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Preamble

• not statistical methods for . . . ”

• but Probabilistic Reasoning in . . .
⇒ Foundamental aspects enhanced

. . . although some usefull probabilistic methods will be
presented

• Just finishing a “40 hours” course on

Probabilità e Incertezza di Misura

to PhD students in Rome
→ I asked an advice to the students about what to present.

In particular, most things of this first day reflect what they
find it is important I tell you.
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Outline (today)

• A short introduction from a physicist’s point of view.
• Uncertainty, probability, decision.
• Causes←→Effects

“The essential problem of the experimental method” (Poincaré).
• The master example: the six box problem.

“Probability is either referred to real cases or it is nothing” (de Finetti).
• Falsificationism and statistics variations (’test’)
• Probabilistic approach.
• What is probability?
• Basic rules of probability and Bayes rule.
• Bayesian inference.
• Conclusions
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Causes↔ effects

CAUSAS E CONSEQUÊNCIAS

(p.2 Correiro da Manhã got on TAP)
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Tomorrow

Applications of probabilistic inference to physics quantities

(after finishing with pending items from today. . . )
• Parametric inference
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Tomorrow

Applications of probabilistic inference to physics quantities

(after finishing with pending items from today. . . )
• Parametric inference
• Application to typical detector responses
◦ binomial (efficiencies, branching ratios, ‘proportions’)
◦ Poisson (counts following “Poisson process”)
◦ Gaussian (‘normal errors’, approximation of other pdf)

. . . with some ‘complications’:
◦ systematics
◦ background
◦ measurements at the limit of the detector sensitivity

• Propagation of uncertainties
• Any special wish?
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Friday

Unfolding method
based on the probabilistic reasoning illustrated today:

⇒ how to correct an observed spectrum for distorsions of
several kinds.
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Physics

Observations

Value of
a quantity

Theory
(model)

(*)

Hypotheses discretecontinuous

* A quantity might be meaningful only within a theory/model
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From past to future

Task of the ‘physicist’ (scientist, decision maker):
• Describe/understand the physical world

⇒ inference of laws and their parameters
• Predict observations

⇒ forecasting
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From past to future

Process
• neither automatic
• nor purely contemplative
→ ‘scientific method’
→ planned experiments (‘actions’)⇒ decision.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Uncertainty:

1. Given the past observations, in general we are not sure
about the theory parameter (and/or the theory itself)

2. Even if we were sure about theory and parameters, there
could be internal (e.g. Q.M.) or external effects
(initial/boundary conditions, ‘errors’, etc) that make the
forecasting uncertain.
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Inferential process

G. D’Agostini,Probabilistic Reasoning – p. 9



Inferential process

G. D’Agostini,Probabilistic Reasoning – p. 9



Inferential process
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Inferential process

(S. Raman, Science with a smile)
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)

But, anyway:

“It is far better to foresee even without
certainty than not to foresee at all”
(Poincaré)
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→
Past observations — ? −→

Theory — ? −→ Future observations
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
=⇒ Uncertainty about causal connections

CAUSE⇐⇒ EFFECT
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2

G. D’Agostini,Probabilistic Reasoning – p. 14



A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1

H3

H2

fHxÈHiL

G. D’Agostini,Probabilistic Reasoning – p. 14



A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2

⇒ Which one to prefer?

Note: ⇒ none of the hypotheses of this example can be
excluded and, therefore, there is no way to reach a boolean
conclusion. We can only state, somehow, our rational
preference, based on the experimental result and our best
knowledge of the behavior of each model.
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A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2

⇒ Which one to prefer?

Note: ⇒ none of the hypotheses of this example can be
excluded and, therefore, there is no way to reach a boolean
conclusion. We can only state, somehow, our rational
preference, based on the experimental result and our best
knowledge of the behavior of each model.

We shall come back to this example
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.
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As a matter of fact, although we are in a constant state of
uncertainty about many events which might or might not
occur,
◦ we can be “more or less sure — or confident — on

something than on something else”;
◦ “we consider something more or less probable (or

likely)”;
◦ or “we believe something more or less than something

else”.
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.

As a matter of fact, although we are in a constant state of
uncertainty about many events which might or might not
occur,
◦ we can be “more or less sure — or confident — on

something than on something else”;
◦ “we consider something more or less probable (or

likely)”;
◦ or “we believe something more or less than something

else”.

We can use similar expressions, all referring to the intuitive
idea of probability.
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Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind
◦ P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)
◦ P (170 ≤ mtop/GeV ≤ 180) ≈ 70%

◦ P (MH < 200 GeV) > P (MH > 200 GeV)

G. D’Agostini,Probabilistic Reasoning – p. 16



Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind
◦ P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)
◦ P (170 ≤ mtop/GeV ≤ 180) ≈ 70%

◦ P (MH < 200 GeV) > P (MH > 200 GeV)

. . . thus, such statements are considered blaspheme to
statistics gurus
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainty: ∪5
j=0 Hj = Ω

∪2
i=1 Ei = Ω .
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most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?

• And after a sequence of extractions?
G. D’Agostini,Probabilistic Reasoning – p. 17



The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box

This toy experiment is conceptually very close to what we do in
Physics
• try to guess what we cannot see (the electron mass, a

branching ratio, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch inside
the box! (As we cannot open and electron and read its
properties, like we read the MAC address of a PC interface)
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)

Indeed

“It is scientific only to say what is more
likely and what is less likely” (Feynman)
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How to quantify all that?
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How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].
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How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].

• Probabilistic approach
[In the sense that probability theory is used throughly]
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).

It seems OK, but it is naive for several aspects.

Let start realizing that the method is analogous with method
of the proof by contradiction of classical, deductive logic.
◦ Assume that a hypothesis is true
◦ Derive ‘all’ logical consequence
◦ If (at least) one of the consequences is known to be

false, then the hypothesis is declared false.
G. D’Agostini,Probabilistic Reasoning – p. 21



Falsificationism? OK, but. . .

• What to do of all hypotheses that are not falsified? (Limbus?
Get stuck?)
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Falsificationism? OK, but. . .

• What to do of all hypotheses that are not falsified? (Limbus?
Get stuck?)

• What to do is nothing of what can be observed is
incompatible with the hypothesis (or with many
hypotheses)?

E.g. Hi being a Gaussian f(x |µi, σi)
⇒ Given any pair or parameters {µi, σi}, all values of x

between −∞ and +∞ are possible.
⇒ Having observed any value of x, none of Hi can be,

strictly speaking, falsified.
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Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”
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Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”

in which the impossible is replaced by the improbable!

But from the impossible to the improbable there is not just a
question of quantity, but a question of quality.

This mechanism, logically flawed, is particularly perverse,
because deeply rooted in most people, due to education, but is
not supported by logic.

⇒ Basically responsible of all fake claims of discoveries in the
past decades.

[I am particularly worried about claims concerning our
health, or the status of the planet, of which I have no control
of the experimental data.]
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In summary

A) if Ci −→/ E, and we observe E

⇒ Ci is impossible (‘false’)
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In summary

A) if Ci −→/ E, and we observe E

⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E

⇒ Ci has small probability to be true
“most likely false”
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In summary

A) if Ci −→/ E, and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E NO

⇒ Ci has small probability to be true
“most likely false”
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Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E
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Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E

“practically to exclude”
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Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E

“practically to exclude”

⇒ almost certainly I have cheated. . .
(or it is false that I won. . . )
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

? H1=’HIV’ (Infected) E1 = Positive

? H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive

Infected or healthy?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”?
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would result positive”
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
(We will see in the sequel how to evaluate it correctly)
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)

... which might result into very bad decisions!

G. D’Agostini,Probabilistic Reasoning – p. 27



Similar arbitrary inversion in upper limits

Imagine we have done a counting experiment, believed to be
described by a Poisson distribution.
• Result x = 0

⇒ What can we tell about λ?
(Remember that the physical parameter is r = λ/∆T )

G. D’Agostini,Probabilistic Reasoning – p. 28



Similar arbitrary inversion in upper limits

Imagine we have done a counting experiment, believed to be
described by a Poisson distribution.
• Result x = 0

⇒ What can we tell about λ?
(Remember that the physical parameter is r = λ/∆T )

• All values of λ (or r) are in principle possible
• . . . although, we do not believe them equally likely.

G. D’Agostini,Probabilistic Reasoning – p. 28



Similar arbitrary inversion in upper limits

Imagine we have done a counting experiment, believed to be
described by a Poisson distribution.
• Result x = 0

⇒ What can we tell about λ?
(Remember that the physical parameter is r = λ/∆T )

• All values of λ (or r) are in principle possible
• . . . although, we do not believe them equally likely.
• Standard way to report the result: 95% C.L. upper limit:

λ ≤ 3 @ 95%C.L.

• Why?
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Similar arbitrary inversion in upper limits

“Because if I repeat a large number of experiments,
I get x = 0 in 5% of the cases”
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I get x = 0 in 5% of the cases”

⇒ P (x = 0 | Pλ=3) = 5%.
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But what has this to do with our confidence that λ ≥ 3?
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Special case of the Poisson with observed x = 0

Probability function of x given λ = 3
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Special case of the Poisson with observed x = 0

Probability density function of λ given x = 0
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(We shall came later to the details of the calculation)
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. . . but

It is not a general property
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Let us check with other simple cases

A Poisson distribution with λ = 3
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Let us check with other simple cases

A binomial distribution with n = 10 and p = 0.26
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Let us check with other simple cases

A binomial distribution with n = 5 and p = 0.45
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All give 5% to observe x = 0 ⇒ apply probability inversion →
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The game does not work already with the binomial

‘λL = 3’: P (x = 0 |λL) = 5% P (λ ≥ λL) = 5%
√
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‘pL = 0.26’: P (x = 0 | pL) = 5% but P (p ≥ pL) = 3.7%!
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n = 10, x = 0

P(p>0.26) = 3.7%

‘pL = 0.45’: P (x = 0 | pL) = 5% but P (p ≥ pL) = 2.8%!
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P(p>0.45) = 2.8%
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Statisticians are clever!

This is not yet the end of the story.
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• Each effect has little probability→ ‘practically improbable’

⇒ whatever we observe is an evidence against the hypothesis
• Even those who trust the (flawed) reasoning based on the

small probability of effects have to realize that the reasoning
fails in these cases.
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In many cases: Hi −→ large number of {Ej}:
• Each effect has little probability→ ‘practically improbable’

⇒ whatever we observe is an evidence against the hypothesis
• Even those who trust the (flawed) reasoning based on the

small probability of effects have to realize that the reasoning
fails in these cases.

⇒ statistician ‘way out’ : individual observable effects are
replaced by two sets of effects, one of high chance to
happen, the other of low chance (‘the tail(s) of the
distribution’)
→ the reasoning is extended to these two sets of effects
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Statisticians are clever!

This is not yet the end of the story.
In many cases: Hi −→ large number of {Ej}:
• Each effect has little probability→ ‘practically improbable’

⇒ whatever we observe is an evidence against the hypothesis
• Even those who trust the (flawed) reasoning based on the

small probability of effects have to realize that the reasoning
fails in these cases.

⇒ statistician ‘way out’ : individual observable effects are
replaced by two sets of effects, one of high chance to
happen, the other of low chance (‘the tail(s) of the
distribution’)
→ the reasoning is extended to these two sets of effects

⇒ Logically, the situation worsens:
→ conclusions depend not only on on observed effects, but

also on non-observed effects!
G. D’Agostini,Probabilistic Reasoning – p. 34



Observed value and tails

Several hypotheses to be tested against the observation x = 5
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Observed value and tails

All have the same probability to give x = 5

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

P
(x

)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

H1

Natural that our conclusions depend ‘somehow’ on P (x = 5 |Hi)
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P-values

But this is what we do when we draw scientific conclusions
based on the probability of ‘what we have really observed, or
something rarer than that’,
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P-values

But this is what we do when we draw scientific conclusions
based on the probability of ‘what we have really observed, or
something rarer than that’,

what statisticians call p-values

(But physicists are more used with ‘χ2 probabilities’, or
something similar).
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P-values

Ex.: χ2, ν = 6, χ2
obs = 19: → p-value =

∫ ∞
χ2

obs

f(χ2
6) dχ2

6 = 0.4%.
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What do you conclude? (We shall come back later on this point)
Note for the moment: Whatever your conclusion is, based on
this information, be aware:
• It does not depend directly on the observed data, but on the

‘statistical summary’ χ2.
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P-values

Ex.: χ2, ν = 6, χ2
obs = 19: → p-value =

∫ ∞
χ2
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f(χ2
6) dχ2
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nu = 6

P(chisq>19) = 0.4%

What do you conclude? (We shall come back later on this point)
Note for the moment: Whatever your conclusion is, based on
this information, be aware:
• It does not depend directly on the observed data, but on the

‘statistical summary’ χ2.
• Indeed, it does not even depend precisely on the ‘observed

summary’ alone (χ2
obs), but on all other values of the

summary that are less likely than the observed one.
G. D’Agostini,Probabilistic Reasoning – p. 37
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P-values

Rationale?

As most of these kind of prescriptions, they are not based on
solid principles but only on authority and use.

But then it must work, otherwise it
should have been realized!

• Yes!
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P-values

Rationale?

As most of these kind of prescriptions, they are not based on
solid principles but only on authority and use.

But then it must work, otherwise it
should have been realized!

• Yes! ’It does often work’,

but this has little to do with the ‘probability of the tail’, as
we shall see later.

G. D’Agostini,Probabilistic Reasoning – p. 38



Example: Has the student made a mistake?

Homework: calculate the average of 300 random numbers,
uniformly distributed between 0 and 1.
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Example: Has the student made a mistake?

Homework: calculate the average of 300 random numbers,
uniformly distributed between 0 and 1.
• Teacher expectation:

E
[

X300

]

=
1

2

σ
[

X300

]

=
1√
12
· 1√

300
= 0.017 ,

• 99% probability interval

P (0.456 ≤ X300 ≤ 0.544) = 99% .

• Student gets a value outside the interval, e.g. x = 0.550.

⇒ Has the student made a mistake?
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Example: Has the student made a mistake?

Conventional statistician solution:
⇒ test the hypothesis H0 = ‘no mistakes’
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Example: Has the student made a mistake?

Conventional statistician solution:
⇒ test the hypothesis H0 = ‘no mistakes’

1 2

1 - 

f( |Ho)

• Test variable θ is X300.
• Acceptance interval [θ1, θ2] is [0.456, 0.544].

We are 99% confident that X300 will fall inside it:
→ α = 1%.
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Example: Has the student made a mistake?

Conventional statistician solution:
⇒ test the hypothesis H0 = ‘no mistakes’

1 2

1 - 

f( |Ho)

• Test variable θ is X300.
• Acceptance interval [θ1, θ2] is [0.456, 0.544].

We are 99% confident that X300 will fall inside it:
→ α = 1%.

• x = 0.550 lies outside the acceptance interval

⇒ Hypothesis H0 is rejected at 1% significance.

⇒ What does it mean?
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Meaning of the hypothesis test

Conclusion from test:

“the hypothesis H◦ = ‘no mistakes’ is rejected at the 1%
level of significance”.
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Meaning of the hypothesis test

Conclusion from test:

“the hypothesis H◦ = ‘no mistakes’ is rejected at the 1%
level of significance”.

What does it mean?

“there is only a 1% probability that the average falls outside
the selected interval, if the calculations were done
correctly”.

So what?
• It does not reply our natural question, i.e. that concerning

the probability of mistake – quite impolite, by the way.
• The statement sounds as if one would be 99% sure that the

student has made a mistake! (Mostly interpreted in this
way).

⇒ Highly misleading!

G. D’Agostini,Probabilistic Reasoning – p. 41



Something is missing in the reasoning

If you ask the students (before they take a standard course in
hypothesis tests) you will realize of a crucial ingredient
extraneous to the logic of hypothesis tests:
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Something is missing in the reasoning

If you ask the students (before they take a standard course in
hypothesis tests) you will realize of a crucial ingredient
extraneous to the logic of hypothesis tests:

“It all depends on whom has made the calculation!”

In fact, if the calculation was done by a well-tested program, the
probability of mistake would be zero.
And students know rather well their tendency to do or not
mistakes.
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‘Something is missing’: another example

The value x = 3.01 is extracted from a Gaussian random
number generator having µ = 0 and σ = 1.
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‘Something is missing’: another example
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‘Something is missing’: another example

The value x = 3.01 is extracted from a Gaussian random
number generator having µ = 0 and σ = 1.
It is well known that P (|X| > 3) = 0.27%, but

we cannot say
• “the value X has 0.27% probability of coming from that

generator”
• “the probability that the observation is a statistical

fluctuation is 0.27%”

⇒ the value comes with 100% probability from that generator!

⇒ it is at 100% a statistical fluctuation

Logical bug of the reasoning:

⇒ One cannot tell how much one is confident in generator A
only if another generator B is not taken into account.
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‘Something is missing’: another example

The value x = 3.01 is extracted from a Gaussian random
number generator having µ = 0 and σ = 1.
It is well known that P (|X| > 3) = 0.27%, but

we cannot say
• “the value X has 0.27% probability of coming from that

generator”
• “the probability that the observation is a statistical

fluctuation is 0.27%”

⇒ the value comes with 100% probability from that generator!

⇒ it is at 100% a statistical fluctuation

Logical bug of the reasoning:

⇒ This is the original sin of conventional hypothesis test
methods

G. D’Agostini,Probabilistic Reasoning – p. 43



Well posed problem

Choose among H1, H2 and H3 having observed x = 3:

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1

H3

H2

fHxÈHiL
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• our preference should depend on how likely each model

might yield x = 3
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Well posed problem

Choose among H1, H2 and H3 having observed x = 3:

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1

H3

H2

fHxÈHiL

The statistics-uneducated student would suggest:
• our preference should depend on how likely each model

might yield x = 3

• . . . but perhaps also on ‘how reasonable’ each model is,
given the physical situation under study

⇒ Right!
G. D’Agostini,Probabilistic Reasoning – p. 44
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Objections

“These are chosen academic examples.”

⇒ logic is logic!

How can we use a reasoning in frontier physics
if it fails in simple cases?

⇒ All fake claims of discoveries are due to
the criticized reasoning (examples in a while −→)

“Hypotheses tests are well proved to work”

Yes and not. . .

⇒ They ‘often work’ due to reasons external to their logic, but
which are not always satisfied, especially in the frontier
cases that mostly concern us.

−→ we shall come back to this point

G. D’Agostini,Probabilistic Reasoning – p. 45



Examples from particle physics

⇒ See transparencies
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Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).
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Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)

⇒ BUT people think naturally in terms of probability of causes,
and use p-values as if they were probabilities of null
hypotheses. ⇒ Terrible mistakes!

G. D’Agostini,Probabilistic Reasoning – p. 47



. . . indeed not a very solid superstructure

Moreover, a part the ‘philosophical’ problem of interpretation,
there are plenty of ‘practical’ problems, since ‘statistical test’ are
based on authority principle and not grounded on solid bases
(probabilistic ‘first principles’).
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. . . indeed not a very solid superstructure

Not exhaustive compilation. . .
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there are plenty of ‘practical’ problems, since ‘statistical test’ are
based on authority principle and not grounded on solid bases
(probabilistic ‘first principles’).
• Rich choice→ > ‘100 tests’
• Discussions about which test to use it and how to use it are

not deeper that discussions in pubs among soccer fans
(Italians might think to the ‘Processo di Biscardi’ †)

⇒ Tendency to look for the test that gives the result one wants
• My personal prejudice: The fancier the name of the test is,

the less believable the claim is, because I am pretty sure
that other, more common tests were discarded, because
‘they did not work’.
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. . . indeed not a very solid superstructure

Moreover, a part the ‘philosophical’ problem of interpretation,
there are plenty of ‘practical’ problems, since ‘statistical test’ are
based on authority principle and not grounded on solid bases
(probabilistic ‘first principles’).
• Rich choice→ > ‘100 tests’
• Discussions about which test to use it and how to use it are

not deeper that discussions in pubs among soccer fans
(Italians might think to the ‘Processo di Biscardi’ †)

⇒ Tendency to look for the test that gives the result one wants
• My personal prejudice: The fancier the name of the test is,

the less believable the claim is, because I am pretty sure
that other, more common tests were discarded, because
‘they did not work’ → ‘they did not support what the guy
wanted the data to prove’
χ2 → run-test→ Kolmogorov→ . . . ?. . .⇒ Lourdes Fatima.
. G. D’Agostini,Probabilistic Reasoning – p. 51



Is statistics something serious?

Last, but not least, standard statistical methods,
essentially a contradictory collection of ad-hoc-eries,
induce scientists, and physicists in particular, to think that

‘statistics’ is something ‘not scientific’.

⇒ ‘creative’ behavior is encouraged
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Probabilistic reasoning

What to do?
⇒ Back to the past
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But benefitting of
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• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!
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Probabilistic reasoning

What to do?
⇒ Back to the past
But benefitting of
• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!

⇒ Use consistently probability theory
◦ “It’s easy if you try”
◦ But first you have to recover the intuitive idea of

probability.
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Probability

What is probability?
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Standard textbook definitions

p =
# favorable cases

# possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

# possible equally possible cases

p =
# times the event has occurred

# independent trials under same conditions

Laplace: “lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres”

Pretending that replacing ‘equi-probable’ by ‘equi-possible’
is just cheating students (as I did in my first lecture on the
subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

# possible equiprobable cases

p = limn→∞
# times the event has occurred

# independent trials under same condition

Future⇔ Past (believed so)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

In the probabilistic approach we are going to see
• Rule A will be recovered immediately (under the

assumption of equiprobability, when it applies).
• Rule B will result from a theorem (under well defined

assumptions).
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Probability

What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
→ how much we believe something
→ “A measure of the degree of belief

that an event will occur”

[Remark: ‘will’ does not imply future, but only uncertainty.]
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . ,
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
(E. Schrödinger, The foundation of the theory of probability - I,
Proc. R. Irish Acad. 51A (1947) 51)

1While in ordinary speech “to come true” usually refers to an event that
is envisaged before it has happened, we use it here in the general
sense, that the verbal description turns out to agree with actual facts.
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False, True and probable

Probability

0,10 0,20 0,30 0,400 0,50 0,60 0,70 0,80 0,90 1

0 1

0

0

E

1

1

?

Event E

logical point of view FALSE

cognitive point of view FALSE

psychological
(subjective)

point of view

if certain FALSE

if uncertain,
with
probability

UNCERTAIN

TRUE

TRUE

TRUE
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

“If we were not ignorant there would be no probability, there
could only be certainty. But our ignorance cannot be
absolute, for then there would be no longer any probability
at all. Thus the problems of probability may be classed
according to the greater or less depth of our ignorance.”
(Poincaré)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.

• “Since the knowledge may be different with different
persons or with the same person at different times, they
may anticipate the same event with more or less
confidence, and thus different numerical probabilities may
be attached to the same event” (Schrödinger)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
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• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)

• Some examples:
◦ tossing a die;
◦ ’three box problems’;
◦ two envelops’ paradox.
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Unifying role of subjective probability

• Wide range of applicability
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)

⇒ SLIDES (Higgs mass limits)
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)

• If a person has these beliefs and he/she has the chance to
win a rich prize bound to one of these events, he/she has no
rational reason to chose an event instead than the others.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
• In particular, combinatorial and frequency based ‘definitions’

are easily recovered as evaluation rules
under well defined hypotheses.

• Keep separate concept from evaluation rule.

G. D’Agostini,Probabilistic Reasoning – p. 61



From the concept of probability to the probability theory

Ok, it looks nice, . . . but “how do we deal with ‘numbers’?”
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)
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• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

G. D’Agostini,Probabilistic Reasoning – p. 62



From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet (de Finetti, Ramsey - ’Dutch book
argument’)

It is well understood that bet odds can express confidence†
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet → A bet acceptable in both directions:
◦ You state your confidence fixing the bet odds
◦ . . . but somebody else chooses the direction of the bet
◦ best way to honestly assess beliefs.
→ see later for details, examples, objections, etc
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connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)
• Similar approach by Schrödinger (much less known)
• Supported by Jaynes and Maximum Entropy school
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◦ basic rules
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• Assess probability: The formal structure is an empty box, in
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→ analogy to measures (we need to measure ’befiefs’)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)

⇒ reference probabilities provided by simple cases in which
equiprobability applies (coins, dice, turning wheels,. . . ).

• Example: You are offered to options to receive a price: a) if
E happens, b) if a coin will show head. Etc. . . .
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ Rational under everedays expressions like “there are 90
possibilities in 100” to state beliefs in situations in which the
real possibilities are indeed only 2 (e.g. dead or alive)

• Example: a question to a student that has to pass an exam:
a) normal test; b) pass it is a uniform random x will be ≤ 0.8.
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’
• Also based on coherence, but it avoids the ‘repulsion’ of

several person when they are asked to think directly in
terms of bet (it is proved that many persons have reluctance
to bet money).

G. D’Agostini,Probabilistic Reasoning – p. 62



Basic rules of probability

They all lead to

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

where
• Ω stands for ‘tautology’ (a proposition that is certainly true
→ referring to an event that is certainly true) and ∅ = Ω.

• A∩B is true only when both A and B are true (logical AND)

(shorthands ‘A,B’ or AB often used→ logical product)
• A ∪B is true when at least one of the two propositions is

true (logical OR)
G. D’Agostini,Probabilistic Reasoning – p. 63



Basic rules of probability

Remember that probability is always conditional probability!

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪B | I) = P (A | I) + P (B | I) [ if P (A ∩B | I) = ∅ ]

4. P (A ∩B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

I is the background condition (related to information I)

→ usually implicit (we only care on ‘re-conditioning’)

G. D’Agostini,Probabilistic Reasoning – p. 64



Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.
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Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)

⇒ Take into account all available information in the most
‘objective way’
(Even that someone has a different opinion!)

⇒ It might seem paradoxically, but the ‘subjectivist’ is much
more ‘objective’ than those who blindly use so-called
objective methods.

G. D’Agostini,Probabilistic Reasoning – p. 65



Summary on probabilistic approach

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]
4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic

→ And, please, be coherent!

G. D’Agostini,Probabilistic Reasoning – p. 66



Inference

Inference

⇒ How do we learn from data
in a probabilistic framework?

G. D’Agostini,Probabilistic Reasoning – p. 67



From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)

The fourth basic rule of probability:

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)

G. D’Agostini,Probabilistic Reasoning – p. 68



Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:
• E1 = White
• E2 = Black

G. D’Agostini,Probabilistic Reasoning – p. 70



Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)
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P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6
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P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely

‘decomposition law’: P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

(→ Easy to check that it gives P (Ei | I) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)·P (Hj | I)
P

j
P (Ei |Hj , I)·P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

We are ready!
−→ R program
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before

Where is probability?
→ Certainly not in the box!

G. D’Agostini,Probabilistic Reasoning – p. 72



Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)

Different ways to write the

Bayes’ Theorem
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on
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Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Learning from data using probability theory
G. D’Agostini,Probabilistic Reasoning – p. 74



Solution of the AIDS test problem

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

We miss something: P◦(HIV) and P◦(HIV): Yes! We need some
input from our best knowledge of the problem. Let us take
P◦(HIV) = 1/600 and P◦(HIV) ≈ 1 (the result is rather stable
against reasonable variations of the inputs!)

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P◦(HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
G. D’Agostini,Probabilistic Reasoning – p. 75



Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .
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P (HIV |Pos)
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P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!

• Bayes factor is usually much more inter-subjective, and it is
often considered an ‘objective’ way to report how much the
data favor each hypothesis.
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The hidden uniform

What was the mistake of people saying P (HIV |Pos) = 0.2?

We can easily check that this is due to have set P◦(HIV)

P (HIV)
= 1,

that, hopefully, does not apply for a randomly selected Italian.
• This is typical in arbitrary inversions, and often also in

frequentistic prescriptions that are used by the practitioners
to form their confidence on something:

→ “absence of priors” means in most times uniform priors over
the all possible hypotheses

• but they criticize the Bayesian approach because it takes
into account priors explicitly !

Better methods based on ‘sand’ than methods based on nothing!
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The three models example

Choose among H1, H2 and H3 having observed x = 3:

In case of ‘likelihoods’ given by
pdf’s, the same formulae apply:
“P (data |Hj)”←→ “f(data |Hj)”.

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1

H3

H2

fHxÈHiL

BFj,k = f(x=3 |Hj)
f(x=3 |Hk)

BF2,1 = 18, BF3,1 = 25 and BF3,2 = 1.4→ data favor model H3

(as we can see from figure!), but if we want to state how much
we believe to each model we need to ‘filter’ them with priors.

Assuming the three models initially equally likely, we get final
probabilities of 2.3%, 41% and 57% for the three models.
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

• p-values (e.g. ‘χ2 tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].

• But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
impossible.

• Why do frequentistic test often work? → Slides
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Conclusions

• Subjective probability recovers intuitive idea of probability.
• Nothing negative in the adjective ’subjective’. Just

recognize, honestly, that probability depends on the status
of knowledge, different from person to person.

• Most general concept of probability that can be applied to a
large variety of cases.

• The adjective Bayesian comes from the intense use of
Bayes’ theorem to update probability once new data are
acquired.

• Subjective probability is foundamental in decision issues, if
you want to base decision on the probability of different
events, together with the gain of each of them.

• Bayesian networks are powerful conceptuals/mathematical/
software tools to handle complex problems with variables
related by probabilistic links.
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Are Bayesians ‘smart’ and ‘brilliant’?
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Are Bayesians ‘smart’ and ‘brilliant’?
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End

FINE
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Bet odds to express confidence

“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)
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Bet odds to express confidence

“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)

“It is a bet of 11,000 to 1 that the error on
this result (the mass of Saturn) is not
1/100th of its value” (Laplace)
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Bet odds to express confidence

“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)

“It is a bet of 11,000 to 1 that the error on
this result (the mass of Saturn) is not
1/100th of its value” (Laplace)
→ 99.99% confidence on the result

Go Back
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Processo di Biscardi

A single quote gives an idea of the talk show:

“Please, don’t speak more than two
or three at the same time!”

Go Back
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