Searches for Exotic Phenomena with Tau Leptons

Maxwell Chertok
University of California, Davis, USA
July 6, 2010
LHC Seminar, Lisbon

Outline

Introduction CDF at Fermilab Run II Tau triggers • $Z \rightarrow \tau \tau$, VLQ3, RPV Stop Trileptons/LS Dileptons CMS at CERN PF tau reconstruction Trilepton search Conclusions

Introduction

- Central goal for LHC era of particle physics:
 - Elucidate mechanism of Electroweak Symmetry Breaking: Higgs, SUSY, extra dimensions, TC?

Related (?)

- Address puzzles from cosmology: Dark energy & Dark Matter
- Flavor physics, neutrino mixing, quantum gravity, string theory

The Standard Model

(interdisciplinary research in vogue) For details, see http://pdg.lbl.gov м.с

Why is it incomplete?

- Why do these particles have the masses that they do?
- What is the Higgs?
- Why do the Z and W have mass, but not the photon?
- Why are there three forces + gravity, with different strengths?;
- O they all unify at some scale?
- Why is gravity special?
- Why is there CP and T violation?
- Why are there three families of quarks and leptons?
- Where did the universe's antimatter go?
- What is the source of dark matter in the universe?

(I won't have time to answer all these in this talk...)

SUSY to rescue!?

- SUPERSYMMETRY is a theory with intriguing features:
 - Plays nicely with string theory
 - Resolves the "hierarchy" problem
 - Unifies force couplings at high energy
 - Includes dark matter candidate

Supergravity Masses

T₁ stau light if appreciable mixing

M. Chertok -- Searches with Taus **7**

When hadrons collide

Why Study the Tau?

Leptonic signatures of new physics critical at hadron colliders due to overwhelming backgrounds

- Multiple physics "object" signatures appealing:
 - Dileptons: OS and LS, Trileptons, etc
 - These signatures dramatically decrease hadronic backgrounds

Why Study the Tau? (2)

Lepton universality may not hold in exotics decays (Higgs, SUSY)

Must include the tau to maximize sensitivity

Tau Lepton

The tau is identical to the electron! (except that it's 3400 X heavier) .: "Interesting" decays

 $\tau_{\tau} = 290.6 \text{ fs}$ $c\tau_{\tau} = 87.11 \text{ }\mu\text{m}$

Tau Lepton Decays

Tau Lepton: neutral pions

Tau decays: hadronic modes • For two taus produced

mode	%
τ _h τ _h	44
ThTI	44
τιτι	12

Must trade-off: BR ↔ efficiency

Tau decay product isolation

 Not an intrinsic quality, but result of EWK signal
 Critically important for background rejection
 Compare: hadronic jets

Taus versus Jets

Fermilab Tevatron

World's most powerful pp collider!

CDF Run II Detector

Vertexing Tracking TOF Solenoid EM Calorimetry Hadron Calorimetry Muon Chambers Tau triggering in Run II
 Electron + T_h, Muon + T_h
 Most used: Higgs, SUSY, VLQ3...

	e+τ _h	μ+τ _h
L1	EM cluster, Had/Em < 1/8 Track, pT > 8 GeV	muon stub+track p⊤ > 6 GeV
L2	electron: Shower Max signal 2 nd track, pT > 5 GeV ΔΦ (e,track) > 10 ⁰	
L3	electron: track-shower match track, $p_T > 5$ GeV $N_{tracks}(10^0-30^0) = 0$ $\Delta Z < 15$ cm, $\Delta R > 0.175$	muon: stub-track match, $p_T > 8 \text{ GeV}$ 2^{nd} track, $p_T > 5 \text{ GeV}$ $N_{tracks}(10^0-30^0) = 0$ $\Delta Z < 15 \text{cm}$, $\Delta R > 0.175$

Early Run II Tau Analyses $\bigcirc Z \rightarrow \tau \tau$: Standard Candle

First cross section measurement at hadron collider

Tau Variables	Cuts
η_{det}	< 1.0
E_T^{clu}	> 20 GeV
Seed Tower E_T	> 6 GeV
Seed Track p_T	> 6 GeV/c
$Mass(tracks + \pi^0 s)$	< 1.8 GeV/ <i>c</i> ²
Cal Iso $(\Delta R=0.4) / E_T^{clu}$	< 0.1
$ z_0(au)-z_0(e) $	$< 5 \mathrm{~cm}$
$N_{\text{axial SL}}, N_{\text{stereo SL}}$ (for seed track)	≥ 3
$N_{track}^{\text{iso cone}} (p_T > 1.0 \text{ GeV}/c)$	0
$N_{\pi^0}^{\text{iso cone}} (E_T > 0.5 \text{ GeV})$	0
Electron Removal	$\boldsymbol{\xi} \equiv \boldsymbol{E_T^{had}}/\boldsymbol{\Sigma} \boldsymbol{p_T} > 0.1$
Fiducial Region	$9 < z_{CES} < 230 \text{ cm}$

T visible mass (trks + π^0 s)

$Z \rightarrow \tau \tau Cross Section$

 $\sigma(p\bar{p}\rightarrow Z)Br(Z\rightarrow \tau \tau) = 265 \pm 20 \text{ (stat)} \pm 21(\text{syst}) \pm 15 \text{ (lumi) pb}$

Phys. Rev. D75, 092004 (2007)

- Helicity amplitudes required because acceptance depends on tau helicity
 - GRACE/GR@PPA implements Feynman rules and uses helicity basis. Pass tau polarization to TAUOLA
- Similar procedure necessary for other exotic (J≠0) decays to taus

CDF VLQ3 Search

σ_{LHC} , situation ~ reversed

CDF VLQ3 Results No events observed

Phys. Rev. D77, 092001 (2008).

R_pV SUSY Search with T

Signature to look for: (*e* or μ) + τ_h + 2 jets

Good agreement in control regions N_{jet}=0 and N_{iet}=1

■ Region N_{jet}≥2 was looked at after opening the box

Phys. Rev. Lett. 101, 071802 (2008)

CDF Doubly-Charged Higgs
Search for H⁺⁺ pair-production with LFV decay H⁺⁺ → Te or H⁺⁺ → Tµ
Signature is LS dileptons or multileptons
Assume prompt decay, O(10µm)

H++/H-Employ "lepton+track" triggers (low P_T)
Require 3 or 4 leptons to suppress W+jets
H_T cut, Z mass veto, LS mass window

No events survive

Phys. Rev. Lett. 101, 121801 (2008)

To examine SUSY variants on this model, we need custom MC for Δ^{++} production

H⁺⁺ interesting event

µт+т+
Fails LS mass window cut
Likely SM process is W +jets

Search for SUSY trileptons

N2C1 Search

Direct (EWK) or from cascades (strong), imparts boost

Cascades more relevant for LHC

Dilepton edge from N2 decay. always
 OS pair. challenging if stau involved

slepton virtual: modifies edge

• $|\Sigma Qi| = 1$, so 2 OS pairs

MET cancellation not complete

• topology cuts to reduce WZ, ttbar

Trilepton channels • 5 exclusive channels

trilepton

dilep+track

CHANNEL	SELECTION	(E _T or P _T) ₁₂₃ [GeV]
3 tight	3 tight <i>l</i> or 2 tight <i>l</i> + 1 loose e	15,5,5
2 tight + 1 loose	2 tight <i>l</i> + 1 loose muon	15,5,10
1 tight + 2 loose	1 tight lepton + 2 loose <i>l</i>	20,8,5 *
2 tight + 1 track	2 tight <i>l</i> + 1 iso track	15,5,5
1 tight + 1 loose +1 track	1 tight <i>l</i> + 1 loose <i>l</i> + 1 iso track	20,8*,5

* 10 GeV if loose muon

DF: SUSY III Search

epton results

Our counting result is consistent with the Standard Model

Analysis	Backg.	Signal	DATA
Trilepton	1.5 ± 0.2	7.4 ± 0.7	1
Dilepton+Track	9.4 ± 1.4	11.2 ± 1.1	6

$(m_0=60, \tan\beta=3, A_0=0, \mu>0)$

CDF Run II Preliminary, 3.2 fb⁻¹

 $(\tan\beta=3, A_0=0, \mu>0)$

Next: fill in gap, explore high $tan\beta$ with LS search

"Interesting" events are piling up at Fermilab

muon+tau+tau event

4 electron event

Meanwhile...

MS: World's largest solenoid

Why is this so exciting?

Cross sections, ultimate ∫Ldt much higher

CMS detector slice

Hadronic Tau Decays: pi^{+/-}: tracks,(ECAL),HCAL pi⁰ gammas:(tracks),ECAL,(HCAL) punchthrough to MUON sys?

CMS tau strategy

Use integrated particle flow approach

Leading particle $p_T > 5 \ GeV/c$ $\Delta Rjet axis < 0.1$

Signal cone: sum up all particles with p_>0.5 GeV/c

Isolation cone Isolation annulus

Tau Algorithms at CMS • 4 Algorithms in development Fixed and shrinking cone Tau Neural Classifier Hadron Plus Strips Out base track and calorimeter isolation Figures of merit Efficiencies Fake Rates

Caveat: Not approved results!

TauNeuralClassifier (TaNC)

- Goal: improve τ-ID with decay mode information
 - Different hadronic decay modes have different underlying resonances
 - Use to reject QCD

Mediator	BR	Decay
N/A	11%	π+ v
ρ (770 MeV)	25%	π+ π ⁰ ν
a1 (1.2 GeV)	10%	π+ π ⁰ π ⁰ ν
a1 (1.2 GeV)	14%	π+ π+ π v
	60%	Total
	65%	All hadronic modes

45

Trileptons with taus

CMS Trilepton Selection Used for synch. study, not with the TaNC

Cut and Selection		
	> 8 GeV	
$ \eta $	< 2.4	
$p_{T_{track}}^{lead}$	> 5.0 GeV/c	
PF γ Isolation	< 1.5 GeV	
PF Track Isolation	< 1.0 GeV/c	
Discriminator	e, <i>µ</i>	
Prong	1 or 3	
Hits ^{lead}	> 8	
$ dxy(beamspot)_{track}^{lead} $	< 0.1	
#e, or μ	= 2	
ΣQ_{lepton}	= 1	
di-lepton Mass Veto	$ $ < 10 or between 75 and 105 GeV/c^2 $ $	
$\Delta R(\tau, e or \mu)$	> 0.3	
E_T	> 35 GeV	

e,μ &

Event

Extending to high tan β

More taus for CMS... • High mass $Z' \rightarrow \tau \tau$ $\bigcirc H^+ \rightarrow \tau v$ \bigcirc NMSSM: $H \rightarrow aa, a \rightarrow \tau \tau$ • First searching for $a \rightarrow \mu \mu$ near Upsilon Revisit T triggering

Real data!

CMS Experiment at the L Run 123596 Even Sun Dec 06 08:0

Conclusions

Conclusions

Tevatron might finish with a bang
LHC startup is not quick but inexorable
With 1/fb start to take over from Tevatron on SUSY searches

Taus now "usable" and "useful". Who knows, maybe they will even be "crucial".

the "b" of the 2010's?

Thank you!