

Multi-lepton physics in search for the Higgs boson

Nicola De Filippis
Polytechnic of Bari and INFN

Outline:

- Strategy for multi-lepton searches
- H→ZZ and H→WW searches results at 10/7 TeV
- Multi-lepton validation with 900 GeV data
- H→ZZ plans for ICHEP 2010

Strategy for multi-lepton searches in 2010

Main concepts:

- Real data taken in 2009 useful to start the physics object reconstruction validation
- Data going to be taken in 2010 will be used for reco. validation and physics
- Data driven techniques to be enforced and validated with real data
- Moving from single lepton to di-leptons $(Z\rightarrow II)$ to multi-lepton (WW, ZZ, WZ) final state
 - → a "MULTI-LEPTON TASK FORCE" going to be created

What we expect according to the lumi and \sqrt{s} :

- O(0.1 pb⁻¹) \rightarrow "MinBias" region, "Single-lepton" reco validation
- O(1 pb⁻¹) \rightarrow "Jet" and "Single-lepton" validation in the full p_T spectrum
- O(10 pb⁻¹) \rightarrow "Di-lepton" reconstruction and validation (3k Z \rightarrow ee, Z \rightarrow $\mu\mu$)
- O(100 pb⁻¹) → "Di-boson" region; multi-lepton reconstruction
- O(500 pb⁻¹) at 7 TeV \approx 200 pb⁻¹ at 10 TeV \rightarrow Higgs searches

SM H \rightarrow ZZ \rightarrow 4l (and H \rightarrow WW \rightarrow lvlv) searches at 10/7 TeV

SM Higgs production at LHC

Dominant Production Modes:

m_H <135 GeV:

$$H \rightarrow b\overline{b}/cc/gg$$

$$H \rightarrow \gamma \gamma$$

$$H \rightarrow \tau^+ \tau^-$$

m_H >135 GeV:

$$H \rightarrow W^+W^-$$

 $H \rightarrow ZZ^*$

Exploit leptonic decays of W/Z (for trigger purpose)

Dominant decays but Multi-

jets background too high...

ulti-lepton final state in search for at LHC, Lisbon, March 25, 2010

SM $H \rightarrow ZZ \rightarrow 4l$: basic concepts

- Signatures: **4e,4mu and 2e2mu** final state
- Backgrounds:
 - ZZ , Zbb, tt+jets, Z+jets, W+jets, QCD
- Preselection strategy: (to get rid of QCD bkg with fake leptons)
 - Single & double lepton triggers
 - loose isolation on leptons opp. charge and ele Id
 - di-lepton and 4l-lepton invariant mass cuts

Main selection:

- tight isolation on leptons (against tt, Zbb)
- impact parameter constraint (against tt, Zbb)
- \blacksquare m₇ and m_{7*} constraint

Control from real data of

- the lepton-related efficiencies
- the rate of ZZ and Zbb bkg
- → Baseline cut-based analysis, m_Hindependent, able to get rid of main bkg

Observables: isolation

N. De Filippis

Workshop on multi-lepton final state in search for New Physics at LHC, Lisbon, March 25, 2010

Observables: impact parameter

Results: m₄₁

Results: counting experiment

- Events counted in a window: $m_{41} \pm 2\sigma_{m41}$
- m_{4l} is taken from a Gaussian fit to the signal distribution for each given m_{H} hypothesis

Control of background from data

ZZ measurement from data

Purpose: determination of the mean expected number of ZZ bkg events in the signal region (defined e.g. by a simple sliding window in the m_{4l} spectrum)

Selection:

- $80 < M_{71} < 100 \text{ GeV}$
- $70 < M_{72} < 110 \text{ GeV}$
- HZZ preselection cuts

1 fb ⁻¹	4μ	4e	$2e2\mu$	Total
ZZ	4.696 ± 0.025	3.413 ± 0.017	8.178 ± 0.029	16.287 ± 0.042
$Zbar{b}$	0.006 ± 0.002	0.003 ± 0.001	0.015 ± 0.003	0.024 ± 0.004
t ar t	$0. \pm 0.0044$	$0. \pm 0.0044$	0.040 ± 0.013	0.040 ± 0.013
Z + jets	0.	0.010 ± 0.006	0.109 ± 0.066	0.119 ± 0.066

ZZ extrapolation from data

Typical procedure consists of choosing a **control region** outside the signal phase space and then verifying that the events rate changes according to the expectations from MC:

$$N_{ZZ}^{predicted}(\Delta m) = \rho(m_H) \cdot N_{CR}^{measured}$$

$$\rho(m_H) = \frac{N_{ZZ}^{theory}(\Delta m) \cdot \varepsilon_{ZZ}}{N_{CR}^{theory} \cdot \varepsilon_{CR}} \quad \blacktriangleleft \quad \frac{\text{From}}{\text{MC}}$$

Normalization to the Z → II data:

$$N_{zz}/N_z: R = \frac{(\sigma_{zz \to 4e} * \varepsilon_{4e} * \int Ldt)}{(\sigma_{z \to 2e} * \varepsilon_{2e} * \int Ldt)}$$

- Luminosity and (partially) reconstruction uncertainty cancellations
- 0.1 million Z→ee events at 200 pb⁻¹
- total uncertainty ≈ 0.3 %

Normalization to the sidebands:

- Luminosity and (totally) reconstruction uncertainty cancellations
- 4 ZZ→4l events at 200 pb⁻¹
- total uncertainty ≈ 58 %

Zbb and tt control from data

Particularly important for low higgs mass searches Control region defined by:

- m_{4l} of any four lepton combinations > 100 GeV
- m_{7*} < 60 GeV in order to suppress the ZZ and Higgs signal contribution.
- 2D iso > 10 GeV (for muons)
- worst IP significance > 4

The signal and the ZZ background are fully absent in control region.

Best fit predicts: 1 fb-1 luminosity:

- tt = 380 ± 22 events
- Zbb + Z+jets = 160 ± 16 events

Control of efficiencies from data

Electron efficiencies from data

Tag and probe method:

- Z→I+I⁻ as high purity di-lepton sample
- Tag: lepton satisfying stingent ID
- Probe: other lepton constrained to the
 Z mass
- Probe is then used to evaulate the efficiency of a given selection or cut

 \rightarrow recontruction, ID, isolation eff can be measured after 100 pb⁻¹ with uncertainty < 2.5%

Isolation cut efficiency from data

Vertexing efficiency from data

Control sample: Z+jets events with two muons from Z and two tracks

Signal vertexing efficiency:

The distribution of the Geometrical discriminant from Z+jets similar to that for the four muons in the case of the Higgs signal events

→ similar cut efficiencyvertexing cut efficiency for signal measured from data.

• Background rejection efficiency of the impact parameter—based algorithms evaluated tagging the jets by means of the "soft muon by p_{rel}^T " b-tagger algorithm foreseen for early real data (and not based on impact parameter info) \rightarrow need to be evaluated yet

Projections at 7 TeV: HZZ + HWW + Hγγ

SM Higgs expected excluded range: **145-190 GeV** SM Higgs with 4 generations — **up to 500 GeV**

TEVATRON

Projections at 7 TeV: HZZ + HWW + H $\gamma\gamma$

#6 HWW channel reaches a discovery level sensitivity for m_H=160-170 GeV

#7 Combining HWW+HZZ+Hγγ helps boost significance at the wings, but taking into account the look-elsewhere effect, very strong in Hγγ and HZZ, will largely wash out the apparent enhancement

Workshop on multi-lepton final state in search for New Physics at LHC, Lisbon, March 25, 2010

Multi-lepton validation with 900 GeV data

Workshop on multi-lepton final state in search for

New Physics at LHC, Lisbon, March 25, 2010

Electrons reco and isolation

Electron classification and ID

N. De Filippis

Workshop on multi-lepton final state in search for New Physics at LHC, Lisbon, March 25, 2010

Electron/Muon impact parameter

Plans for ICHEP2010

☐ February/March/April:

- > Isolation variable and efficiency calculation algorithms on the market to be compared and checked with data
- > random cone techniques to be used for isolation cut efficiency
- \triangleright efficiency of vertexing algos from data by using non-prompt j/ ψ ?
- > control of data rate evolution vs skimming/preselection cuts for HZZ
- ➤ update and improve HZZ framework to cope with data ->work already on going
- ☐ June (1-10 pb-1)? as soon as we get some electrons/muons from Z
 - \gt Z \rightarrow ee, Z \rightarrow µµ reco validation
 - ➤ Tag and Probe for:
 - -- commissioning of isolation variables on electrons
 - -- propagation of isolation efficiencies from Z to ZZ (even if there is no ZZ events)
 - Vertexing eff. with Z+bjets events

Conclusions

On the path to multi-lepton searches for Higgs WG:

- @ validation with real data of
 - 1. electron and global/tracker muon eff, electron Id
 - 2. Isolation and vertexing observables
- @ enforcing of data driven techniques for bkg estimation
- @ crosscheck of the single Z production measurements
- @ "discover" WZ and the ZZ production
- @ optimization of MC analyses for the exclusion at low, intermediate and high higgs mass
- @ new task for multilepton Higgs searches going to be created

Thanks to Michele and the LIP group for the kind invitation

Backup slides

Path for $H \rightarrow ZZ$ in 2010

Main priority of the $H\rightarrow ZZ$ subgroup in 2010:

- @ to control electron and global/tracker muons eff vs fake rate, electron Id, low pT reco
- @ to control bkg rate (mostly QCD) at skimming and preselection level
- @ to enforce data driven techniques for:
 - @ background estimate: Zbb and ZZ
 - @ efficiency of algorithms (isolation and vertexing)
- a clear picture of systematic uncertainties
- @ to control the reliability of $Z\rightarrow 2I$ to $ZZ\rightarrow 4I$ extrapolation
- @ to crosscheck the single Z production measurements
- @ to "discover" WZ and the ZZ production liying on the higgs path
- @ to optimize the analyses for the exclusion at low, intermediate and high higgs mass

SM $H\rightarrow WW\rightarrow I_VI_V$: basic concepts

- Signatures: 2 isolated high p_T leptons + MET, $\frac{7}{8}$ no hard jet in the central region, no H mass peak
- Backgrounds: tt, DY, di-boson, tW, W+jets
- Preselection:
 - single lepton triggers + muon/ele ID
 - isolated leptons opp. charge, p_T
- Main selection observables:
 - Central jet veto
 - Angular correlations btw leptons
 - Di-lepton mass, MET, leptons p_T
- cut based and MVA approaches
- control from data of:
 - MET measurement and fake rate
 - tt and WW bkg

SM $H\rightarrow WW\rightarrow IvIv$: physics objects

Fake rate:

$$f = \frac{\#(\text{tight ID lept})}{\#(\text{loose ID lept})}$$

- compute f on a control sample
- use f to estimate the W +jet bkg

$$[\mathrm{rate}]_{TT} = f \times [\mathrm{rate}]_{TL}$$

Missing Energy control:

by comparing MC E_T^{miss} in $W \rightarrow e_V$ to real data $Z \rightarrow \mu\mu$, where one muon is neglected (rescale for m_W/m_Z impose the μ reco phase space to the v)

N. De Filippis

Workshop on multi-lepton New Physics at LHC, Lis

SM $H\rightarrow WW\rightarrow IvIv$: bkg estimate

ttbar production

control region: analysis cut + $m_{\parallel} > 115 \text{ GeV}$

events in 1fb⁻¹

Final state	$t\overline{t}$	WW	tW	WZ/ZZ	Drell-Yan/W+jets
$\mu\mu$	31	32	8	2	23
ee	15	14	3	1	14
$e\mu$	136	177	31	6	50

Workshop on multi-lepton final state in search for New Physics at LHC, Lisbon, March 25, 2010

$SM H \rightarrow WW \rightarrow IvIv: results$

L =
$$200 \text{pb}^{-1} \text{at} \sqrt{\text{s}} = 10 \text{ TeV}$$

TEVATRON: The optimistic expectation for end 2010 is to exclude **all m**_H< 185 or a 2 σ hint observed

CMS:

- can exclude m_H=160-170 GeV (important x-check of TEVATRON)
- for m_H=200-500 GeV, limit r~2.5-5 (best limit)

N. De Filippis

Workshop on multi-lepton final state in search for New Physics at LHC, Lisbon, March 25, 2010