Test of the Standard Model in rare decays at the LHC

Gaia Lanfranchi (CERN/INFN)

Laboratório de Instrumentação e Física Experimental de Partículas November, 21st 2012 We live in a world where only 4% of the matter is known This tiny fraction of matter is well described by the "Stardard Model" of particle physics.... which nevertheless is not able to explain:

- → why 3 generations of quarks and leptons?
- \rightarrow why so different masses (m (e) ~0.5 eV \rightarrow m(top) ~176 GeV)
- → why 4 fundamental interactions and why so different scales?

Standard model of particle physics (what we know today)

The Standard Model cannot be the ultimate theory as it is incomplete and contains too many free parameters like the fermion masses and couplings

Standard model of particle physics (what we know today)

The Standard Model is most likely only a partial view (= low-energy effective theory for experts) of a more fundamental theory with particles expected at the TeV scale and (in principle) accessible at the LHC

What is hidden below?

Super simmetry? Extra dimensions?
Warped theories?

The LHC was built to answer these questions....

....and a (small) detector, LHCb, mostly dedicated to the study of CP violation and rare decays in the b-system:

LHCb mostly (but not only) searches for quantum corrections in the decays of known particles and look for deviations from the SM predictions ("indirect search").....

..in particular in the branching fraction of the decay of the Bs5 meson into a muon pair (the topic of this talk)

Why the decays $B_s \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ are important?

These modes are a unique source of information about flavor physics beyond the SM:

- theoretically very clean (virtually no long-distance contributions)
- particularly sensitive to FCNC scalar currents and FCNC Z-penguins

Leading SM diagrams

Why the decays $B_s \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ are important?

These modes are a unique source of information about flavor physics beyond the SM:

- theoretically very clean (virtually no long-distance contributions)
- particularly sensitive to FCNC scalar currents and FCNC Z-penguins

Leading SM diagrams

These decays are very rare:

Theorists have calculated that, in the Standard Model, the $B_s \rightarrow \mu\mu$ decay should occur about 3 times in every billion total decays of the B_s meson and the $B^0 \rightarrow \mu\mu$, about 1 time every 10 billions:

BR(B_s
$$\rightarrow \mu\mu$$
) (t=0) = (3.54±0.30) × 10⁻⁹
BR(B₀ $\rightarrow \mu\mu$) (t=0) = (1.07±0.10) × 10⁻¹⁰

Buras et al, arXiv:1208.0934

De Bruyn et al., PRL 109, 041801 (2012) uses LHCb-CONF-2012-002

Standard Model predictions (for experts)

Latest SM predictions:

BR(B_s
$$\rightarrow \mu\mu$$
) (t=0) = (3.23±0.27) × 10⁻⁹

BR(B_s
$$\rightarrow \mu\mu$$
) (t=0) = (3.23±0.27) × 10⁻⁹
BR(B₀ $\rightarrow \mu\mu$) (t=0) = (1.07±0.10) × 10⁻¹⁰

Buras et al, arXiv:1208.0934

where $f(Bs) = 227 \pm 8$ MeV has been used, averaging from recent lattice inputs:

> Mc Neile et al., PRD 85 (2012) 031503 Na et al., arXiv:1202.4919, Bazavov et al. arXiv 1112.3051

To compare with experiment we need a time integrated branching fraction, taking into account the finite width of the B_s system:

$$BR(B_s \to \mu^+ \mu^-)^{\langle t \rangle} = \frac{1}{1 - y_s} \cdot BR(B_s \to \mu^+ \mu^-)^{t=0} = (3.54 \pm 0.30) \cdot 10^{-9}$$

De Bruyn et al., PRL 109, 041801 (2012) uses LHCb-CONF-2012-002

Why the decays $B_s \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ are important?

These modes are a unique source of information about flavor physics beyond the SM:

- theoretically very clean (virtually no long-distance contributions)
- particularly sensitive to FCNC scalar currents and FCNC Z-penguins

Leading SM diagrams

Non-SM Higgs particles contribution

possible non SM contributions

Relevant for BR = O(SM)

Possible large enhancement (e.g. SUSY @ large tanβ)

.. But new virtual particles present in the loops could enhance (or suppress) these branching fractions with respect to the SM predictions

That is why the search for $B_s \rightarrow \mu\mu$ decay started more than 28 years ago....

VOLUME 53, NUMBER 14

PHYSICAL REVIEW LETTERS

1 OCTOBER 1984

Upper Limit on Flavor-Changing Neutral-Current Decays of the b Quark

P. Avery, C. Bebek, K. Berkelman, D. G. Cassel, J. W. DeWire, R. Ehrlich, T. Ferguson, R. Galik, M. G. D. Gilchriese, B. Gittelman, M. Halling, D. L. Hartill, S. Holzner, M. Ito, J. Kandaswamy, D. L. Kreinick, Y. Kubota, N. B. Mistry, F. Morrow, E. Nordberg, M. Ogg, A. Silverman, P. C. Stein, S. Stone, D. Weber, and R. Wilcke^(a)
Cornell University, Ithaca, New York 14853

Et al.. Cleo experiment, PRL, 1984

If there is a neutral Higgs (h^0) with mass less than twice that of the τ lepton, its dominant decay modes would be into $s\bar{s}$ and $\mu^+\mu^-$. Some electroweak models predict a sizable rate for the decay $B \to h^0 X$. We have used dimuon events to obtain an upper limit on $R_B(B \to h^0 X) \times R_B(h^0$ $\to \mu^+\mu^-)$. We find a 90%-confidence-level upper limit of 5×10^{-4} for $m_{h^0} > 3.2$ GeV. We can ex-

$B_s \rightarrow \mu\mu$: 1998-2010 – the Tevatron era

- ∘ CDF (~3.7 fb⁻¹) BR(B_s→ $\mu\mu$) < 36×10⁻⁹ (@90% CL) ~ 11 times SM
- ∘ D0 (~6.1 fb⁻¹) BR(B_s $\rightarrow \mu\mu$) < **42×10**⁻⁹ (@90% CL

winter conferences 2011: the new born LHCb enters in the game

- 2010: limits from Tevatron at 90% CL:
 - ∘ CDF (~3.7 fb⁻¹) BR(B_s→ $\mu\mu$) < 36×10⁻⁹ (@90% CL) ~ 11 times SM
 - ∘ D0 (~6.1 fb⁻¹) BR (B_s $\rightarrow \mu\mu$) < 42×10⁻⁹ (@90% CL)
 - \rightarrow LHCb (0.036 fb⁻¹) BR(B_s $\rightarrow \mu\mu$) < 40 x 10⁻⁹ @ 90%CL

winter conferences 2011: the new born LHCb enters in the game

$B_s \rightarrow \mu^+ \mu^-$: 2011- june 2012 experimental results from the LHC and Tevatron

Nice race all around the world to push down the limit:

LHCb and CMS very close to Have a sensitivity to observe $B_s \rightarrow \mu^+ \mu^-$ events with SM rates

No big enhancements were allowed any longer

LHCb-CONF-2012-017 CMS-PAS-BPH-12-009 ATLAS-CONF-2012-061

20 March 2012:

The $B_s \rightarrow \mu^+ \mu^-$ result with 1fb⁻¹ of 2011 data was just sent to PRL!

 $BR(B_s \to \mu^+ \mu^-) < 4.5 \text{ x} 10^{-9} \ \text{@} 95\% \text{ CL}$

Phys. Rev. Lett. 108, 231801 (2012)

LHCb detector

The data sample

LHCb Integrated Luminosity

 $1.0 \text{ fb}^{-1} \text{ at } 7 \text{ TeV} + 1.1 \text{ fb}^{-1} \text{ at } 8 \text{ TeV}$

(the results based on 2011 dataset already published have been re-evaluated and combined with those obtained with the 2012 dataset:

the result supersede the previous publication)

- 1) Constant luminosity: 4 x 10³² cm⁻² s⁻¹, 1262 colliding bunches,
- \rightarrow number of pp interactions per crossing (8 TeV) ~ 1.8

- 1) Constant luminosity: 4 x 10³² cm⁻² s⁻¹, 1262 colliding bunches,
- \rightarrow number of pp interactions per crossing (8 TeV) ~ 1.8
- 2) Huge cross section:

 $\sigma(pp \rightarrow bbX)$ @ 7 TeV ~ 300 μb

 \rightarrow at L = 4 x 10³² cm⁻² s⁻¹

120,000 bb produced every second!

- 1) Constant luminosity: 4 x 10³² cm⁻² s⁻¹, 1262 colliding bunches,
- \rightarrow number of pp interactions per crossing (8 TeV) ~ 1.8
- 2) Huge cross section:

 $\sigma(pp \rightarrow bbX)$ @ 7 TeV ~ 300 μb

 \rightarrow at L = 4 x 10³² cm⁻² s⁻¹

120,000 bb produced every second!

3) Large acceptance

(bb are produced forward/backward):

- → LHCb acceptance 1.9< η <4.9 and very low trigger thresholds:
- \rightarrow ϵ (acceptance x trigger) for $B_{sd} \rightarrow \mu \mu \sim 10\%$

- 1) Constant luminosity: 4 x 10³² cm⁻² s⁻¹, 1262 colliding bunches,
- \rightarrow number of pp interactions per crossing (8 TeV) ~ 1.8
- 2) Huge cross section:

 $\sigma(pp \rightarrow bbX)$ @ 7 TeV ~ 300 µb

 \rightarrow at L = 4 x 10³² cm⁻² s⁻¹

120,000 bb produced every second!

(bb are produced forward/backward):

→ LHCb acceptance 1.9< η <4.9 and very low trigger thresholds:

 \rightarrow ϵ (acceptance x trigger) for $B_{sd} \rightarrow \mu \mu \sim 10\%$

4) Large boost:

→ average flight distance of B mesons ~ 1 cm

.... But in a harsh environment!

- σ (pp, inelastic) (a) \sqrt{s} =7 TeV ~ 80 mb
 - -~100 tracks per event in LHCb pileup conditions
 - only 1/300 event contains a b quark, and we are looking for BR~3 10-9

selected in 1.1 (8 TeV) + 1.0 (7 TeV) fb⁻¹ if BR $\stackrel{\perp}{=}$ BR(SM):

→ Our problem is clearly the background....

$B_{s,d} \rightarrow \mu\mu$ @ LHCb: how to reduce the background

1) Highly selective trigger

2) Very good momentum resolution:

- →To have a narrow region where to look for the signal
- $\rightarrow \delta p/p \sim 0.4\%$ --0.6% for p = (5 -100) GeV/c

- → To reduce the amount of hadrons misidentified as muons
- $\rightarrow \text{ for this analysis: } \epsilon(\mu \rightarrow \mu) \sim 98\%, \ \epsilon\pi \rightarrow \mu \sim 0.6\%, \ \epsilon(K \rightarrow \mu) \sim 0.3\%, \ \epsilon(p \rightarrow \mu) \sim 0.3\%$

4) excellent vertex and IP resolution:

- → To separate a displaced secondary vertex from the track Proton-proton interaction vertex
- \rightarrow $\sigma(IP) \sim 25 \mu m @ p_T = 2 GeV/c$

LHCb trigger for $B_{s,d} \rightarrow \mu\mu$

~ 1 kHz to muon lines

10 millions of events/sec

Single- μ : $p_T > 1.76 \text{ GeV/c}$ $\mu\mu$: $sqrt(p_{T1} \times pT2) > 1.6 \text{ GeV/c}$

add impact parameter cuts

add invariant mass $M_{\mu\mu}$ cuts and/or displaced vertex

In 2012 (until mid of August) we collected about 2 billions of events

.. and we are looking for $\sim 14 \text{ B}_s \rightarrow \mu\mu \text{ events}$!

LHCb analysis strategy: selection

• Soft selection:

pairs of opposite charge muons making a vertex displaced with respect to the primary vertex & $M(\mu\mu)$ in the range [4900-6000] MeV/c2. The signal regions, defined by a window of \pm 60 MeV around the B_d and B_s mass peaks, have been blinded until the analysis was finalized

LHCb analysis strategy: BDT

- Discrimination between S and B via Multivariate Discriminant BDT (Boosted Decision Tree) with 9 input variables:
 - → B candidate: proper time, impact parameter, transverse momentum, B isolation
 - → muons: min pT, min IP significance, distance of closest approach, muon isolation, cosP

LHCb analysis strategy: BDT

• Discrimination between S and B via Multivariate Discriminant BDT (Boosted Decision Tree) with 9 input variables:

→ B candidate: proper time, impact parameter, transverse momentum, B isolation

→ muons: min pT, min IP significance, distance of closest approach, muon isolation, cosP

LHCb analysis strategy: BDT

- Discrimination between S and B via Multivariate Discriminant BDT (Boosted Decision Tree) with 9 input variables:
 - → B candidate: proper time, impact parameter, transverse momentum, B isolation
 - → muons: min pT, min IP significance, distance of closest approach, muon isolation, cosP

Dimuon mass versus BDT

The BDT is binned in 8 bins (for 2011 data) and 7 bins (for the 2012 data)

Dimuon invariant mass distributions in BDT bins

• Dimuon invariant mass distributions in BDT bins for the data sample collected at 7 TeV:

The combinatorial background in the signal regions is interpolated from mass sidebands assuming an exponential shape

22

LHCb analysis strategy: exclusive background

Several exclusive backgrounds pollute the low mass sidebands and have to be taken into account in order to not bias the evaluation of the combinatorial background in the signal regions. The $B \rightarrow hh'$ (h= π ,K misidentified as μ) is the only background that pollutes the signal regions, namely the B^0 one.

Yields for $M_{\mu\mu}$ =[4900,6000] MeV/c² and BDT>0.8:

$$\begin{array}{lll} B^0 \to \pi^- \mu^+ \nu_\mu & 4.04 \pm 0.28 \\ B^{+(0)} \to \pi^{+(0)} \mu^+ \mu^- & 1.32 \pm 0.39 \\ B^0_{(s)} \to h^+ h^{\prime-} & 1.37 \pm 0.11 \end{array}$$

Evaluated with high stat MC samples weighted by misID probability measured in data and normalized with $B+\rightarrow J/\psi K+$

exclusive background: B—hh' with double misID

The B \rightarrow hh' (h= π ,K misidentified as muons) is the only background that pollutes the signal regions, mostly the B⁰ one.

B \rightarrow hh $\rightarrow \mu\mu$: 0.94 x 10⁻⁴ after muon chamber matching

exclusive background: B—hh' with double misID

The B \rightarrow hh' (h= π ,K misidentified as muons) is the only background that pollutes the signal regions, mostly the B⁰ one.

 $B \rightarrow hh \rightarrow μμ : 0.94 \times 10^{-4}$ after muon chamber matching 0.18×10^{-4} after global likelihood cut

exclusive background: B—hh' with double misID

The B \rightarrow hh' (h= π ,K misidentified as muons) is the only background that pollutes the signal regions, mostly the B⁰ one.

B \rightarrow hh \rightarrow μμ : **0.94 x 10**⁻⁴ after muon chamber matching **0.18x10**⁻⁴ after global likelihood cut

8 TeV \rightarrow 0.76^{+0.26}_{-0.18} in B_s and 4.1 ^{1.7}_{-0.8} in the B⁰ mass regions

B—hh' as calibration channel: mass peaks

We use $B \rightarrow \pi\pi$, $B \rightarrow K \pi$ and $B_s \rightarrow KK$ decays to determine the position of the mass peaks and the mass resolution

8 TeV data

m_{B^0}	$(5284.36 \pm 0.26_{\rm stat} \pm 0.13_{\rm syst}) \text{ MeV}/c^2$
$m_{B_s^0}$	$(5371.55 \pm 0.41_{\rm stat} \pm 0.16_{\rm syst}) \text{ MeV}/c^2$

Peak positions at 7 TeV and 8 TeV agree better than 5x10⁻⁴

J/ψ , $\psi(2S)$, $\Upsilon(1S,2S,3S)$ calibration channels: mass resolution

 $m(\mu\mu) [MeV/c^2]$

J/ψ , $\psi(2S)$, $\Upsilon(1S,2S,3S)$ calibration channels: mass resolution

The results of the two methods are in agreement:

$$\sigma_{B^0} = (24.82 \pm 0.20_{\rm stat} \pm 0.41_{\rm syst}) \text{ MeV}/c^2$$

 $\sigma_{B^0_s} = (25.22 \pm 0.21_{\rm stat} \pm 0.41_{\rm syst}) \text{ MeV}/c^2$

1% difference observed between 7 TeV and 8 TeV data

The B(s) $\rightarrow \mu\mu$ mass lineshape is parametrized as a Crystal Ball function with a transition point of the radiative tail determined from simulated events smeared to reproduce the measured resolution

$$N(B_{s,d} \to \mu^+ \mu^-) = L \times \sigma(pp \to b\overline{b}) \times f_{s,d} \times BR(B_{s,d} \to \mu^+ \mu^-) \times \epsilon_{\text{sig}}^{\text{trg}} \epsilon_{\text{sig}}^{\text{rec}} \epsilon_{\text{sig}}^{\text{sel}}$$

$$N(B_{s,d} \to \mu^{+}\mu^{-}) = L \times \sigma(pp \to b\bar{b}) \times f_{s,d} \times BR(B_{s,d} \to \mu^{+}\mu^{-}) \times \epsilon_{\text{sig}}^{\text{trg}} \epsilon_{\text{sig}}^{\text{rec}} \epsilon_{\text{sig}}^{\text{sel}}$$

$$L \times \sigma(pp \to b\bar{b}) = \frac{N(\text{cal})}{f_{cal} \times BR(\text{cal}) \times \epsilon_{\text{cal}}^{\text{trg}} \epsilon_{\text{cal}}^{\text{rec}} \epsilon_{\text{cal}}^{\text{sel}}}$$

$$N(B_{s,d} \to \mu^+ \mu^-) = L \times \sigma(pp \to b\overline{b}) \times f_{s,d} \times BR(B_{s,d} \to \mu^+ \mu^-) \times \epsilon_{\mathrm{sig}}^{\mathrm{trg}} \epsilon_{\mathrm{sig}}^{\mathrm{rec}} \epsilon_{\mathrm{sig}}^{\mathrm{sel}}$$

$$L \times \sigma(pp \to b\overline{b}) = \frac{N(\mathrm{cal})}{f_{cal} \times BR(\mathrm{cal}) \times \epsilon_{\mathrm{cal}}^{\mathrm{trg}} \epsilon_{\mathrm{cal}}^{\mathrm{rec}} \epsilon_{\mathrm{cal}}^{\mathrm{sel}}}$$

$$B^+ \to J/\psi K^+$$

$$A_{000}$$

We use two normalization channels: $\mathrm{B}^+{\to}\mathrm{J/\psi}~\mathrm{K}^+$ and $\mathrm{B}_\mathrm{d}{\to}~\mathrm{K}~\pi^{28}$

We use two normalization channels: $B^+ \rightarrow J/\psi K^+$ and $B_d \rightarrow K \pi^{29}$

$$BR(B_{s,d} \to \mu^+ \mu^-) = \alpha_{B_{s,d} \to \mu^+ \mu^-} \times N(B_{s,d} \to \mu^+ \mu^-)$$

Results for 8 TeV data (equivalent table for 7 TeV data)

	В	$\frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL} \mathrm{REC}}}{\epsilon_{\mathrm{sig}}^{\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL} \mathrm{REC}}}$	$\frac{\epsilon_{\text{cal}}^{\text{TRIG SEL}}}{\epsilon_{\text{sig}}^{\text{TRIG SEL}}}$	N_{cal}	$\alpha^{cal}_{B_d\to\mu^+\mu^-}$	$lpha^{cal}_{B_s o \mu^+ \mu^-}$
	$(\times 10^{-5})$				$(\times 10^{-11})$	$(\times 10^{-10})$
$B^+ o J/\psi K^+$	6.01 ± 0.21	0.494 ± 0.016	0.932 ± 0.012	424222 ± 1452	7.24 ± 0.39	2.83 ± 0.27
$B^0 \to K^+\pi^-$	1.94 ± 0.06	0.817 ± 0.028	0.057 ± 0.002	14579 ± 1110	6.93 ± 0.67	2.71 ± 0.34

The two channels give consistent results hence we take the average (8 TeV data)

$$\alpha_{B^0 \to \mu^+ \mu^-} = (2.80 \pm 0.25) \times 10^{-10}$$
 $\alpha_{B^0 \to \mu^+ \mu^-} = (7.16 \pm 0.34) \times 10^{-11}$ In ±60 MeV

$$BR(B_{s,d} \to \mu^+ \mu^-) = \alpha_{B_{s,d} \to \mu^+ \mu^-} \times N(B_{s,d} \to \mu^+ \mu^-)$$

Results for 8 TeV data (equivalent table for 7 TeV data)

In practice, if you divide the BR by alpha you will get the number of events we expect in the dataset at 8 TeV. If $BR(SM) = 3.5 \times 10^{-10}$, which is the number?

$$\alpha_{B_s^0 \to \mu^+ \mu^-} = (2.80 \pm 0.25) \times 10^{-10}$$

 $\alpha_{B^0 \to \mu^+ \mu^-} = (7.16 \pm 0.34) \times 10^{-11}$

In ±60 MeV

Results

mass versus BDT 2012 blinded data

mass versus BDT 2012 unblinded data

mass versus BDT 2012 unblinded data

Combined dataset: BDT>0.5

Combined dataset: BDT>0.7

Combined dataset: BDT>0.8

Observed and expected events

Mode	BDT bin	0.0 - 0.25	0.25 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 - 0.9	0.9 - 1.0
$B_s^0 o \mu^+\mu^-$	Exp. comb. bkg	1880^{+33}_{-33}	$55.5^{+3.0}_{-2.9}$	$12.1^{+1.4}_{-1.3}$	$4.16^{+0.88}_{-0.79}$	$1.81^{+0.62}_{-0.51}$	$0.77^{+0.52}_{-0.38}$	$0.47^{+0.48}_{-0.36}$	$0.24^{+0.44}_{-0.20}$
(2011)	Exp. peak. bkg	$0.13^{+0.07}_{-0.05}$	$0.07^{+0.02}_{-0.02}$	$0.05^{+0.02}_{-0.02}$	$0.05^{+0.02}_{-0.01}$	$0.05^{+0.02}_{-0.01}$	$0.05^{+0.02}_{-0.01}$	$0.05^{+0.02}_{-0.01}$	$0.05^{+0.02}_{-0.01}$
	Exp. signal	$2.70^{+0.81}_{-0.80}$	$1.30^{+0.27}_{-0.23}$	$1.03^{+0.20}_{-0.17}$	$0.92^{+0.15}_{-0.13}$	$1.06\substack{+0.17 \\ -0.15}$	$1.10^{+0.17}_{-0.15}$	$1.26^{+0.20}_{-0.17}$	$1.31^{+0.28}_{-0.25}$
	Observed	1818	39	12	6	1	2	1	1
$B^0 \to \mu^+ \mu^-$	Exp. comb. bkg	1995^{+34}_{-34}	$59.2^{+3.3}_{-3.2}$	$12.6^{+1.6}_{-1.5}$	$4.44^{+0.99}_{-0.86}$	$1.67^{+0.66}_{-0.54}$	$0.75^{+0.58}_{-0.40}$	$0.44^{+0.57}_{-0.38}$	$0.22^{+0.48}_{-0.20}$
(2011)	Exp. peak. bkg	$0.78^{+0.38}_{-0.29}$	$0.40^{+0.14}_{-0.10}$	$0.31^{+0.11}_{-0.08}$	$0.28^{+0.09}_{-0.07}$	$0.31\substack{+0.10 \\ -0.08}$	$0.30\substack{+0.10 \\ -0.07}$	$0.31\substack{+0.10 \\ -0.08}$	$0.30^{+0.11}_{-0.08}$
	Exp. cross-feed	$0.43^{+0.13}_{-0.13}$	$0.21^{+0.04}_{-0.04}$	$0.16^{+0.03}_{-0.03}$	$0.15^{+0.03}_{-0.02}$	$0.17^{+0.03}_{-0.03}$	$0.17^{+0.03}_{-0.02}$	$0.20^{+0.03}_{-0.03}$	$0.21^{+0.05}_{-0.04}$
	Exp. signal	$0.33^{+0.10}_{-0.10}$	$0.16^{+0.03}_{-0.03}$	$0.13^{+0.02}_{-0.02}$	$0.11\substack{+0.02 \\ -0.02}$	$0.13^{+0.02}_{-0.02}$	$0.13^{+0.02}_{-0.02}$	$0.15\substack{+0.02 \\ -0.02}$	$0.16^{+0.03}_{-0.03}$
	Observed	1904	50	20	5	2	1	4	1
Mode	BDT bin	0.0 - 0.25	0.25 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8-1.0	
$B_s^0 \to \mu^+ \mu^-$	Exp. comb. bkg	2345_{-40}^{+40}	$56.7^{+3.0}_{-2.9}$	$13.1^{+1.5}_{-1.4}$	$4.42^{+0.91}_{-0.81}$	$2.10^{+0.67}_{-0.56}$	$0.35^{+0.42}_{-0.22}$	$0.39^{+0.33}_{-0.21}$	
(2012)	Exp. peak. bkg	$0.250\substack{+0.08 \\ -0.07}$	$0.15^{+0.05}_{-0.04}$	$0.08^{+0.03}_{-0.02}$	$0.08\substack{+0.02 \\ -0.02}$	$0.07\substack{+0.02 \\ -0.02}$	$0.06\substack{+0.02 \\ -0.02}$	$0.10^{+0.03}_{-0.03}$	
	Exp. signal	$3.69^{+0.59}_{-0.52}$	$2.14^{+0.37}_{-0.33}$	$1.20^{+0.21}_{-0.18}$	$1.16^{+0.18}_{-0.16}$	$1.17^{+0.18}_{-0.16}$	$1.15^{+0.19}_{-0.17}$	$2.13^{+0.33}_{-0.29}$	
	Observed	2274	65	19	5	3	1	3	
$B^0 \to \mu^+ \mu^-$	Exp. comb. bkg	2491^{+42}_{-42}	$59.5^{+3.3}_{-3.2}$	$13.9^{+1.6}_{-1.5}$	$4.74_{-0.89}^{+1.00}$	$2.10^{+0.74}_{-0.61}$	$0.55^{+0.50}_{-0.31}$	$0.29^{+0.34}_{-0.19}$	
(2012)	Exp. peak. bkg	$1.49^{+0.50}_{-0.36}$	$0.86^{+0.29}_{-0.22}$	$0.48^{+0.16}_{-0.12}$	$0.44^{+0.15}_{-0.11}$	$0.42^{+0.14}_{-0.10}$	$0.37^{+0.13}_{-0.09}$	$0.62^{+0.21}_{-0.15}$	
	Exp. cross-feed	$0.63^{+0.10}_{-0.09}$	$0.36\substack{+0.07 \\ -0.06}$	$0.20\substack{+0.04 \\ -0.03}$	$0.20^{+0.03}_{-0.03}$	$0.20^{+0.03}_{-0.03}$	$0.20\substack{+0.03 \\ -0.03}$	$0.36^{+0.06}_{-0.05}$	
	Exp. signal	$0.44^{+0.06}_{-0.06}$	$0.26^{+0.04}_{-0.04}$	$0.14^{+0.02}_{-0.02}$	$0.14^{+0.02}_{-0.02}$	$0.14^{+0.02}_{-0.02}$	$0.14^{+0.02}_{-0.02}$	$0.26^{+0.04}_{-0.03}$	
	Observed	2433	59	19	3	2	2	2	

7 TeV data

8 TeV data

 $M(\mu\mu) = 5353.4 \text{ MeV/c}^2$, BDT = 0.826, τ =2.84 ps

$B_{s,d} \rightarrow \mu\mu$ candidate: zoom

0.2 mm

2 mm

$B_s \rightarrow \mu\mu$: sensitivity

 $7 \text{ TeV } (1 \text{ fb}^{-1}) + 8 \text{ TeV } (1.1 \text{ fb}^{-1})$:

Where the lower and upper limits are evaluated at CLs+b=0.975 and CLs+b=0.025, respectively

$B_s \rightarrow \mu\mu$ branching fraction

- Unbinned maximum likelihood fit to the mass spectra:
 - 8 BDT bins of 7 TeV and 7 BDT bins at 8 TeV are treated simultaneously
 - fit mass range [4900-6000] MeV/c
- Free parameters: $BR(B_s \rightarrow \mu\mu)$, $BR(B_s \rightarrow \mu\mu)$ and combinatorial background
- The signal yield in each BDT bin is constrained to the expectation from B→ hh' calibration
- The yields and BDT and mass shapes for all the relevant exclusive background are constrained to their expectations obtained with simulated events reweighted for the misidentification probability obtained with data
- Additional systematic studies on background composition/ parameterization:
- Add the Bs \rightarrow K $\mu \nu$ component to the exclusive background
- Change the combinatorial pdf from single to double exponential, to account for
- Possible residual contributions from Λb and Bc decays

Fit slices: 8 BDT bins for 2012 and 7 BDT bins for 2011

Combined dataset: $BR(B_s \rightarrow \mu\mu)$

 $7 \text{ TeV } (1 \text{ fb}^{-1}) + 8 \text{ TeV } (1.1 \text{ fb}^{-1})$:

BR(B_s
$$\rightarrow \mu\mu$$
) = (3.2 ^{+1.5}_{-1.2}) × 10⁻⁹

SM expectation: $(3.54\pm0.30) \times 10^{-9}$

Profile likelihood with nuisance _____ parameters floated within their errors

Systematics from nuisance parameters and background modes:

BR(B_s
$$\rightarrow \mu\mu$$
) = 3.2 ^{+1.4}_{-1.2} (stat) ^{+0.5}_{-0.2} (syst) × 10⁻⁹

Fully dominated by statistical error

$BR(B_s \rightarrow \mu\mu)$: 7 TeV vs 8 TeV results

• 7 TeV (1.0 fb⁻¹):

BR(B_s
$$\rightarrow \mu\mu$$
) = (1.4 ^{+1.7}_{-1.3}) x 10⁻⁹ p-value: 0.11

- 8 TeV (1.1 fb⁻¹): BR(B_s $\rightarrow \mu\mu$) = (5.1^{+2.4}_{-1.9}) x 10⁻⁹
- Results from 7 TeV and 8 TeV are compatible within 1.5 σ

$B^0 \rightarrow \mu\mu$: upper limit

Use CLs method to evaluate the compatibility with background-only (CL_b) and Signal+background hypothesis (CLs+b): the 95% CL upper limit is defined at $CLs = CL_{s+b}/CL_b = 0.05$

$$7 \text{ TeV } (1 \text{ fb}^{-1}) + 8 \text{ TeV } (1.1 \text{ fb}^{-1})$$

observed upper limit:

BR(B_d
$$\rightarrow \mu\mu$$
)< 9.4 x 10⁻¹⁰ at 95%CL

Expected limit:

BR(B_d
$$\rightarrow \mu\mu$$
) < 7.1x10⁻¹⁰ at 95% CL

Compatibility with the background hypothesis: p-value = 1- CL_b = 11%

$BR(B_s \rightarrow \mu\mu)$ and Global Fits

An example: MasterCode (J. Ellis et al.) (http://www.cern.ch//mastercode)

Goal: perform global fits to measured quantities (including direct searches) and build a χ^2 . compare with prediction from a given model (CMSSM, NUMH1, mSugra, etc.)

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{\left(f_{\mathrm{SM}_{i}}^{\mathrm{obs}} - f_{\mathrm{SM}_{i}}^{\mathrm{fit}}\right)^{2}}{\sigma(f_{\mathrm{SM}_{i}})^{2}} + \chi^{2}(b \rightarrow s\gamma) + \chi^{2}(g_{\mu} - 2) + \chi^{2}(\Omega h^{2}) + \chi^{2}(m_{h}) + \chi^{2}(\mathrm{BR}(B_{s} \rightarrow \mu\mu)) + \chi^{2}(\mathrm{LHC}) + \chi^{2}(\mathrm{XENON100})$$

Recent Experimental Data!

N: number of observables studied

M: SM parameters: $\Delta \alpha_{\mathsf{had}}, m_t, M_Z$

 C_i : experimentally measured value (constraint)

 P_i : MSSM parameter-dependent prediction for the corresponding constraint 44

Impact of $B_s \to \mu^+\mu^-$ on global SUSY fits

- Global fit include many results:
 - Higgs and SUSY searches at LHC, dark matter searches at XENON100, EW and B physics measurements (such as b \rightarrow s γ , B⁺ \rightarrow $\tau\nu$, B_s \rightarrow $\mu\mu$), g–2
- Two variants of the MSSM:
 - $\Delta \chi^2$ profiles for B_s $\rightarrow \mu\mu$ (state as of December 2011)

O. Buchmueller et al. arXiv:1112.3564

Impact of $B_s \to \mu^+\mu^-$ on global SUSY fits

- Global fit include many results:
 - Higgs and SUSY searches at LHC, dark matter searches at XENON100, EW and B physics measurements (such as b \rightarrow s γ , B⁺ \rightarrow $\tau\nu$, B_s \rightarrow $\mu\mu$), g–2
- Two variants of the MSSM:
 - − $\Delta \chi^2$ profiles for B_s → μμ (state as of December 2011)

O. Buchmueller et al. arXiv:1112.3564

NP in $B_s \to \mu^+ \mu^-$: model dependent view

Correlation between BR($B_s \rightarrow \mu\mu$) and BR($B_d \rightarrow \mu\mu$) in MFV, SM4 and 4 SUSY models gray area + red area is ruled out experimentally at 95% CL, blue area at 90%

Rare Particle Find May Cast Doubt on Popular Physics Theory

Collider at

LHCb presents evidence of rare B decay

beyond in

Conclusions -1/2

- LHCb has presented an updated search for $B_s \rightarrow \mu\mu$ combining 7 TeV (1.0 fb⁻¹) and 8 TeV (1.1 fb⁻¹) data
- The data in the B^0 signal region are consistent with background expectation and we put the world's best upper limit: $BR(B^0 \rightarrow \mu\mu) < 9.4 \times 10^{-10}$ @ 95% CL.
- We see an excess of $B_s \rightarrow \mu\mu$ signal above background expectation with p-value of 5.3×10^{-4} corresponding to 3.5σ signal significance and a branching fraction:

BR(B_s
$$\rightarrow \mu\mu$$
) = 3.2 ^{+1.5}_{-1.2} × 10⁻⁹

• This is the first evidence for the decay $B_s \rightarrow \mu\mu$

Conclusions -2/2

• But this is not the end!

- CMS is expected to present a new (and very competitive!) result very soon
- ATLAS will follow
- LHCb, CMS and ATLAS will combine the results and possibly reach a 5 σ observation in a few months..

... and then we continue with the $B^0 \rightarrow \mu\mu!$

... to be continued.....

Spares

LHCb projection from 2011 data

30% probability to have a 3 sigma signal significance with 1 fb-1 (2011) + 1 fb-1 (2012)

The models: 1.) CMSSM (or mSUGRA):

```
\Rightarrow Scenario characterized by m_0, \ m_{1/2}, \ A_0, \ 	aneta, \ {
m sign}\, \mu
```

 m_0 : universal scalar mass parameter $m_{1/2}$: universal gaugino mass parameter M_0 : universal trilinear coupling M_0 : universal trilinear coupling M_0 : ratio of Higgs vacuum expectation values M_0 : sign of supersymmetric Higgs parameter

⇒ particle spectra from renormalization group running to weak scale

The models: 2.) NUHM1: (Non-universal Higgs mass model)

Assumption: no unification of scalar fermion and scalar Higgs parameter at the GUT scale

 \Rightarrow effectively M_A or μ as free parameters at the EW scale

⇒ besides the CMSSM parameters

 M_A or μ

Further extension: NUHM2:

Assumption: no unification of the Higgs parameters at the GUT scale

 \Rightarrow effectively M_A and μ as free parameters at the EW scale

⇒ besides the CMSSM parameters

 M_A and μ

Global fits: input data

EW observables (largest inpact M_W , A^e_{LR} , A^b_{FB})

Flavour physics observables (largest inpact $b \rightarrow s \gamma$, $Bs \rightarrow \mu\mu$)

 $(g-2)_{\mu}$ Higgs Mass

Cold Dark matter density

LHC direct searches

$M_h \ [\text{GeV}] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Observable	Source	Constraint
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Th./Ex.	
$\begin{array}{ c c c c c } \hline M_Z \ [\text{GeV}] & [40] & 91.1875 \pm 0.0021 \\ \hline \hline $\Gamma_Z \ [\text{GeV}]$ & [24] / [40] & 2.4952 \pm 0.0023 \pm 0.001_{\text{SUSY}} \\ \hline $\sigma_{\text{had}}^{\text{lad}} \ [\text{hb}]$ & [24] / [40] & 41.540 \pm 0.037 \\ \hline R_l & [24] / [40] & 0.01714 \pm 0.00095 \\ \hline $A_{\text{fb}}(\ell)$ & [24] / [40] & 0.1465 \pm 0.0032 \\ \hline $A_{\ell}(P_{\tau})$ & [24] / [40] & 0.21629 \pm 0.00066 \\ \hline R_c & [24] / [40] & 0.1721 \pm 0.0030 \\ \hline $A_{\text{fb}}(b)$ & [24] / [40] & 0.0992 \pm 0.0016 \\ \hline $A_{\text{fb}}(c)$ & [24] / [40] & 0.0992 \pm 0.0016 \\ \hline $A_{\text{fb}}(c)$ & [24] / [40] & 0.0707 \pm 0.0035 \\ \hline A_b & [24] / [40] & 0.0707 \pm 0.0035 \\ \hline A_b & [24] / [40] & 0.670 \pm 0.027 \\ \hline $A_{\ell}(\text{SLD})$ & [24] / [40] & 0.670 \pm 0.027 \\ \hline $A_{\ell}(\text{SLD})$ & [24] / [40] & 0.1513 \pm 0.0021 \\ \hline $\sin^2 \theta_w^{\ell}(Q_{\text{fb}})$ & [24] / [40] & 0.2324 \pm 0.0012 \\ \hline M_W [\text{GeV}]$ & [24] / [40] & 80.399 \pm 0.023 \pm 0.010_{\text{SUSY}} \\ \hline $\text{BR}_{b \to s\gamma}^{\text{EXP}}/\text{BR}_{b \to s\gamma}^{\text{SM}}$ & [41] / [42] & 1.117 \pm 0.076_{\text{EXP}} \\ \hline $\pm 0.082_{\text{SM}} \pm 0.050_{\text{SUSY}}$ \\ \hline $\text{BR}(B_s \to \mu^+\mu^-)$ & [27] / [37] & (<1.08 \pm 0.02_{\text{SUSY}}) \times 10^{-8} \\ \hline $\text{BR}_{b \to \chi}^{\text{EXP}}/\text{BR}_{b \to \chi}^{\text{EM}}/\text{BM}}$ & [27] / [42] & 1.43 \pm 0.43_{\text{EXP}} + \text{TH} \\ \hline $\text{BR}_{b \to \chi}^{\text{EXP}}/\text{BR}_{b \to \chi}^{\text{EM}}/\text{BM}}$ & [27] / [42] & 1.008 \pm 0.014_{\text{EXP}} + \text{TH} \\ \hline $\text{BR}_{b \to \chi}^{\text{EXP}}/\text{BR}_{b \to \chi}^{\text{EM}}/\text{BM}}$ & [27] / [44] & 1.008 \pm 0.014_{\text{EXP}} + \text{TH} \\ \hline $\text{BR}_{b \to \chi}^{\text{EXP}}/\text{BR}_{b \to \chi}^{\text{EM}}/\text{BM}}$ & [27] / [44] & 1.008 \pm 0.01_{\text{EXP}} \pm 0.27_{\text{SM}} \\ \hline $(\Delta M_{B \to \chi}^{\text{EN}}/\text{AM}_{B \to \chi}^{\text{EM}}/\text{BM}}$ & [45] / [47,48] & 1.00 \pm 0.01_{\text{EXP}} \pm 0.13_{\text{SM}} \\ \hline $\Delta_{e}_{K}^{\text{EXP}}/\text{AM}_{B \to \chi}^{\text{EM}}$ & [45] / [47,48] & 1.08 \pm 0.14_{\text{EXP}} + \text{TH} \\ \hline $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$ & [45] / [47,48] & 1.08 \pm 0.14_{\text{EXP}} + \text{TH} \\ \hline $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$ & [45] / [47,48] & 1.08 \pm 0.14_{\text{EXP}} + \text{TH} \\ \hline $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$ & [45] / [47,48] & 1.08 \pm 0.14_{\text{EXP}} + \text{TH} \\ \hline $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$ & [49] / [38,50] & (30.2 \pm 8.8 \pm 2.0_{\text{SUSY}}) \times 10^{-10}$	$m_t \; [{ m GeV}]$	[39]	173.2 ± 0.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta lpha_{ m had}^{(5)}(m_{ m Z})$	[38]	0.02749 ± 0.00010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M_Z [GeV]	[40]	91.1875 ± 0.0021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ_Z [GeV]	[24] / [40]	$2.4952 \pm 0.0023 \pm 0.001_{\mathrm{SUSY}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sigma_{ m had}^0 \; [m nb]$	[24] / [40]	41.540 ± 0.037
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_l	[24] / [40]	20.767 ± 0.025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\mathrm{fb}}(\ell)$	[24] / [40]	0.01714 ± 0.00095
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\ell}(P_{ au})$	[24] / [40]	0.1465 ± 0.0032
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_{b}	[24] / [40]	0.21629 ± 0.00066
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{ m c}$	[24] / [40]	0.1721 ± 0.0030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\mathrm{fb}}(b)$	[24] / [40]	0.0992 ± 0.0016
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\mathrm{fb}}(c)$	[24] / [40]	0.0707 ± 0.0035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_b	[24] / [40]	0.923 ± 0.020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_c	[24] / [40]	0.670 ± 0.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[24] / [40]	0.1513 ± 0.0021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sin^2 \theta_{ m w}^\ell(Q_{ m fb})$	[24] / [40]	0.2324 ± 0.0012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M_W [GeV]	[24] / [40]	$80.399 \pm 0.023 \pm 0.010_{\mathrm{SUSY}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$BR_{b\rightarrow s\gamma}^{EXP}/BR_{b\rightarrow s\gamma}^{SM}$	[41] / [42]	$1.117 \pm 0.076_{\rm EXP}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\pm 0.082_{\rm SM} \pm 0.050_{\rm SUSY}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$BR(B_s \to \mu^+ \mu^-)$	[27] / [37]	$(< 1.08 \pm 0.02_{SUSY}) \times 10^{-8}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$BR_{B\to\tau\nu}^{EXP}/BR_{B\to\tau\nu}^{SM}$	[27] / [42]	$1.43 \pm 0.43_{\rm EXP+TH}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[27] / [42]	$< (4.6 \pm 0.01_{SUSY}) \times 10^{-9}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{BR}^{\mathrm{EXP}}_{B \to X_s \ell \ell} / \mathrm{BR}^{\mathrm{SM}}_{B \to X_s \ell \ell}$	[43]/ [42]	0.99 ± 0.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$BR_{K\to\mu\nu}^{EXP}/BR_{K\to\mu\nu}^{SM}$	[27] / [44]	$1.008 \pm 0.014_{\rm EXP+TH}$
$ \begin{array}{c ccccc} \frac{(\Delta M_{B_A}^{\rm EXP}/\Delta M_{B_S}^{\rm SM})}{(\Delta M_{B_d}^{\rm EXP}/\Delta M_{B_d}^{\rm SM})} & [27] \ / \ [42,47,48] & 1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM} \\ \hline \Delta \epsilon_K^{\rm EXP}/\Delta \epsilon_K^{\rm SM} & [45] \ / \ [47,48] & 1.08 \pm 0.14_{\rm EXP+TH} \\ \hline a_\mu^{\rm EXP} - a_\mu^{\rm SM} & [49] \ / \ [38,50] & (30.2 \pm 8.8 \pm 2.0_{\rm SUSY}) \times 10^{-10} \\ \hline M_h \ [{\rm GeV}] & [26] \ / \ [51,52] & > 114.4 \pm 1.5_{\rm SUSY} \\ \hline \Omega_{\rm CDM} h^2 & [29] \ / \ [53] & 0.1109 \pm 0.0056 \pm 0.012_{\rm SUSY} \\ \hline \sigma_p^{\rm SI} & [23] & (m_{\tilde{\chi}_1^0}^0, \sigma_p^{\rm SI}) \ plane \\ \hline \end{array} $		[45]/ [46]	< 4.5
$ \begin{array}{ c c c c c c }\hline (\Delta M_{B_d}^{\rm EXP}/\Delta M_{B_d}^{\rm SM}) & [2I] / [42,4I,48] & 1.00 \pm 0.01 {\rm EXP} \pm 0.13 {\rm SM} \\ \hline \Delta \epsilon_K^{\rm EXP}/\Delta \epsilon_K^{\rm SM} & [45] / [47,48] & 1.08 \pm 0.14 {\rm EXP} + {\rm TH} \\ \hline a_\mu^{\rm EXP} - a_\mu^{\rm SM} & [49] / [38,50] & (30.2 \pm 8.8 \pm 2.0 {\rm SUSY}) \times 10^{-10} \\ \hline M_h [{\rm GeV}] & [26] / [51,52] & > 114.4 \pm 1.5 {\rm SUSY} \\ \hline \Omega_{\rm CDM} h^2 & [29] / [53] & 0.1109 \pm 0.0056 \pm 0.012 {\rm SUSY} \\ \hline \sigma_p^{\rm SI} & [23] & (m_{\tilde{\chi}_1^0}^0, \sigma_p^{\rm SI}) \ {\rm plane} \\ \hline \end{array} $	$\Delta M_{B_s}^{ m EXP}/\Delta M_{B_s}^{ m SM}$	[45] / [47,48]	$0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\Delta M_{B_d}^{\text{EXP}}/\Delta M_{B_d}^{\text{SM}})$	[27] / [42, 47, 48]	$1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$
$M_h \ [\text{GeV}] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\Delta \epsilon_K^{ m EXP}/\Delta \epsilon_K^{ m SM}$	[45] / [47,48]	$1.08 \pm 0.14_{\rm EXP+TH}$
$M_h \ [\text{GeV}] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$a_{\mu}^{ m EXP} - a_{\mu}^{ m SM}$	[49] / [38,50]	$(30.2 \pm 8.8 \pm 2.0_{SUSY}) \times 10^{-10}$
$\sigma_p^{\rm SI}$ [23] $(m_{\tilde{\chi}_1^0}, \sigma_p^{\rm SI})$ plane	M_h [GeV]	[26] / [51,52]	
$\sigma_p^{\rm SI}$ [23] $(m_{\tilde{\chi}_1^0}, \sigma_p^{\rm SI})$ plane	$\Omega_{\mathrm{CDM}} h^2$	[29] / [53]	$0.1109 \pm 0.0056 \pm 0.012_{\mathrm{SUSY}}$
		[23]	$(m_{ ilde{\chi}_1^0}, \sigma_p^{ m SI})$ plane
jets + E_T [16, 18] $(m_0, m_{1/2})$ plane	$jets + E_T$	[16, 18]	$(m_0, m_{1/2})$ plane
$H/A, H^{\pm}$ [19] $(M_A, \tan \beta)$ plane			

Exclusive backgrounds

Measurements:

$${\cal B}(B^+ o\pi^+\mu^+\mu^-) = (2.3\pm0.6 {
m (stat.)} \pm 0.1 {
m (syst.)})\cdot 10^{-8}$$
 ,

LHCb collab., arXiv:1210.2645

$$f_c \cdot \mathcal{B}(B_c^+ \to J/\psi l^+ \nu X) = 5.2^{+2.4}_{-2.1} \cdot 10^{-5}$$

CDF collab., PRL 81 (1998) 2432

$$B^0 \rightarrow \pi \mu \nu_{\mu}$$
 and $B^0(s) \rightarrow h^+h^{'-}$

Particle Data Group

Theoretical estimates:

$$\frac{\mathcal{B}(B^0 \to \pi^0 \mu^+ \mu^-)}{\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)} = 0.47^{+0.22}_{-0.18}$$

W.-F. Wang and Z.-J. Xiao,, arXiv:1207.0265

$$\mathcal{B}(B^0_s \rightarrow K^- \mu^+ \nu_\mu) = (1.27 \pm 0.49) \times 10^{-4}$$

W.-F. Wang and Z.-J. Xiao,, arXiv:1207.0265

$$\mathcal{B}(\Lambda_b^0 \to p\mu^-\nu) = (1.59 \pm 0.84) \cdot 10^{-4}$$

A. Datta, arXiv:hep-ph/9504429

I. Bigi et al., [HEP 1109 (2011) 012

Limits and sensitivity

$$B^0 \rightarrow \mu^+ \mu^-$$

UL are quoted at 95%CL

	Expected UL (bkg)	Expected UL (SM+bkg)	Observed UL	Observed I-CLb
7 TeV	9.4 x 10 ⁻¹⁰ *	10.5 x 10 ⁻¹⁰	13.0 x 10 ⁻¹⁰ *	0,19 *
8 TeV	9.6 x 10 ⁻¹⁰	10.5 x 10 ⁻¹⁰	12.5 x 10 ⁻¹⁰	0,16
7TeV + 8TeV	6.0 x 10 ⁻¹⁰	7.1 x 10 ⁻¹⁰	9.4 x 10 ⁻¹⁰	0,11

*published results: $UL = 10.3 \times 10^{-10}$

I-CLb = 0.60

$$B^0_s \rightarrow \mu^+ \mu^ I\text{-}CLb = 0.11$$
 $UL = 5.1 \times 10^{-9} \text{ at } 95\% \text{ CL}$
to be compared with published:
$$I\text{-}CLb = 0.18$$

$$UL = 4.5 \times 10^{-9} \text{ at } 95\% \text{ CL}$$

$B_s \rightarrow \mu\mu$:LHC results on spring 2012

The Bs → μμ signal was slowly emerging from data...

..... But which is the BR? 3 σ observation possible if BR=BR(SM) at the LHC with 2011+2012 data

...tomorrow!

2012: LHCb Upgrade Framework TDR http://cdsweb.cern.ch/record/1443882/files/LHCB-TDR-012.pdf

- 2018: expect $L_{int} = 5 \text{ fb}^{-1}$
- 2028: expect $L_{int} = 50 \text{ fb}^{-1}$

						rechnical Desig	gn reep
	Type	Observable	Current	LHCb	Upgrade	Theory	
			precision	2018	(50fb^{-1})	uncertainty	
	B_s^0 mixing	$2\beta_s \ (B_s^0 \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003	
		$2\beta_s (B_s^0 \rightarrow J/\psi f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01	
		$A_{\mathrm{fs}}(B^{0}_s)$	6.4×10^{-3} [18]	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}	
	Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \phi)$	_	0.17	0.03	0.02	
	penguin	$2\beta_s^{\text{eff}}(B_s^0 \rightarrow K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02	
		$2\beta^{\mathrm{eff}}(B^0 o \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02	
	Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	_	0.09	0.02	< 0.01	
	currents	$ au^{ m eff}(B^0_s o\phi\gamma)/ au_{B^0_s}$	-	5 %	1 %	0.2%	
	Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02	
	penguin	$s_0A_{\rm FB}(B^0 o K^{*0}\mu^+\mu^-)$	25% [14]	6%	2 %	7%	
		$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/}c^4)$	0.25 [15]	0.08	0.025	~ 0.02	
		$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25 % [16]	8%	2.5 %	~ 10 %	
Г	Higgs	$\mathcal{B}(B_s^0 \to \mu^+\mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}	
L	penguin	$\mathcal{B}(B^0 o \mu^+\mu^-)/\mathcal{B}(B^0_* o \mu^+\mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5\%$	
	Unitarity	$\gamma (B \rightarrow D^{(*)}K^{(*)})$	~ 10-12° [19, 20]	4°	0.9°	negligible	
	triangle	$\gamma \; (B^0_s o D_s K)$	_	11°	2.0°	negligible	
	angles	$\beta \; (B^0 o J/\psi K_S^0)$	0.8° [18]	0.6°	0.2°	negligible	
	Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	_	
	CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	$0.12 imes 10^{-3}$	-	

b fragmentation f_s/f_d

new

LHCb measured has 2 independent measurements (at 7 TeV):

- ratio of $B_s^0 \rightarrow D_s \mu X$ to $B \rightarrow D^+ \mu X$ [PRD85 (2012) 032008]
- ratio of $B^0_s \to D^-_s \pi^+$ to $B^0 \to D^- K^+$ and $B^0 \to D^- \pi^+$ [LHCb-PAPER-2012-037 in preparation]

updated at HCP

Combined result at 7 TeV

$$f_s/f_d = 0.256 \pm 0.020$$

Found to be moderately dependent on p_T :

- effect ≤ I σ for the considered p_T range
 - → dependence is ignored

For 8 TeV data, check the \sqrt{s} dependence of f_s/f_d by looking at $B^0_s \rightarrow I/\psi \phi / B^{\pm} \rightarrow I/\psi K^{\pm}$ ratio ==> stable within 1.5 σ