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Applications of probabilistic inference to physics quantities

pending issues from yesterday
• Parametric inference applied to typical detector responses

◦ binomial (efficiencies, branching ratios, ‘proportions’)
◦ Poisson (counts following “Poisson process”)
◦ Gaussian (‘normal errors’, approximation of other pdf)

• Bayesian inference Vs χ2 minimization.
• Some ‘complications’:

◦ systematics
◦ background
◦ measurements at the limit of the detector sensitivity

• Propagation of uncertainties
• Conclusions
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About ‘statistics’

Uncritical use of ‘statistical methods’ can be dangerous!
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About ‘statistics’

Uncritical use of ‘statistical methods’ can be dangerous!

“There are three kinds of lies:
lies, damn lies, and statistics”

(Benjamin Disraeli/Mark Twain)
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Damned lies and statistics

Well known subject, especially in marketing and politics
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Damned lies and statistics

Well known subject, especially in marketing and politics

but also scientists might get confused!
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Summary of 1st lecture

• The main interest in ‘statistics’ of physicists is inference, i.e.
how to learn from data
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Summary of 1st lecture

• falsificationism is a kind of extension of the ‘proof by
contradiction’ to the natural science.

• But strict falsificationism is just naive,
• while its statistical implementations are logically flawed.
• We ended with some examples from HEP that had quite

some resonance some years ago, where fake claims of
discoveries can be easily attributed to the general inability
of physicists to handle the probability inversion problem,
“the essential problem of the the experimental method”
(Poincaré)
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Summary of 1st lecture

• falsificationism is a kind of extension of the ‘proof by
contradiction’ to the natural science.

• But strict falsificationism is just naive,
• while its statistical implementations are logically flawed.
• We ended with some examples from HEP that had quite

some resonance some years ago, where fake claims of
discoveries can be easily attributed to the general inability
of physicists to handle the probability inversion problem,
“the essential problem of the the experimental method”
(Poincaré)

• There is only one way to calculate ‘inverse probabilities’:

→ Use probability theory. → Bayes’ theorem

• But we have first to recover the intuitive idea of probability,
rather then XX-th century artefacts.
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Where to restart

Starting point for probabilistic reasoning

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) [ if P (A ∩ B) = ∅ ]

4. P (A ∩ B) = P (A |B) · P (B) = P (B |A) · P (A)
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Where to restart

Starting point for probabilistic reasoning

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) [ if P (A ∩ B) = ∅ ]

4. P (A ∩ B) = P (A |B) · P (B) = P (B |A) · P (A) ,

That includes ’direct probability problems’ (propagation of
uncertainties) and also probabilistic inference (or ’inverse
probability’), based on the symmetric reconditioning formula,
that, though under several variations, goes under the name of
Bayes theorem.
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The Bayes ‘formulae’

Main link between conditional probabilities of effects and
conditional probabilities of hypotheses.

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)

From which different ways to write Bayes theorem follow:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj) ∗ ∗ ∗
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∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj) ∗ ∗ ∗
P (Hj |Ei)

P (Hk |Ei)
=

P (Ei |Hj)

P (Ei |Hk)
· P (Hj)

P (Hk)
∗ ∗ ∗
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And their sequential use

The posterior becomes the prior of the next inference

For conditionally independent Ei:

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)
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P (Hj |data) ∝ P (data |Hj) · P0(Hj)
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P (Hj |data) ∝ P (data |Hj) · P0(Hj)

P (Hj |data) ∝ P (data1 |Hj) · P (data2 |Hj) · . . . · P0(Hj)

Similarly, for the Bayes theorem written in terms of odd ratios:
P (Hj |data)

P (Hk |data)
=

P (data1 |Hj)

P (data1 |Hk)
· P (data2 |Hj)

P (data2 |Hk)
· . . . · P (Hj)

P (Hk)

(And, obviously, if the data sets are not independent, one has to apply the
chain rule P (A, B C, . . .) = P (A) · P (B |A) · P (C |A, B) . . .)
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Exercise: particle identification

A particle detector has a µ identification efficiency of 95%, and a
probability of identifying a π as a µ of 2%. If a particle is
identified as a µ, then a trigger is fired.
The particle beam is a mixture of 90% π and 10% µ,
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Exercise: particle identification

A particle detector has a µ identification efficiency of 95%, and a
probability of identifying a π as a µ of 2%. If a particle is
identified as a µ, then a trigger is fired.
The particle beam is a mixture of 90% π and 10% µ,

• What is the probability that a trigger is really fired by a µ?
• What is the signal-to-noise (S/N ) ratio?

P (µ |T ) =
P (T |µ)P◦(µ)

P (T |µ)P◦(µ) + P (T |π)P◦(π)

=
0.95 × 0.1

0.95 × 0.1 + 0.02 × 0.9
= 0.84 ,

Signal-to-noise ratio
P (µ |T )

P (π |T )
= 5.3
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Signal-to-noise ratio

Rewrite S/N as Bayes factor times prior odds:

S/N =
P (S |E)

P (N |E)
=

P (E |S)

P (E |N)
· P◦(S)

P◦(N)

P (µ |T )

P (π |T )
= 47.5 × 0.111 = 5.3

G. D’Agostini,Probabilistic Reasoning – p. 11



Signal-to-noise ratio

Rewrite S/N as Bayes factor times prior odds:

S/N =
P (S |E)

P (N |E)
=

P (E |S)

P (E |N)
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This formula explicitly shows that when there are noisy
conditions,

P◦(S) ≪ P◦(N) ,

the experiment must be very selective,

P (E |S) ≫ P (E |N) ,

in order to have a decent S/N ratio (→ AIDS problem).
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Signal-to-noise ratio

Rewrite S/N as Bayes factor times prior odds:

S/N =
P (S |E)

P (N |E)
=

P (E |S)

P (E |N)
· P◦(S)

P◦(N)

P (µ |T )

P (π |T )
= 47.5 × 0.111 = 5.3

This formula explicitly shows that when there are noisy
conditions,

P◦(S) ≪ P◦(N) ,

the experiment must be very selective,

P (E |S) ≫ P (E |N) ,

in order to have a decent S/N ratio (→ AIDS problem).
(Follow up: new S/N if two indep. detectors are used.)
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Why do frequentistic tests often work?

→ See slides:
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Uncertainties in measurements

Having to perform a measurement:
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What have we learned about the value of the quantity of
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Uncertainties in measurements

Having to perform a measurement:

Which numbers shall come out from our device?

Having performed a measurement:

What have we learned about the value of the quantity of
interest?

How to quantify these kinds of uncertainty?

Under well controlled conditions (calibration) we can make
use of past frequencies to evaluate ‘somehow’ the detector
response f(x |µ).

There is (in most cases) no way to get directly hints about
f(µ |x).
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Uncertainties in measurements

x

Μ0

Experimental
response

?

f(x |µ) experimentally accessible (though ’model filtered’)
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Uncertainties in measurements

x

Μ

x0

?

Inference

f(µ |x) experimentally inaccessible

but logically accessible!

→ probability inversion → Bayes
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Uncertainties in measurements

x

Μ

x0

Μ given x

x given Μ

• How measurement uncertainties are currently treated?
• How to treat them logically using probability theory?
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Usual way to deal with measurement uncertainties

Uncertainties due to statistical errors are currently treated using
the frequentistic concept of ‘confidence interval’,
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physics — in which the approach is not applicable (e.g.
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Usual way to deal with measurement uncertainties

There is no satisfactory theory or model to treat uncertainties
due to systematic errors:

• “my supervisor says . . . ”

• “add them linearly”;

• “add them linearly if . . . , else add them quadratically”;
• “don’t add them at all”.
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• “add them linearly”;

• “add them linearly if . . . , else add them quadratically”;
• “don’t add them at all”.

The modern fashion: add them quadratically if they are
considered to be independent, or build a covariance matrix of
statistical and systematic contributions in the general case.
In my opinion, simply due to reluctance to combine linearly 10,
20 or more contributions to a global uncertainty, as the (out of
fashion) ‘theory’ of maximum bounds would require.
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Usual way to deal with measurement uncertainties

There is no satisfactory theory or model to treat uncertainties
due to systematic errors:

• “my supervisor says . . . ”

• “add them linearly”;

• “add them linearly if . . . , else add them quadratically”;
• “don’t add them at all”.

The modern fashion: add them quadratically if they are
considered to be independent, or build a covariance matrix of
statistical and systematic contributions in the general case.
In my opinion, simply due to reluctance to combine linearly 10,
20 or more contributions to a global uncertainty, as the (out of
fashion) ‘theory’ of maximum bounds would require.
→ Right in most cases!
→ Good sense of physicists ⇐⇒ cultural background
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A simple case

n independent measurements of the same quantity µ (with n
large enough and no systematic effects, to avoid, for the
moment, extra complications).

Evaluate x and σ from the data

report result: → µ = x ± σ/
√

n
• what does it mean?

G. D’Agostini,Probabilistic Reasoning – p. 16



A simple case

n independent measurements of the same quantity µ (with n
large enough and no systematic effects, to avoid, for the
moment, extra complications).

Evaluate x and σ from the data

report result: → µ = x ± σ/
√

n
• what does it mean?

1 For the large majority of physicists
P (x − σ√

n
≤ µ ≤ x + σ√

n
) = 68%

G. D’Agostini,Probabilistic Reasoning – p. 16



A simple case

n independent measurements of the same quantity µ (with n
large enough and no systematic effects, to avoid, for the
moment, extra complications).

Evaluate x and σ from the data

report result: → µ = x ± σ/
√
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• what does it mean?

1 For the large majority of physicists
P (x − σ√

n
≤ µ ≤ x + σ√

n
) = 68%

2 And many explain (also to students!) that “this means that, if
I repeat the experiment a great number of times, then I will
find that in roughly 68% of the cases the observed average
will be in the interval [x − σ/

√
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A simple case

n independent measurements of the same quantity µ (with n
large enough and no systematic effects, to avoid, for the
moment, extra complications).

Evaluate x and σ from the data

report result: → µ = x ± σ/
√

n

• what does it mean? Objections?
1 For the large majority of physicists

P (x − σ√
n
≤ µ ≤ x + σ√

n
) = 68%

2 And many explain (also to students!) that “this means that, if
I repeat the experiment a great number of times, then I will
find that in roughly 68% of the cases the observed average
will be in the interval [x − σ/

√
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Meaning of µ = x ± σ/
√

n

1 P (x − σ√
n
≤ µ ≤ x + σ√

n
) = 68%

OK to me, and perhaps no objections by many of you
◦ But it depends on what we mean by probability
◦ If probability is the “limit of the frequency”, this statement

is meaningless, because the ‘frequency based’
probability theory only speak about

P (µ − σ√
n
≤ X ≤ µ +

σ√
n

) = 68% ,

(that is a probabilistic statement about X: probabilistic
statements about µ are not allowed by the theory).
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Meaning of µ = x ± σ/
√

n

2 “if I repeat the experiment a great number of times, then I
will find that in roughly 68% of the cases the observed
average will be in the interval [x − σ/

√
n, x + σ/

√
n].”

◦ Nothing wrong in principle (in my opinion)
◦ but a

√
2 mistake in the width of the interval

→ P (x − σ/
√

n ≤ xf ≤ x + σ/
√

n) = 52% ,

where xf stands for future averages;

or P (x −
√

2σ/
√

n ≤ xf ≤ x +
√

2σ/
√

n) = 68%,

as we shall see later (→ ‘predictive distributions’).
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Meaning of µ = x ± σ/
√

n

3 Frequentistic coverage → “several problems”
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Meaning of µ = x ± σ/
√

n

3 Frequentistic coverage → “several problems”
◦ ‘Trivial’ interpretation problem: → taken by most users

as if it were a probability interval (not just semantic!)
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Meaning of µ = x ± σ/
√

n

3 Frequentistic coverage → “several problems”
◦ ‘Trivial’ interpretation problem: → taken by most users

as if it were a probability interval (not just semantic!)
◦ It fails in frontier cases

• ’technically’ [see e.g. G. Zech, Frequentistic and
Bayesian confidence limits, EPJdirect C12 (2002) 1]

• ‘in terms of performance’ → ‘very strange’ that no
quantities show in ‘other side’ of a 95% C.L. bound !
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Arbitrary probability inversions

As with hypotheses tests, problem arises from arbitrary
probability inversions.

How do we turn, just ’intuitively’

P (µ − σ√
n
≤ X ≤ µ +

σ√
n

) = 68%

into

P (x − σ√
n
≤ µ ≤ x +

σ√
n

) = 68%?
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Arbitrary probability inversions

As with hypotheses tests, problem arises from arbitrary
probability inversions.

How do we turn, just ’intuitively’

P (µ − σ√
n
≤ X ≤ µ +

σ√
n

) = 68%

into

P (x − σ√
n
≤ µ ≤ x +

σ√
n

) = 68%?

We can paraphrase as

“the dog and the hunter”
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The dog and the hunter

We know that a dog has a 50% probability of being 100 m from
the hunter

⇒ if we observe the dog, what can we say about the hunter?
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The dog and the hunter

We know that a dog has a 50% probability of being 100 m from
the hunter

⇒ if we observe the dog, what can we say about the hunter?

The terms of the analogy are clear:

hunter ↔ true value

dog ↔ observable .
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The dog and the hunter

We know that a dog has a 50% probability of being 100 m from
the hunter

⇒ if we observe the dog, what can we say about the hunter?

The terms of the analogy are clear:

hunter ↔ true value

dog ↔ observable .

Intuitive and reasonable answer:

“The hunter is, with 50% probability, within 100 m of the
position of the dog.”
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The dog and the hunter

We know that a dog has a 50% probability of being 100 m from
the hunter

⇒ if we observe the dog, what can we say about the hunter?

The terms of the analogy are clear:

hunter ↔ true value

dog ↔ observable .

Easy to understand that this conclusion is based on some tacit
assumptions:

• the hunter can be anywhere around the dog
• the dog has no preferred direction of arrival at the point

where we observe him.

→ not always valid!
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Measurement at the edge of a physical region

Electron-neutrino experiment, mass resolution σ = 2 eV,
independent of mν .

0 m  - obs

m  - true

exp. data
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Measurement at the edge of a physical region

Electron-neutrino experiment, mass resolution σ = 2 eV,
independent of mν .

0 m  - obs

m  - true

exp. data

Observation: −4 eV.
What can we tell about mν?
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Measurement at the edge of a physical region

Electron-neutrino experiment, mass resolution σ = 2 eV,
independent of mν .

0 m  - obs

m  - true

exp. data

Observation: −4 eV.
What can we tell about mν?

mν = −4 ± 2 eV ?
P (−6 ≤ mν/eV ≤ −2) = 68% ?
P (mν ≤ 0 eV) = 98% ?

G. D’Agostini,Probabilistic Reasoning – p. 20



Non-flat distribution of a physical quantity

Imagine a cosmic ray particle or
a bremsstrahlung γ.

µo x|µ

f(x|µ)

ln fo(µ)

µ1 2

x = 1.1
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Non-flat distribution of a physical quantity

Imagine a cosmic ray particle or
a bremsstrahlung γ.
Observed x = 1.1.
What can we say about the true
value µ that has caused this
observation?

µo x|µ

f(x|µ)

ln fo(µ)

µ1 2

x = 1.1
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Non-flat distribution of a physical quantity

Imagine a cosmic ray particle or
a bremsstrahlung γ.
Observed x = 1.1.
What can we say about the true
value µ that has caused this ob-
servation?
Also in this case the formal def-
inition of the confidence interval
does not work.
Intuitively, we feel that there is
more chance that µ is on the
left of 1.1 than on the right. In
the jargon of the experimental-
ists, “there are more migrations
from left to right than from right
to left”.

µo x|µ

f(x|µ)

ln fo(µ)

µ1 2

x = 1.1
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Non-flat distribution of a physical quantity

These two examples deviates
from the dog-hunter picture only
because of an asymmetric pos-
sible position of the ‘hunter’, i.e
our expectation about µ is not
uniform. But there are also in-
teresting cases in which the re-
sponse of the apparatus f(x |µ)
is not symmetric around µ, e.g.
the reconstructed momentum in
a magnetic spectrometer. µo x|µ

f(x|µ)

ln fo(µ)

µ1 2

x = 1.1
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Non-flat distribution of a physical quantity

Summing up:
“the intuitive inversion of
probability

P (. . . ≤ X ≤ . . .) =⇒ P (. . . ≤ µ ≤ . . .)

besides being theoretically un-
justifiable, yields results which
are numerically correct only in
the case of symmetric prob-
lems.” µo x|µ

f(x|µ)

ln fo(µ)

µ1 2

x = 1.1
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Summary about standard methods

Situation is not satisfactory in the critical situations that often
occur in HEP, both in

• hypotheses tests
• confidence intervals
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Summary about standard methods

Situation is not satisfactory in the critical situations that often
occur in HEP, both in

• hypotheses tests
• confidence intervals

Plus there are issues not easy to treat in that frame
[ and I smile at the heroic effort to get some result :-) ]

• systematic errors
• background
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Parametric inference

→ Choose a model and infer its parameter(s).

Bayes theorem for continuous variables has following structure

f(θ |data) ∝ f(data | θ) f0(θ)
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Parametric inference

→ Choose a model and infer its parameter(s).

Bayes theorem for continuous variables has following structure

f(θ |data) ∝ f(data | θ) f0(θ)

Remark: the probabilistic result is the pdf f(θ |data),
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Parametric inference

→ Choose a model and infer its parameter(s).

Bayes theorem for continuous variables has following structure

f(θ |data) ∝ f(data | θ) f0(θ)

Remark: the probabilistic result is the pdf f(θ |data),

• f(θ |data) can eventually be summarised with average
(‘expected value’), standard deviation (‘standard
uncertainty’), value of highest probability (mode), probability
intervals, etc. (any statement consistent with f(θ |data) is
virtually valid).
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Parametric inference

→ Choose a model and infer its parameter(s).

Bayes theorem for continuous variables has following structure

f(θ |data) ∝ f(data | θ) f0(θ)

Remark: the probabilistic result is the pdf f(θ |data),

• f(θ |data) can eventually be summarised with average
(‘expected value’), standard deviation (‘standard
uncertainty’), value of highest probability (mode), probability
intervals, etc. (any statement consistent with f(θ |data) is
virtually valid).

• E[θ] and σ(θ) are particulary convenient for further
propagations, thanks to general theorem that apply to them,
but not to mode, median or intervals!
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Parametric inference

→ Choose a model and infer its parameter(s).

Bayes theorem for continuous variables has following structure

f(θ |data) ∝ f(data | θ) f0(θ)

Remark: the probabilistic result is the pdf f(θ |data),

• f(θ |data) can eventually be summarised with average
(‘expected value’), standard deviation (‘standard
uncertainty’), value of highest probability (mode), probability
intervals, etc. (any statement consistent with f(θ |data) is
virtually valid).

• E[θ] and σ(θ) are particulary convenient for further
propagations, thanks to general theorem that apply to them,
but not to mode, median or intervals!

• but the full answer is f(θ |data) !

G. D’Agostini,Probabilistic Reasoning – p. 23



Inferring the Binomial p

→ Choose a model and infer its parameter(s).

Bayes theorem for continuous variables has following structure

f(θ |data) ∝ f(data | θ) f0(θ)

First application: inferring Bernoulli p from n trials with x
successes (taking a uniform prior for p)

f(p |x, n,B) =
f(x | Bn,p) f◦(p)

∫ 1
0 f(x | Bn,p) f◦(p) dp

=

n!
(n−x)! x! px (1 − p)n−x f◦(p)

∫ 1
0

n!
(n−x)! x! px (1 − p)n−x f◦(p) dp

=
px (1 − p)n−x

∫ 1
0 px (1 − p)n−x dp

,
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f(p |x, n,B), E(p), σ(p)

f(p |x, n,B) = (n+1)!
x! (n−x)! px (1 − p)n−x ,
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f(p |x, n,B), E(p), σ(p)

f(p |x, n,B) = (n+1)!
x! (n−x)! px (1 − p)n−x ,

E(p) =
x + 1

n + 2
Laplace’s rule of successions

Var(p) =
(x + 1)(n − x + 1)

(n + 3)(n + 2)2

= E(p) (1 − E(p))
1

n + 3

σ(p) =
√

Var(p) .
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Interpretation of E(p)

Interpretation of E(p). Imagine any future event Ei>n, thinking
that, if we were sure of p then our confidence on Ei>n will be
exactly p, i.e. P (Ei | p) = p.
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Interpretation of E(p)

Interpretation of E(p). Imagine any future event Ei>n, thinking
that, if we were sure of p then our confidence on Ei>n will be
exactly p, i.e. P (Ei | p) = p.

But we are uncertain about p.
How much should we believe Ei>n?.
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Interpretation of E(p)

Interpretation of E(p). Imagine any future event Ei>n, thinking
that, if we were sure of p then our confidence on Ei>n will be
exactly p, i.e. P (Ei | p) = p.

But we are uncertain about p.
How much should we believe Ei>n?.

P (Ei>n |x, n,B) =

∫ 1

0
P (Ei | p) f(p |x, n,B) dp

=

∫ 1

0
p f(p |x, n,B) dp

= E(p)

=
x + 1

n + 2
(for uniform prior) .
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From relative frequencies to probabilities

E(p) =
x + 1

n + 2
Laplace’s rule of successions

Var(p) = E(p) (1 − E(p))
1

n + 3
.

For ‘large’ n, x and n − x (in practice ≥ O(10) is enough for
many practical purposes), asymptotic behaviors of f(p):

E(p) ≈ pm =
x

n
[with pm mode of f(p)]

σp ≈
√

pm (1 − pm)

n
−−−→
n→∞

0

p ∼ N (pm, σp) .

Under these conditions the frequentistic “definition” (evaluation
rule!) of probability (x/n) is recovered.
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Estimating Poisson λ

It becomes now an exercise, at least using a uniform prior on λ
(not appropriate when searching for rare processes!)

f(λ |x,P) =
λx e−λ

x! f◦(λ)
∫∞

0
λx e−λ

x! f◦(λ) dλ
.

f(λ |x,P) =
λx e−λ

x!

F (λ |x,P) = 1 − e−λ

(

x
∑

n=0

λn

n!

)

,

Expected value, variance and mode of the probability
distribution are

E(λ) = x + 1,

Var(λ) = x + 1,

λm = x .
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Some examples of f(λ)

For ‘large’ x f(λ) becomes Gaussian with expected value x and
standard deviation

√
x.

The difference between most probable λ and its expected
value for small x is due to the asymmetry of f(λ).
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case of observed x = 0

1 - 

1 2 3

95%

f( )

f(λ |x = 0,P) = e−λ,

F (λ |x = 0,P) = 1 − e−λ,

λ < 3 at 95% probability .

But not just because f(x = 0 | Pλ=3)= 0.05! In this case it works by chance
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Frequentistic upper/lower limits

Only in the Poisson case we have that, assuming a flat prior

f(x = 0 | P3) =

∫ ∞

3
f(λ |x = 0,P)dλ .

Not true in general!
although this is the (somehow) way frequentistic upper/lower
limits are calculated.
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Frequentistic upper/lower limits

Only in the Poisson case we have that, assuming a flat prior

f(x = 0 | P3) =

∫ ∞

3
f(λ |x = 0,P)dλ .

Not true in general!
although this is the (somehow) way frequentistic upper/lower
limits are calculated.

→ This is the reason why the lower bound on Higgs mass does
not mean that MH is above that limit with 95% probability!
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Frequentistic upper/lower limits

Only in the Poisson case we have that, assuming a flat prior

f(x = 0 | P3) =

∫ ∞

3
f(λ |x = 0,P)dλ .

Not true in general!
although this is the (somehow) way frequentistic upper/lower
limits are calculated.

→ This is the reason why the lower bound on Higgs mass does
not mean that MH is above that limit with 95% probability!

That is simply the mass value such that there is 5%
probability to observe a number of events equal or less
thasn the observed number
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Frequentistic upper/lower limits

Only in the Poisson case we have that, assuming a flat prior

f(x = 0 | P3) =

∫ ∞

3
f(λ |x = 0,P)dλ .

Not true in general!
although this is the (somehow) way frequentistic upper/lower
limits are calculated.

→ Instead, just ‘by chance’, the upper MH value can be
interpreted in a probabilistic way, because it comes from a
different likelihood (Gaussian in log MH , due to radiative
corrections).

Isn’t it ridiculous?
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Adding background of expected intensity

Two independent Poisson processes, the signal one of intensity
rS and the background one of rB:
r = rS + rB → λ = λS + λB.

If λB is somehow known (though uncertain) we can infer λS from
the observed numbers of events x:

f(λS |x, λB◦
) =

e−(λB◦
+λS) (λB◦

+ λS)x f◦(λS)
∫∞

0 e−(λB◦
+λS) (λB◦

+ λS)x f◦(λS) dλS
.

f(λS |x, λB◦
) =

e−λS (λB◦
+ λS)x

x!
∑x

n=0
λn

B◦

n!

,

F (λS |x, λB◦
) = 1 − e−λS

∑x
n=0

(λB◦
+λS)n

n!
∑x

n=0
λn

B◦

n!

.

(If we are uncertain about the background we model the uncertainty with
f(λB), and apply once more probability rules, as we shall see later)
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Uncertainty on the expected value of background

What happens if λB is not exactly know?
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Uncertainty on the expected value of background

What happens if λB is not exactly know?
No problem (withing the probabilistic approach):

• uncertain λB: → f(λB);
• use probability theory:

f(λS |x) =

∫ ∞

0
f(λS |x, λB◦

) · f(λB) dλB
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Uncertainty on the expected value of background

What happens if λB is not exactly know?
No problem (withing the probabilistic approach):

• uncertain λB: → f(λB);
• use probability theory:

f(λS |x) =

∫ ∞

0
f(λS |x, λB◦

) · f(λB) dλB

This is the general way to treat systematics
• f(θ |data) → f(θ |data,h)

⇒ f(θ |data) =
∫

f(θ |data,h) · f(h dh

(This integral can be done by MC)
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The Gaussian model

Gaussian case left on purpose at the end, because I find that it
can be dis-educative

• tendency to believe that everything must be so nicely
bell-shaped

• methods only valid for Gaussian are sometime acritically
used elsewhere

• (I have even found teachers explaining that the standard
deviation is ‘the 68% thing‘. . . )
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The Gaussian model

Gaussian case left on purpose at the end, because I find that it
can be dis-educative

• tendency to believe that everything must be so nicely
bell-shaped

• methods only valid for Gaussian are sometime acritically
used elsewhere

• (I have even found teachers explaining that the standard
deviation is ‘the 68% thing‘. . . )

→ See slides:

- simple inference with very vague prior

- inference with ’narrow’ prior: → combinations

- predictive distributions

- measuring at the edge of the physical region

- more on systematics
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General probabilistic inference → simple fit formulae

How several ‘standard’ methods can be recovered under well
defined assumptions:

→ Slides
But be careful: simplified methods fail in case of not trivial χ2

curves, etc.
• For a detailed example, see Chapter 8 of book “Bayesian

Reasoning in Data Analysis”, (World Scientific, 2003)
• containing also the rigorous treatment of linear fit with errors

on both axes (and hints for non-linear fit).
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General probabilistic inference → simple fit formulae

How several ‘standard’ methods can be recovered under well
defined assumptions, as also known to Fermi, I have found out
recently:

“In my thesis I had to find the best 3-parameter fit to my data and
the errors of those parameters in order to get the 3 phase shifts and
their errors. Fermi showed me a simple analytic method. At the
same time other physicists were using and publishing other
cumbersome methods. Also Fermi taught me a general method,
which he called Bayes Theorem, where one could easily derive the
best-fit parameters and their errors as a special case of the
maximum-likelihood method. I remember asking Fermi how and
where he learned this. I expected him to answer R.A. Fisher or
some other textbook on mathematical statistics. Instead he said
‘perhaps it was Gauss’. I suspect he was embarrassed to admit that
he had derived it all from his ‘Bayes Theorem’.” (J. Orear)

G. D’Agostini,Probabilistic Reasoning – p. 35



Use and misuse of χ2 fits

f(µ |data) ∝ f(data |µ) · f◦(µ)

∝ f(data |µ)

∝ e−χ2/2

2 4 6 8 10

1

2

3

4

Μ

Χ2min + 1

Χ2

1 1

1AL

2 4 6 8 10

0.1

0.2

0.3

0.4

fHΜL

Μ

E@ΜD=5.0
ΣHΜL=1.0

68%

1BL

Parabolic χ2: OK both σ and probability
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Use and misuse of χ2 fits

f(µ |data) ∝ f(data |µ) · f◦(µ)

∝ f(data |µ)

∝ e−χ2/2

2 4 6 8 10

1

2

3

4

Μ

Χ2min + 1

Χ2

2 1

2AL

2 4 6 8 10

0.1

0.2

0.3

0.4

fHΜL

Μ

E@ΜD=4.2
ΣHΜL=1.5

68%

2BL

Slight asymmetry: probability OK, σ NO
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Use and misuse of χ2 fits

f(µ |data) ∝ f(data |µ) · f◦(µ)

∝ f(data |µ)

∝ e−χ2/2

2 4 6 8 10

1

2

3

4

Μ

Χ2min + 1

Χ2

0.40.7

3.5

3AL

2 4 6 8 10

0.1

0.2

0.3

0.4

fHΜL

Μ

E@ΜD=4.3
ΣHΜL=1.5

28%

82%

3BL

χ2 gets crazy results!
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Use and misuse of χ2 fits

f(µ |data) ∝ f(data |µ) · f◦(µ)

∝ f(data |µ)

∝ e−χ2/2

2 4 6 8 10

1

2

3

4

Μ

Χ2min + 1

Χ2

2 2.4

4AL

2 4 6 8 10

0.1

0.2

0.3

0.4

fHΜL

Μ

E@ΜD=2.9
ΣHΜL=1.9

80%

4BL

Same when χ2 parabolic, but bounded!
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Propagation of uncertainties

Easy task in the probabilistic approach:
⇒ Just use probability theory
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Propagation of uncertainties

Easy task in the probabilistic approach:
⇒ Just use probability theory

The general problem:

f(x1, x2, . . . , xn) −−−−−−−−−−−−−→
Yj=Yj(X1,X2,...,Xn)

f(y1, y2, . . . , ym) .

This calculation can be quite challenging, but it can be easily
performed by Monte Carlo techniques.
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General solution for discrete variables

Y = Y (X), where Y () stands for the mathematical function
relating X and Y .

The probability of a given Y = y is equal to the sum of the
probability of each X such that Y (X = x) = y.
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General solution for discrete variables

Y = Y (X), where Y () stands for the mathematical function
relating X and Y .

The probability of a given Y = y is equal to the sum of the
probability of each X such that Y (X = x) = y.

Probability distributions of the
sums of the results from n dice.

2 6 8 10 12 14 16 18

5

10

15

4

Lancio di n dadi

n = 1

n = 2

n =3

P(Yn)
(%)

Yn =
n
i=1 Xi
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General solution for continuous variable

Just extend to the continuum the previous reasoning:
• replace sums by integrals
• replace constrains by suitable Dirac δ():

f(y1, y2) =

∫

δ(y1−Y1(x1, x2)) δ(y2−Y2(x1, y2)) f(x1, x2) dx1dx2 .
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General solution for continuous variable
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• replace sums by integrals
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Zoom

f(x, y) = 1
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Monte Carlo implementation of the general formula

f(y1, y2) =

∫

δ(y1−Y1(x1, x2)) δ(y2−Y2(x1, y2)) f(x1, x2) dx1dx2 .

Monte Carlo implementation of the general formula
• Extract a point {x1, x2} according to f(x1, x2)

• Fill a table (or scatter plot) with the entry

y1 = Y1(x1, x2)

y2 = Y2(x1, x2)

• Do it many times; then from the relative frequencies in each
2-D bin we can estimate the probability in each bin:
f(y1, y2)∆y1∆y2, and hence f(y1, y2). (→ examples in R)
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Expected value and variance of a linear combination

Why E(Y ) = E(X1) + E(X2) and σ2(Y ) = σ2(X1) + σ2(X2),
but no similar rule for mode (‘point of maximum belief‘) or
median (‘fifty-fifty point‘)?
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median (‘fifty-fifty point‘)?

• no ‘deep’ reason: just math,

and this the main reason that makes expected value and
variance so convenient.

• General property:
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∑
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Expected value and variance of a linear combination

Why E(Y ) = E(X1) + E(X2) and σ2(Y ) = σ2(X1) + σ2(X2),
but no similar rule for mode (‘point of maximum belief‘) or
median (‘fifty-fifty point‘)?

• no ‘deep’ reason: just math,

and this the main reason that makes expected value and
variance so convenient.

• General property:

If Y =
∑

i ciXi,

E(Y ) =
∑

i

ci E(Xi)

σ2
Y =

∑

i

c2
i σ2(Xi) + 2

∑

i<j

ci cj Cov(Xi,Xj)
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No equivalent rule for the most probable values!

But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!
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No equivalent rule for the most probable values!

But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!

Not just an odd academic example:
• asymmetric uncertainties occur often in HEP

every time you read ‘best value’ +∆+

−∆−

!
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0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!

Not just an odd academic example:
• asymmetric uncertainties occur often in HEP

every time you read ‘best value’ +∆+

−∆−

!

→ asymmetric χ2 or log-likelihoods

→ asymmetry in – well treated! – uncertainty propagations

→ systematics (often related to non linear propagation)
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No equivalent rule for the most probable values!

But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!

Not just an odd academic example:
• asymmetric uncertainties occur often in HEP

every time you read ‘best value’ +∆+

−∆−

!

→ asymmetric χ2 or log-likelihoods

→ asymmetry in – well treated! – uncertainty propagations

→ systematics (often related to non linear propagation)

And remember that standard methods (χ2 or ML fits) provide
something equivalent to ‘most probable values’, not to E( )!
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If we really have to give only two numbers. . .

. . . they should be, anyway,
• Expected value
• Standard deviation

Because this is what we need in simple propagations, using the
well known formula of propagation, while – let’s repeat it – no
general combination formula exists for other summaries.
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If we really have to give only two numbers. . .

. . . they should be, anyway,
• Expected value
• Standard deviation

Because this is what we need in simple propagations, using the
well known formula of propagation, while – let’s repeat it – no
general combination formula exists for other summaries.

There is also another property that make E( ) and σ very
convenient:

The Central Limit Theorem
⇒ Result of combination is approximately Gaussian under

hypotheses that ‘often’ hold (but always check!)

[But you can imagine that in other approaches where the expected value of a
physics quantity is an absurd concept, there might be some problems. And
this explains the ‘prescriptions’ that surrogate the luck of theoretical guidance!]
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Which prior for frontier physics?

In many cases of frontier all methods can be misleading,
included those based on the Bayes formula

→ Anyway, it is important to understand the probabilistic
reasoning behind Bayesian methods

• In many frontier cases we just lose experimental sensitivity
around some edge, and therefore we are unable to state our
confidence that the value is before of after the edge

• Confidence limits −→sensitivity bounds
→ see contribution at the CERN 2000 Confidence Limit
Workshop, “Confidence limits: what is the problem? Is there
the solution?”, ( hep-ex/0002055)

→ PUBLISH LIKELIHOOD! (possibly in the rescaled form it will
be shown).

G. D’Agostini,Probabilistic Reasoning – p. 48



→ r of a Poisson process in presence of bkgd

Rewriting in terms of r what we have sees before for λ:

f(r |nc, rb) ∝
e−(r+rb) T ((r + rb)T )nc

nc!
f◦(r) .

Uniform prior:

f(r |nc, rb, f◦(r) = k) =
e−r T ((r + rb)T )nc

nc!
∑nc

n=0
(rb T )n

n!

.

where rb is the expected rate of the background and nc the
observed number of counts.
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An example of inferring r

2 4 6 8 10 12
r
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0.4

0.6

0.8

1

f

Distribution of the values of the rate r, in units of events/month, inferred from
an expected rate of background events rb = 1 event/month, an initial uniform
distribution f◦(r) = k and the following numbers of observed events: 0
(solid); 1 (dashed); 5 (dotted).
→ which impression do you get? Do you see a serious problem?
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Dependence for ‘optimistic priors’

Upper plot shows some rea-
sonable priors reflecting the
positive attitude of researchers:
little influence on posterior!
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Dependence for ‘optimistic priors’

Upper plot shows some reason-
able priors reflecting the posi-
tive attitude of researchers: lit-
tle influence on posterior!

But the priors could be
concentrated at very low
values of r (think e.g.
gravitation wave search,
or an ‘exploratory’ first ex-
periment of a rare pro-
cess, without real hope of
finding something!)
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Rescaled likelihood (R function)

0.01 0.1 1 10
r

0.01

0.1

1

10

R

‘Relative belief updating ratio‘ R for the Poisson intensity parameter r for
above cases. Note log scales!

This figure gives a precise picture of what is going on!
Also clear what a sensitivity bound is, and while “C.L.’s” can be misleading
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An example of R from real data (ZEUS)
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Higgs mass example (≤ 1998 data)

ℜ

R-function reporting results on Higgs direct search from the reanalysis
performed by GdA & Degrassi. A, D and O stand for ALEPH, DELPHI and
OPAL experiments. Their combined result is indicated by LEP3. The full
combination (LEP4) was obtained by assuming for L3 experiment a behavior
equal to the average of the others experiments.

G. D’Agostini,Probabilistic Reasoning – p. 54



Which prior for frontier physics?

In many cases of frontier all methods can be misleading,
included those based on the Bayes formula

→ Anyway, it is important to understand the probabilistic
reasoning behind Bayesian methods

• In many frontier cases we just lose experimental sensitivity
around some edge, and therefore we are unable to state our
confidence that the value is before of after the edge

• Confidence limits −→sensitivity bounds
→ see contribution at the CERN 2000 Confidence Limit
Workshop, “Confidence limits: what is the problem? Is there
the solution?”, ( hep-ex/0002055)

→ PUBLISH LIKELIHOOD! (possibly in the rescaled form).

→ EASY COMBINATION OF RESULTS (independent
likelihoods factorize).
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Conclusions

• Subjective probability recovers intuitive idea of probability.
• It is crucial to perform ‘probability inversions’. . .
• on which probabilistic inference is based.
• Very powerfull tools: do ‘everything’ starting from a single

idea.
• ‘Conventional methods’ can be recovered, if they make

sense, when they meke sense, until well defined conditions.
• Priors a logically crucial to maqke the probability inversion,

but practically irrelevant if we have enough good data
• otherwise it is absolutely right that they must play a role.
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Conclusions – continued

• The case in which priors can be really critical are those at
the edge of the detector sensitivity, with ‘open likelihood’.

• In this case it is better to refrain from giving probabilistic
result and just report likelihoods (stating clearly what one is
doing) and sensitivity bounds.

• The approach is rather natural, easy for young people,
harder for seniors corrupted by strange XX-th century
ideologies (and with neural synapses stuck. . . ).

• Anyway: It’s easy if you try!
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End

FINE
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