

N. Almeida, M. Bluj, M. Gallinaro, M. Jordao, M. Kazana⁺, L. Raposo, J. Pela, P. Ribeiro, P. Silva, J. Varela

LIP

Top quark

- Cross section measurement
- Tau identification
- ➤ Measurement of V_{tb}

Extra-dimensions

- Searches with first data
- Electron identification

CMS and LHC

- explore new energy frontier
- colliding beams expected in 2008
- start with low luminosity
- 0.1-1.0 fb⁻¹ expected in first year

- re-establish SM measurements
- access to new physics (?)

Top quarks at the LHC

- LHC is a top factory
 - approx. 830k ttbar events/fb
- yield in 1/fb (after selection):
 - dilepton (e/ μ): ~5k events
 - lepton+jets: ~35k events
- energy scale calibration (W→jj)

	TeV	LHC
	ppbar	рр
E _{CM}	1.96TeV	14 TeV
qq	85%	15%
gg	15%	85%
σ_{tt}	6.7 pb	830 pb

Detecting the Top

Signal:

- ✓ triggering on lepton
- ✓ large missing transverse energy ($\not \in_{T}$)
- \checkmark high E_T jets, central and spherical
- ✓ two b-jets (displaced vertex)

Background:

- ✓ W+jets:
 - dominant in leptonic modes
 - fakes the second lepton
- ✓ QCD: huge in all-jet mode

Taus in top decays

Channel	Signature	BR
Dilepton(e/µ)	ee,μμ,eμ + 2 <i>b</i> -jets	4/81
Single lepton	e,μ + jets + 2 b -jets	24/81
All-hadronic	jets + 2 <i>b</i> -jets	36/81
Tau dilepton	θτ , μτ +2 <i>b</i> -jets	4/81
Tau+jets	τ + jets + 2 <i>b</i> -jets	12/81

should have same rate as eµ dilepton channel

- challenging (lower p_T than e or μ due to v's)
- probe New Physics processes

Tau dileptons

• Measure:
$$R = \frac{BR(tt \rightarrow l\tau v v jj)}{BR(tt \rightarrow llv v jj)}$$
 (*l=e*,µ)

• Advantages:

–increase statistics–cross-check to other BRs

- Disadvantages:
 - -small statistics/larger background -soft tau p_T due to neutrinos

⇒ test lepton universality
 ⇒ probe non-standard physics (t→H[±]b, …)

Michele Gallinaro - "Physics at LHC with the CMS experiment" - January 11, 2008

Hadronic tau decays

- Look for taus in their hadronic decay
 - τ→1charged hadron (BR~50%)
 - τ→3 charged hadrons (BR~14%)
- Hadronic taus are identified using tracking/calorimeter information

Requires track isolation to discriminate against QCD jets

Tau identification

Pick up the discriminated TauTagged objects in each samples

Apply a kinematical cut in the tau tagged candidates

✤ p^{LT}_T > 15GeV

✤ |η| < 2.4</p>

Apply different electron/muon veto on these candidates:

- EmFraction < 0.9</p>
- Energy HCAL > 1GeV
- Energy HCAL + HCAL > 10GeV
- ✤ E_{jet}/p_{LT}> 0.5
- maxET on HCAL Tower > 1GeV

Combine these values in order to obtain the best rejection factor.

Electron/muon rejection

- e/μ contamination in tau-ID is large
- study DY(ee,μμ,ττ) samples
- electron veto:
 - -EMF>0.9
 - accepts ~4% of generated electrons
- muon veto:
 - -E/P>0.5
 - accepts ~2% of generated muons
- ⇒ tau efficiency: ~89%

Event yield in 100/pb

- Isolated lepton: p_T>20 GeV
- ≥2jets E_T>30 GeV |η|<2.4
- Missing E_T>60 GeV

Distribution of H_T after OS cut ✓Empty histogram - signal ✓Filled histogram - background

	sig	mal	other $t\bar{t}$			backgr		
cut	$e\tau$	$\mu\tau$	ll	$\ell(q\bar{q})$	full-had.	W + nj	Z + nj	S/B
Expected	1559.8	1559.8	5751.8	29246.5	45532.0	-	-	-
HLT all	820.0 ± 23.4	1019.3 ± 25.9	4757.4 ± 56.2	17090.6 ± 106.6	1903.9 ± 35.4	156616.3 ± 741.7	69361.8 ± 718.4	0.007
$N_{lep} \ge 1$	533.0 ± 13.4	781.1 ± 17.2	4175.1 ± 41.5	12741.8 ± 69.4	38.6 ± 2.5	106917.7 ± 382.1	55240.3 ± 358.4	0.007
$N_{tau} \ge 1$	76.6 ± 5.1	112.8 ± 6.6	188.6 ± 8.9	201.1 ± 8.7	1.1 ± 0.4	657.1 ± 29.2	2647.3 ± 78.1	0.051
$N_{tau-ID} \ge 1$	73.0 ± 5.0	106.3 ± 6.4	66.7 ± 5.3	184.1 ± 8.3	1.1 ± 0.4	631.9 ± 28.6	893.2 ± 44.2	0.101
$N_{jet} \ge 2$	50.0 ± 4.0	65.5 ± 4.9	31.0 ± 3.5	151.7 ± 7.5	0.8 ± 0.4	132.4 ± 10.3	164.2 ± 10.9	0.240
MET > 60 GeV	40.3 ± 3.6	49.5 ± 4.2	25.3 ± 3.1	72.6 ± 5.2	0.8 ± 0.4	34.5 ± 5.0	13.2 ± 1.9	0.614
op. sign	39.3 ± 3.6	48.5 ± 4.2	21.6 ± 2.9	52.1 ± 4.4	0.8 ± 0.4	23.5 ± 4.2	12.9 ± 1.9	0.793
$N_{b-tag} \ge 1$	35.7 ± 3.4	44.4 ± 4.0	19.4 ± 2.8	46.4 ± 4.2	0.8 ± 0.4	8.3 ± 2.6	8.3 ± 1.5	0.963
$N_{b-tag} \ge 2$	18.6 ± 2.5	22.5 ± 2.9	9.1 ± 1.9	18.6 ± 2.6	0.6 ± 0.3	0.9 ± 0.7	2.8 ± 0.7	1.288

Table 1: Number of selected events, 1-prong

QCD background

Evaluate fake rate from data:

- 1) inclusive Jet E_T distribution
- 2) jet identified as tau candidate
- 3) fake probability for a tau candidate

Apply to W+≥3jets distribution

Acceptance

Total acceptance: $A_{tot} = A \times BR$ (normalized to inclusive tt)

Note: τ stands for hadronic- τ only

	1-prong			3-prongs		
cut	$e\tau$	μτ	total $\ell \tau$	$e\tau$	$\mu\tau$	total $\ell \tau$
Expected	1.86469	1.86469	3.72938	1.86469	1.86469	3.72938
$N_{lep} \ge 1$	0.83954 ± 0.02112	1.09344 ± 0.02409	1.93297 ± 0.03204	0.83954 ± 0.02112	1.09344 ± 0.02409	1.93297 ± 0.03204
$N_{tau} \ge 1$	0.12062 ± 0.00809	0.15788 ± 0.00924	0.27850 ± 0.01228	0.04278 ± 0.00468	0.05672 ± 0.00539	0.09951 ± 0.00936
$N_{tau-ID} \ge 1$	0.11501 ± 0.00788	0.14879 ± 0.00896	0.26380 ± 0.01194	0.04232 ± 0.00467	0.05541 ± 0.00534	0.09773 ± 0.00920
$N_{jet} \ge 2$	0.07873 ± 0.00638	0.09163 ± 0.00684	0.17036 ± 0.00935	0.02435 ± 0.00340	0.03674 ± 0.00423	0.06109 ± 0.00712
MET > 60 GeV	0.06351 ± 0.00569	0.06925 ± 0.00593	0.13276 ± 0.00823	0.02051 ± 0.00312	0.02961 ± 0.00379	0.05012 ± 0.00635
op. sign	0.06194 ± 0.00562	0.06789 ± 0.00589	0.12983 ± 0.00814	0.01069 ± 0.00229	0.01531 ± 0.00271	0.02600 ± 0.00536
$N_{b-tag} \ge 1$	0.05625 ± 0.00538	0.06214 ± 0.00564	0.11839 ± 0.00779	0.00993 ± 0.00219	0.01402 ± 0.00260	0.02394 ± 0.00514
$N_{b-tag} \ge 2$	0.02937 ± 0.00394	0.03146 ± 0.00401	0.06083 ± 0.00562	0.00713 ± 0.00185	0.00728 ± 0.00186	0.01441 ± 0.00384

Table 1: Efficiency of selection with respect to inclusive $t\bar{t}$ (in %).

• estimated acceptance from MC

- additional cuts may be used to further reduce the background
 - ✤ H_T, b-tagging (?)

Charged Higgs

• Tau dilepton channel is of particular interest as existence of charged Higgs can give rise to **anomalous** tau lepton production

⇒directly observable in this channel

Is BR(t→Wb)~100% ?

• In the SM,
$$R = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)} \approx |V_{tb}|^2$$
 0.9980

- measure R by comparing the number of ttbar events with 0, 1 and 2 b-tags
- R≈O(10⁻¹) ⇒ evidence for New Physics (e.g. 4th generation hep/ph-0607115)

|V_{tb}|>0.71 @95% CL (lepton+jets) |V_{tb}|>0.68 @95% CL (single top) (hep/ex-0612052)

Not yet sensitive to SM

Di-lepton channel

- Complementary to lepton+jets
- Advantages:
 - less combinatorial ambiguity
 - less background
- Disadvantages:
 - lower statistics

• Selection:

- 2 leptons+ ≥2 jets + MET
- no b-tagging in preselection
- 4% uncertainty achieved on b-tagging efficiency
- S/B = 529/70 ~8 with 100/pb (CMS 2007/025)

- Plan:
 - reproduce/improve efficiencies
 - study background:
 - W/Z+jets, single top, gluon splitting, etc.
 - simultaneous extraction of R and $\epsilon(b)$
 - 2 unknowns with 2 observables: N(2tag)/N(1tag) and N(1tag)/N(0tag)

Michele Gallinaro - "Physics at LHC with the CMS experiment" - January 11, 2008

b-tagging with first data

A Likelihood Ratio method parametrizes the ratio f=S/(S+B) for different kinematical distributions – $x_i = p_T(top)$, $p_T(b_{lep})$, $\Delta \phi$, $\Delta \theta$, $E_T(jet)$, etc.

Michele Gallinaro - "Physics at LHC with the CMS experiment" - January 11, 2008

Measuring V_{tb}

Results indicate a statistical error of ~0.02 in measuring R with L = 100/pb:

TABLE 3 - EVENT YIELDS AT L = 100pb ⁻¹ (WITH TOY MC MODEL FOR b-tagging)							
N _{evts} (expected) w/ di	441 ± 4						
MC SAMPLE		Allb	Mix	All q			
R _{generated}		1	0.9	0			
	0	43 ± 2	60 ± 3	429 ± 7			
N _{evts} with <i>k</i> b-tags	1	181 ± 4	203 ± 5	11 ± 1			
	2	217 ± 5	177 ± 5	0.243 ± 0.1			
R _{measured}		$\textbf{1.00} \pm \textbf{0.02}$	0.90 ± 0.02	0.002+0.005			

a) 100% to b (All b)
b) 90% to b, 10% to q (Mix)
c) 100% to q (all q)

Taking into account the detector response and resolution:

- σ_{R} =0.08 (stat)
- $\sigma_{\rm R}$ =0.09 (syst)

Extra Dimensions

• Can we imagine more than 3-D?

- Attempt to unify gravity and electromagnetism in a five dimensional (5D) theory (Kaluza-Klein)
- All SM particles "feel" extra-dimensions
 - each particle has a "tower" of KK excitation

Michele Gallinaro - "Physics at LHC with the CMS experiment" - January 11, 2008

Clean signature

- Like in SUSY, strongly interacting particles are produced
- KK quarks/gluinos may be produced at LHC
- Four leptons in the final state:
 - $pp \rightarrow g_1g_1 \rightarrow 4 leptons + 4 jets + MET$

Universal ED

SM in 5D -Minimal UED (MUED)

- > electroweak observables are insensitive to the unknown physics above the cutoff scale
- > 1/R and Λ are the only parameters relevant for collider phenomenology

(Cheng, Matchev and Schmaltz, hep-ph/0205314)

- Experimental Bounds
 - > Tevatron direct search $\rightarrow 1/R > 280 \text{ GeV}$ (C.Lin, fermilab-thesis-2005-069
 - > Dark matter \rightarrow 600 GeV <1/R< 1050 GeV (Servant and Tait , hep-ph/0206071)

SM in 6D

- anomaly cancellations predict that # fermion generations = 3n
- remnant of 6D Lorentz symmetry enforces long proton lifetime

(Dobrescu, Kong and Mahbubani, hep-ph/0703231)

 Experimental Bounds : 1/R >~270 GeV (trilepton search: Phys.Rev.Lett.99:191806,2007 & AIP Conf.Proc.903:173-176,2007)

20

Signal and background

$pp{\rightarrow} g_1g_1$	$\rightarrow 2(\ell^\pm\ell^\mp) + 4\mathbf{q} + 2\gamma_1^{\mathrm{LKP}}$	$\rightarrow 4\ell + 4 jets + \not\!$
$pp{\rightarrow} g_1 q_1$	$\rightarrow 2(\ell^\pm\ell^\mp) + 3\mathbf{q} + 2\gamma_1^{\mathrm{LKP}}$	$\rightarrow 4\ell + 3 jets + \not\!\!\!E_T$
$pp{\rightarrow} q_1 q_1$	$\rightarrow 2(\ell^\pm\ell^\mp) + 2q + 2\gamma_1^{\rm LKP}$	$\rightarrow 4\ell + 2 jets + \not\!\!\! E_T$

- four points: 1/R = 300, 500, 700, 900 GeV ; ΛR=20; m_b=120 GeV
- total cross section = 2190, 165, 26, 5.9 pb
- three leptonic decay channels : 4e, 4µ, 2e2µ
- B.R. to each leptonic channel ~ $10^{-4} 10^{-3}$ $z Z(Z^*/\gamma^*)$

SM backgrounds considered : Z b b b b b b

Event selection

- 4 isolated leptons
- 2 pairs of OSSF leptons
- b-tag veto
- missing p_T >20 GeV
- Z veto

⇒ a few events expected in 100/pb

Event yield for 100/pb

4e channe	1 Number of events for 100/pb								
Sample	MC, ϵ_1	L1+HLT	RECO, ϵ_2	$\geq 4 \log p$	\geq 4 iso	$\geq 2 \text{ OSSF}$	Z-Veto	$\Sigma P_T Jet > 100 GeV$	B-Veto
Ued-300	33	29	26	4	1.3	1.2	1	0.21	0.19
Ued-500	4.5	4.1	3.7	1.5	0.62	0.58	0.52	0.18	0.16
Ued-700	0.94	0.9	0.8	0.44	0.18	0.17	0.14	0.08	0.073
Ued-900	0.27	0.26	0.23	0.14	0.063	0.06	0.046	0.034	0.031
Tot bkg	8e+04	9.5e+03	4.4e+03	3.1e+02	0.38	0.35	0.018	0.0005	0.00042
tī	8e+04	9.5e+03	4.4e+03	3.1e+02	0	0	0	0	0
ZZ	12	6.3	4.2	0.54	0.38	0.35	0.018	0.0005	0.00042
<u> </u>							100/ 1		
4μ channe	1				Number	of events fo	r 100/pb		
Sample	MC, ϵ_1	L1+HLT	RECO, ϵ_2	\geq 4 lep	\geq 4 iso	$\geq 2 \text{ OSSF}$	Z-Veto	ΣP_{T} Jet > 100 GeV	B-Veto
Ued-300	31	31	29	12	6.5	6.5	5.7	1	0.9
Ued-500	4.3	4.3	3.9	2.8	1.6	1.6	1.4	0.48	0.42
Ued-700	0.91	0.91	0.83	0.66	0.39	0.39	0.31	0.17	0.15
Ued-900	0.26	0.26	0.24	0.2	0.12	0.12	0.089	0.066	0.059
Tot bkg	8e+04	1.2e+04	4.2e+03	39	0.87	0.87	0.056	0.00058	0.0005
tī	8e+04	1.2e+04	4.2e+03	38	0.048	0.048	0	0	0
ZZ	12	6.9	5	1	0.82	0.82	0.056	0.00058	0.0005
$2e2\mu$ chan	nel				Number	of events fo	r 100/pb		
Sample	MC, ϵ_1	L1+HLT	RECO, ϵ_2	$\geq 4 \log p$	\geq 4 iso	$\geq 2 \text{ OSSF}$	Z-Veto	$\Sigma P_T \text{Jet} > 100 GeV$	B-Veto
Ued-300	62	60	56	13	5.6	5.3	5.1	0.97	0.88
Ued-500	8.7	8.4	7.7	4.2	2	1.9	1.9	0.66	0.59
Ued-700	1.9	1.8	1.6	1.1	0.56	0.55	0.54	0.31	0.28
Ued-900	0.54	0.53	0.47	0.34	0.17	0.17	0.17	0.13	0.11
Tot bkg	8e+04	2.1e+04	1.3e+04	5.7e+02	1.8	1.2	0.15	0.055	0.0017
tī	8e+04	2.1e+04	1.3e+04	5.7e+02	0.59	0.1	0.054	0.054	0
ZZ	12	9.8	9.2	1.6	1.2	1.1	0.093	0.0018	0.0017

Exclusion limits

- No towers are yet observed in nature, below few hundred GeV
 - Extra-dimensions are small
- With first LHC data there may be indication for UED
- Sensitivity for low mass UED with <1/fb

Discovery potential

- No towers are yet observed in nature, below few hundred GeV
 - Extra-dimensions are small
- With first LHC data there may be indication for UED
- Sensitivity for low mass UED with <1/fb

Electron/photon trigger

- Use test beam data
- L1 trigger algorithm: 8 nearest neighbors around hit tower
 - -Electron $E_T = E_T^{hit} + max E_T$ (of 4 neighbors)
 - -Non-isolated/isolated candidates

Electron trigger efficiency

- ~4% of high-energy (100 GeV) electrons is classified as non-isolated
- They can be recovered through the non-isolated electron stream

	Electron Selection Efficiency in percentage							
	Non Isolat	ed Stream	Isolated Stream					
Energy (GeV)	$E_{thr}^{FG} = 3 \text{ GeV}$	$E_{thr}^{FG} = 5 \text{ GeV}$	$E_{thr}^{FG} = 3 \text{ GeV}$	E_{thr}^{FG} = 5 GeV				
9	95	95	95	95				
15	98	98	98	98				
20	98	98	97	98				
30	98	98	97	98				
50	99	99	90	99				
100	100	100	89	96				

P. Ribeiro et al., JINST 2:P12001,2007

⇒ high trigger efficiency can be achieved for electrons/photons

Electron ID

- Need high efficiency for:
 - H→4 leptons
 - low E_T electrons
- Selection cuts:
 - match in ϕ and η between track/cluster
 - E/P
 - Shower shape
 - H/E
- Divide electrons in 3 categories
- ⇒ 98% efficiency and low fake rate

ECAL data filtering

- ECAL data limited to 10% of the full CMS event size (1MB)
 - reduction factor of 20 is needed
 - could lead to energy degradation
- LIP contributed to the development of the ECAL Selective Readout
 - algorithm based on energetic towers E_T (+neighbors)
 - filtering can be achieved with low suppression thresholds and no energy degradation
- N. Almeida et al., CMS Note 2008/002 submitted to JINST

LIP/CMS GRID

During CSA07

- CMS site availability for computing and storage
- LIP-Lisbon site availability higher than 95% during CSA07 exercise
- Participation in MC production for CSA07
- Storage of top/electron/tau samples for analyses

Michele Gallinaro - "Physics at LHC with the CMS experiment" - January 11, 2008

CMS/GRID link commissioning

Successful participation in the CSA07 data transfer program with download and upload commissioned links to/from PIC & CERN and LIP-Lisbon/LIP-Coimbra

Thanks to the support of the LIP "computing" team!

Michele Gallinaro - "Physics at LHC with the CMS experiment" - January 11, 2008

Summary

- LIP/CMS group is active in SUSY/Top analyses
- Studies with leptons in the final state
- Top quark is not well known and interesting for new physics
- The LHC will soon start colliding beams
- "New" physics is within reach

LIP/CMS group

- In the picture (from the left) :
- M. Gallinaro, M. Bluj, J. Seixas, J. Pela, M. Jordão. M. Ferreira, P. Ribeiro, N. Almeida, J. Varela, M. Kazana, J.C. Silva, A. Vila Verde, A. David, M. Husejko, P. Musella, P. Silva
- 16 collaborators affiliated to LIP-Lisbon
- 3 senior physicists, 3 Post Doc. fellows, 3 PhD. students, 4 Master students and 3 engineers/technicians