$t\bar{t}$ \rightarrow 21 and single top with CMS

Outline

- Introduction
- A motivation in common
- tīt→2l
- tW→2I, 1I
- tbj→1l

I will mostly base my talk on officially approved CMS results, showing a couple of "work in progress" plots/tables when really needed to make a point. For $tt \rightarrow 2I$, the most recent public results are at 14 TeV, from TOP2008; analysis at 10 TeV is ongoing, with a more complete background list (relevant for this discussion!).

For **single top**, the most recent public results are from the **TDR (2006)**, assuming 14 TeV, 10 fb⁻¹ on tape, ideal detector. An analysis at 14 TeV with early-data assumptions is now available as internal document, and the same analysis at 10 TeV is ongoing and will try to become public soon.

LHC is a top-quark factory (with several production lines)

tī: gluon fusion (~90%) or qā annihilation (~10%)
 σ_{NLL} = 833⁺⁵²₋₃₉ pb

• Electroweak production ("single top") is not negligible:

$V_{_{ti}}$ from R and single top

from hep-ph/0607115 (EPJ C 2007), using 2006 data on single top and R (updated in arXiv:0801.1800 [hep-ph]), and **no unitarity constraint**

...but as soon as you specify a possible extension to SM, EW-/B-physics tightly constrains the effective CKM elements! Nevertheless, in **SM+t'** and in **SM+4th family**, **V**_{tb}~0.9 is allowed.

Single top: hot news from Tevatron

for signal defined as the sum of *t* and *s* channels (tW negligible)

From Tevatron to LHC

	1.96 TeV	14 TeV	
ttbar pairs	6.7±0.7 pb	833 ⁺⁵² -39 pb	(x120)
Single top (s-channel)	0.88±0.06 pb	10.7±0.7 pb	(x10)
Single top (t-channel)	1.98±0.14 pb	247±10 pb	(x120)
Single top (tW channel)	0.15±0.04 pb hopeless	66±2 pb "announced discovery"	(x400)
Wjj (*)	~1200 pb	~7500 pb	(x6)
bb+other jets (*)	ner jets (*) ~2.4x10 ⁵ pb ~5x10 ⁵ pb		(x2)

(*) with kinematic cuts in order to better mimic single top Belyaev, Boos, and Dudko [hep-ph/9806332]

Early LHC data: how to discover the first european top quarks

- Despite the small BR, the 2I final states are the golden channel for the early reobservation of the top quark
- 1I suffers from W+jets and QCD bkg's

CMS AN 2008/017

In start-up analyses, we don't rely on b-tagging (very sensitive to misalignment), and minimally on MET (only ee/μμ). MC includes different misalignment/miscalibration scenarios. As above, but no Calorimetric info at all: only tracks are use⁸d to build jets and some topological variables.

Single top contamination to $t\bar{t} \rightarrow 2I$

- Unfortunately single top samples were not available at the time of TOP2008
 - Common wisdom was that single-top contamination would have been negligible
- It turned out that it is the dominant background!
 - Even after requiring 2 b-tags
 - Culprit: $tW \rightarrow 2I$; all other single top contributions are small
 - Luckily the signal purity is still very high
 - $\sigma(tW)/\sigma(tt) \sim 1/12$ before any selection
 - But this contamination has to be handled with care in precision measurements (e.g., R...)

9

At 10 TeV (work in progress)

s	ample	<u>nJet = 0</u>	<u>nJet = 1</u>	<u>nJet >= 2</u>	
Т	T->emu	1.7 +/- 0.1	11.7 +/- 0.2	35.6 +/- 0.4	
tt-	>NonDil	0.0 +/- 0.0	0.0 +/- 0.0	0.5 +/- 0.0	
	ww	4.1 +/- 0.1	1.3 +/- 0.1	0.5 +/- 0.0	
	WZ	0.3 +/- 0.0	0.4 +/- 0.0	0.2 +/- 0.0	Handle: lepton quality cuts
	ZZ	0.0 +/- 0.0	0.0 +/- 0.0	0.0 +/- 0.0	
$\langle v$	V+Jets	2.5 +/- 0.4	0.9 +/- 0.2	0.3 +/- 0.1	
D	Ytautau	1.4 +/- 0.2	1.8 +/- 0.3	0.7 +/- 0.2	
	DYee	0.0 +/- 0.0	0.0 +/- 0.0	0.0 +/- 0.0	
[DYmm	0.3 +/- 0.1	0.2 +/- 0.1	0.1 +/- 0.1	
F	pMuX	0.1 +/- 0.1	0.3 +/- 0.2	0.1 +/- 0.1	
	EM	0.0 +/- 0.0	0.0 +/- 0.0	0.0 +/- 0.0	
<	tW	0.5 +/- 0.0	2.0 +/- 0.1	1.4 +/- 0.1	10
	VQQ	0.1 +/- 0.0	0.2 +/- 0.0	0.0 +/- 0.0	

ee+μμ+eμ: 10 pb⁻¹ 10 TeV

Single top: tW extraction

Selection (2I):

- 1e+1µ (isolated), MET
- 1 jet, b-tagged
- S/B=0.35, S/tt=0.39

In both cases, almost all the surviving background is ttbar; normalization over data (control samples with one more jet, in both channels) cancels out most, but not all, of the systematics.

Selection (11):

- 1 e/μ (isolated), MET
- 3 jets, 1 b-tagged
- Cuts on M_{τ}^{W} , M(jj), M_{top} and other topological variables
- S/B=0.18, S/tt=0.22

 $(\sigma_{SM} \sim 60 \text{pb})$

Single top: t channel (tbj)

Selection:

- 1 muon (isolated), MET (corrected), 2 jets
- 1 jet b-tagged and central, 1 jet forward
- Cuts on M_{τ}^{W} and M(Ivb)
- S/B=1.3, S/tt=2.0

 $\Delta\sigma/\sigma = 3\%$ (stat) + 8% (syst) + 5% (lumi) = 10% @10fb⁻¹

 $\rightarrow \Delta V_{tb}/V_{tb} \sim 5\%$; sufficient to constrain minimal SM extensions

CMS NOTE 2006/084

Single top: s channel (tb)

10 fb⁻¹ 14 Tev

Selection:

- 1 e/ μ (isolated), MET)
- 2 jets, both b-tagged
- Cuts on Σ_{T} , M_{T}^{W} , M_{top} and other

W

 $(\sigma_{\text{SM}} \sim 10 \text{pb})$

topological variables

• S/B=0.13, S/tt=0.22

A normalization over data is crucial (two control samples: one for $t\bar{t}$ ->11, one for $t\bar{t}$ ->21) in order to keep under control the tt background and cancel most of the systematics. What remains is mostly due to the JES systematic alone.

 $\Delta\sigma/\sigma$ = 18% (stat) + 31% (syst) + 5% (lumi) = 36% @10fb⁻¹ ¹³

Backgrounds to single top

- The current single top selection (not public yet, sorry) is an analysis aiming at the rediscovery in the most favourable channel: tbj
- Before b tagging, W+jets and QCD are a trouble; applying a tight threshold, these can be greatly reduced, and tt remains as main bkg
- This is true for all 3 single-top modes, but in particular for tW
- A crucial analysis element for all 3 processes is the control of this background: tt-enriched orthogonal control samples

Strategies for tt/tbj separation

- Charge asymmetry:
 - tbj,tb: initial state has more often a u than a d
 - $_{-} => N_{t} > N_{t}$
 - => Excess of I⁺ over I⁻
 - QCD, tt, tW are symmetric
 - W+jets is asymmetric, but
 its σ and asymmetry will be
 quickly extracted from data
 - Measured W asym. \rightarrow PDF constraint \rightarrow infer tbj asym. $\rightarrow \sigma$ (tbj) from N_{I+}-N_{I-}

- Top polarization:
 - tbj,tb: 100% polarization
 - 100% inherited by lepton
 - Angle btw lepton and recoil jet in the top rest frame:

Some work in progress:

• Charge ratio:

• Top polarization:

Conclusions

- Precise measurements of single-top events are a powerful probe for physics beyond the SM
 - Recent 5σ evidence from Tevatron
 - LHC analyses will be quite different
 - Goals: separation of the 3 channels, precise σ•R measurement, less reliance on SM assumptions
- For the purpose of $|V_{tb}|$ extraction, single-top cross-section(s) and R must be both measured
- - Simultaneous extraction?

BACKUP

V_{tb} in a 4x4 or 4x3 matrix

- SM, 3x3: 0.9990<|V₊|<0.9992 @90%CL
- Alwall et al., hep-ph/0607115 (EPJ C 2007) reexamined the direct and indirect experimental constraints when CKM is minimally extended to a 4th family, or to a single b'/t'
- $V_{tb} \sim V_{tb} \sim V_{tb} \sim V_{tb} \sim V_{tb} \sim V_{tb} = 0$; θ : t-t' mixing angle (u-t' and c-t' mixings are very tightly constrained); limits depend on M_{μ} (Tevatron: $M_{\mu}/M_{1}>1.5$)

With 4th family: V_{tb}>0.93
 With pseudo-vector t': V_{tb}>0.91
 This sets a clear goal for the precision that we want to achieve on Vtb

 Nota bene: here is assumed that no other particles exist; a more rich zoology at low energy can further relax the limits

Single Top and new physics

 W^+

- t': if M_{b'}>M_{f'}, main decay is Wb
 - And for M_t>27<u>0</u> GeV, the t'q production mode is favored over t't': enhancement of t-channel at high m(lvb) / high H_T
- W' (including W*, $W_{\kappa\kappa}$, ...) enhances the s-channel
 - If coupling is SM (e.g. W_{KK}), observation in leptonic decays much earlier than in single top...
 - ... but BR's are model dependent; in some models the coupling to Iv is suppressed (W_R) / tb enhanced (W^*)
- Any model with FCNC (e.g. SUSY) enhances t-channel: while SM needs a b in the initial state, FCNCs can have a u (and u(x)>>b(x) for our x's)

Top measurements sensitive to **New Physics**

- Rare decays
- "Impossible" topologies

21

Tt2l analysis in a 100 pb⁻¹ scenario

- Misalignment now doesn't affect too much b-tagging performance
 - In particular the Track Counting algorithm: at least N tracks with IP/σ_{IP} > threshold
 - Here N=2 and threshold=2.3
 - Despite this being considered a loose cut, the effect on backgrounds is dramatic
- MET is also used (>50 GeV)
- Δσ/σ(stat): 15% ee, 18% eµ, 11% µµ

Maximize redundancy: alternative dileptonic analyses

- Standard top analyses rely to some extent on hadronic calorimetry; we explored two alternative approaches:
 - Method A (inclusive leptonic): very tight $e\mu$ selection, with very high pT thresholds; very few events survive, and ttbar is the dominant component (bkg: WW, DY $\rightarrow \tau\tau$)
 - Method B (track-based): like a standard selection, but with TrackJets instead of CaloJets, Σp_{τ} (tk) instead of H_{τ}, etc...
- The rationale is robustness against anything like "one noisy cell giving randomly a large fake signal"
 - This would affect many global variables: Njets, H_{T} , MET
 - (Symmetric goal, i.e. robustness against Tracker faults, is naturally achieved by any standard analysis w/out b-tag)

Wt/tt interference

Problem: At NLO, Wt mixes with tt.

A MC-friendly definition of tW is needed in order to avoid double counting. Solution (Les Houches 2005): The full set of $gg \rightarrow btW$ diagrams is left out and Wt is DEFINED by a b-jet veto.

Already implemented in MCFM.

