The Large Hadron Collider at CERN

Lyn Evans

LHC Symposium Lisbon 29th November 2010

Different Approaches: fixed Target vs Collider

$$E_{CM} = \sqrt{2\left(E_{beam}mc^2 + m^2c^4\right)}$$

Storage ring/collider

$$<<$$
 $E_{CM}=2\left(E_{beam}+mc^2\right)$

History/Energy Line vs Discovery

Higgs and super-symmetry? Or something else maybe

Behind the history plot is hidden the technological development required for each step

Obs: you can notice different particle species used in the different colliders electron-positrons and hadron colliders (either p-p as Tevratron, p-p as LHC)

CMS Muon Pairs Mass

ISR

23 Kms of superconducting Magnets

CERN's Particle Accelerator Chain

From LINAC to LHC...

Cryodipole Cross-Section

Rutherford Cables

Needs for 10-20 kA cable for protection

Needs very high packing factor: 90%

!!

resistive contact R_c at

cross-over point

dB/dt

Needs a system simple that keep

strands

The strand are fully transposed

BUT field changes over a period!

Ends problems

Junctions

BICC

induced eddy currents in the loop I \propto -dB/dt and I \propto 1/R_c

superconducting path in the strands

7000 Kms of superconducting Cable Nb-Ti

Critical current Density of technical Superconductors

...at the Physics Laboratory of Leyden, Helium was first liquified

Heike Kamerlingh Onnes

"Door meten tot weten"
To knowledge through measurement

Phase Diagram of Helium

Discovery of Superconductivity (1911)

Thus the mercury at 4.2 K has entered a new state, which, owing to its particular electrical properties, can be called the state of superconductivity.

Hint of a quantum Effect...?

It is very noticeable that the experiments indicate that the density of the helium, which at first quickly drops with the temperature, reaches a maximum at 2.2°K approximately, and if one goes down further even drops again. Such an extreme could possibly be connected with the quantum theory.

Discovery of Superfluidity in He II (1938)

J.F. Allen & A.D. Misener (Cambridge) P.L. Kapitsa (Moscow)

Vaporization of liquid helium

He I (T=2.4 K)

He II (T=2.1 K)

J. F. Allen

« In my PhD work in Toronto on superconductivity, I had often seen the sudden cessation of boiling at the lambda temperature T_{λ} but had paid it no particular attention. It never occured to me that it was of fundamental significance. »

J. Allen, Physics World, November 1988, p 29.

90 main industrial Contracts in the World

Manufacturing of superconducting Coils

Assembly of dipole cold Masses

Cryogenic Test Benches

Magnet Descent into the Tunnel

Transport in the Tunnel with an optical guided Vehicle

Transfer on Jacks

Dipole dipole Interconnect

Electrical Splice

Electrical Quality Assurance in the Tunnel

DFBAO in Sector 7-8

Current Leads using HT Superconductor

	Resistive (WFL)	HTS (4 to 50 K) Resistive (> 50 K)
Heat inleak to liquid helium	1.1 W/kA	0.1 W/kA
Exergy loss	430 W/kA	150 W/kA
Electrical power of refrigerator	1430 W/kA	500 W/kA

Sum of currents into LHC ~ 1.7 MA, i.e. need current leads for 3.4 MA total rating (in and out)

Economy ~ 3400 W in liquid helium ~ 5000 l/h liquid helium

⇒ capital: save extra cryoplant

⇒ operation: save ~ 3.2 MW

BSCCO-2223 tapes

Nb-Tiwires

13 kA HTS current lead for LHC

Luminosity Evolution 2010

5 orders of magnitude in ~200 days

~50 pb⁻¹ delivered, half of it in the last week!

LHC now on its own in Terms of stored Energy

Beam Momentum [GeV/c]

Pb Orbit compared to p Orbit – No Steering

Luminosity Evolution (not quite up-to-date)

2010/11/16 08.15

2010/11/16 08.15

LHC 2010 HI RUN (3.5 Z TeV/beam)

2011: "Reasonable" Numbers

- 4 TeV
- 936 bunches (75 ns)
- 3 micron emittance
- 1.2 x 10¹¹ protons/bunch
- beta* = 2.5 m, nominal crossing angle

Peak luminosity	6.4×10^{32}
Integrated per day	11 pb ⁻¹
200 days	2.2 fb ⁻¹
Stored energy	72 MJ

Usual warnings apply – see problems, problems above