

12/9/12

parton energy loss [in the medium]

at low-p_T:

different suppression pattern than light at high-p_T:

b and light similar suppression

EPJC 72 (2012) 1945

CMS-PAS HIN-12-003 CMS-PAS HIN-12-004 CMS-PAS HIN-12-014